

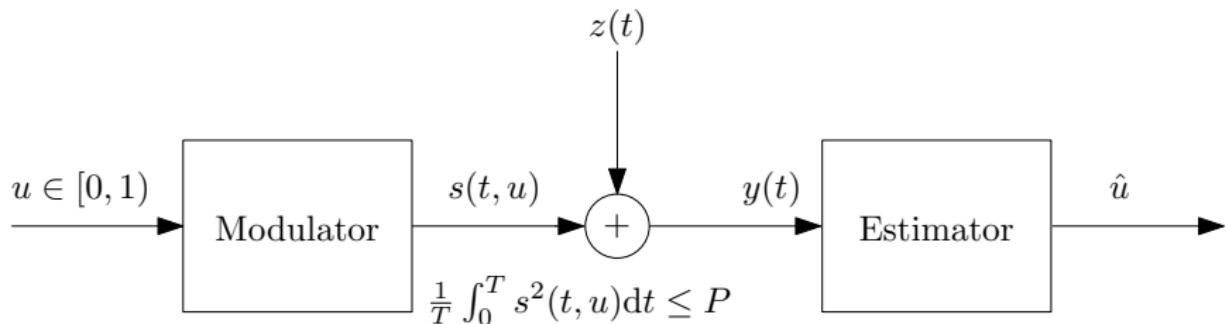
Lower Bounds on Parameter Modulation-Estimation Under Bandwidth Constraints

Nir Weinberger and Neri Merhav

Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa, Israel

2016 International Conference on the
Science of Electrical Engineering,
Eilat, Israel, November 2016

Introduction



Waveform communication:

- Parameter u conveyed via an AWGN channel.
- How well can we estimate u for the best modulator?
- Problem $\in \{\text{IT}\} \cap \{\text{Estimation theory}\}$
 - IT: Joint source–channel coding - source **block length= 1**.
 - Estimation theory: Most bounds - for a **given** modulator.

Known Results

For AWGN channel **without** bandwidth constraints:

- Achievability: PPM/FPM/Uniform quantization and optimal channel code

$$\mathbb{E} |\hat{u} - u|^2 \dot{\geq} \exp\left(-\frac{1}{3} \cdot \frac{PT}{N_0}\right).$$

- Converse:

- Data processing theorem bound

$$\mathbb{E} |\hat{u} - u|^2 \dot{\geq} \exp\left(-2 \cdot \frac{PT}{N_0}\right).$$

- Cohn (1970)

$$\mathbb{E} |\hat{u} - u|^2 \dot{\geq} \exp\left(-\frac{1}{2.89} \cdot \frac{PT}{N_0}\right).$$

- Burnashev (1984, 1985)

$$\mathbb{E} |\hat{u} - u|^2 \dot{\geq} \exp\left(-\frac{1}{3} \cdot \frac{PT}{N_0}\right).$$

- Upper and lower bounds **match**.

Bandwidth Constraints

What if the input signals are band-limited to W ?

- Data processing bound ($R(D) \leq CT$):

$$\mathbb{E} |\hat{u} - u|^2 \geq \exp \left[-T \cdot 2W \log \left(1 + \frac{P}{N_0 W} \right) \right].$$

- In this work: three better lower bounds + upper bound.

Problem Formulation

- Modulation-estimation **system** \mathcal{S}_T .
- **Modulator** $u \rightarrow s(t, u)$, $u \in [0, 1)$, $0 \leq t < T$.
 - Time limitation $t \in [0, T)$.
 - Bandwidth limitation W (almost).
 - Power limitation

$$\frac{1}{T} \int_0^T s^2(t, u) dt \leq P, \quad \forall u \in [0, 1).$$

- AWGN **channel**, $Z(t)$ with spectral density $N_0/2$,

$$Y(t) = s(t, u) + Z(t).$$

- **Estimator** $\hat{u} \triangleq g\{Y(t), 0 \leq t \leq T\}$.

Performance Criterion

- The mean power- α error (MP α E)

$$e_\alpha(\mathcal{S}_T) \triangleq \sup_{u \in [0,1)} \mathbb{E}_u \{ |\hat{u} - u|^\alpha \}.$$

- The MP α E exponent

$$E_\alpha \left(\frac{P}{N_o}, W \right) \triangleq \max_{\mathcal{S}_T} \limsup_{T \rightarrow \infty} \left[-\frac{1}{T} \cdot \log e_\alpha(\mathcal{S}_T) \right].$$

- The MP α E exponent per unit bandwidth

$$E_\alpha \left(\frac{P}{N_o}, W \right) = W \cdot F_\alpha(\Gamma),$$

where $\Gamma \triangleq \frac{P}{N_0 W}$ is the SNR.

MP α E Exponent - Unlimited Bandwidth

- The **unlimited-bandwidth MP α E**

$$\min_{\mathcal{S}_T} e_\alpha(\mathcal{S}_T) \doteq e^{-\gamma_\alpha \cdot PT/N_0}.$$

- Burnashev (1985)

$$\gamma_\alpha \leq \begin{cases} \frac{1}{(1+\alpha)} \min \{ \alpha, \psi(\alpha) \}, & 0 < \alpha \leq \alpha_0 \\ \frac{\alpha}{2(1+\alpha)} \left[1 + \frac{\alpha+5-4\sqrt{\alpha+1}}{3\alpha+1} \right], & \alpha_0 \leq \alpha \leq 2, \\ \frac{\alpha}{2(1+\alpha)}, & \alpha \geq 2 \end{cases}$$

where $\alpha_0 \approx 1.5875$ and

$$\psi(\alpha) \triangleq 1 + \alpha - \max_{q \geq 1/2} \left[2\alpha q + 4q \sqrt{(1-q)q(1+\alpha)} - q^2(3\alpha+1) \right].$$

- Achieved for $\alpha \geq 2$ (PPM/FMM/Channel code).

- Lower bounds:
 - The channel coding converse bound.
 - The spherical cap bound.
 - The spectrum replication bound.
- Upper bound:
 - The channel coding achievability bound.

Methodology

- Spherical cap/spectrum replication bounds:
 - 1 Consider an arbitrary band-limited system.
 - 2 Construct from (1) a new wideband system.
 - 3 MP α E exponent of new system $\gamma_\alpha \cdot \frac{P}{N_0}$.
 - 4 Relate the MP α E's of the two systems.
 - 5 Obtain a bound for (1).
- Channel coding bounds: Adapted from Merhav (2014), originally derived for DMCs.

The Channel Coding Converse Bound

- Gallager's random coding function

$$E_0(\rho, \Gamma) \triangleq \frac{1}{2} \left[(1 - \beta_0)(1 + \rho) + \Gamma + \log \left(\beta_0 - \frac{\Gamma}{1 + \rho} \right) + \rho \log \beta_0 \right],$$

where

$$\beta_0 \triangleq \frac{1}{2} \left(1 + \frac{\Gamma}{1 + \rho} \right) \left[1 + \sqrt{1 - \frac{4\Gamma\rho}{(1 + \rho + \Gamma)^2}} \right].$$

Proposition (channel coding converse bound)

The MP α E exponent per unit bandwidth is upper bounded as

$$F_\alpha(\Gamma) \leq \min \{ 2E_0(\alpha, \Gamma), \gamma_\alpha \Gamma \}.$$

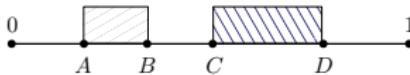
The Spherical Cap Bound

Theorem (spherical cap bound)

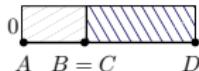
The MP α E exponent per unit bandwidth is upper bounded as

$$F_\alpha(\Gamma) \leq \begin{cases} \gamma_\alpha \Gamma, & \Gamma < \frac{\alpha}{\gamma_\alpha} \\ \alpha \left[\log \left(\frac{\gamma_\alpha \Gamma}{\alpha} \right) + 1 \right], & \Gamma \geq \frac{\alpha}{\gamma_\alpha} \end{cases}.$$

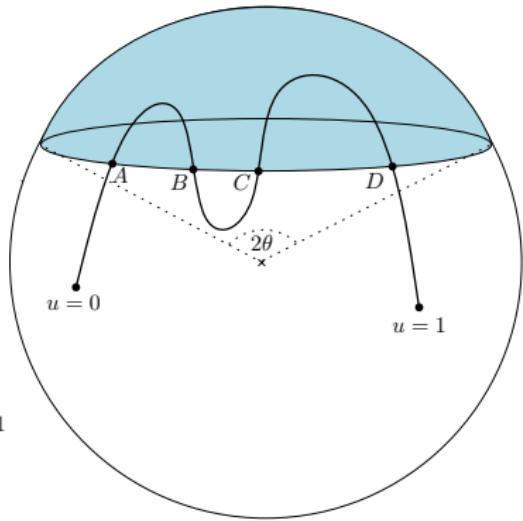
The Spherical Cap Bound - Proof Outline



joining:



rescaling:



- Signals $\in 2WT$ -dimensional sphere, radius \sqrt{PT} .
- \exists cap of angle θ corresponding to “significant” portion of $[0,1)$.
- Construct a new system for this portion: join and rescale.

$$e_\alpha(\mathcal{S}_T) \geq \max_{\theta} \left[\frac{\text{Area}(\text{cap}_\theta)}{\text{Area}(\text{sphere})} \right]^\alpha \cdot e^{-\gamma_\alpha PT \sin^2(\theta)/N_0}$$

The Spectrum Replication Bound

For $\rho \in [0, 1]$ define

$$\begin{aligned}\Phi(\rho, \Gamma) \triangleq \rho[\eta - 1 - \log \eta] + \eta + \Gamma + \\ \log \left[\frac{\sqrt{4\eta\Gamma + 1} + 1}{2\eta} \right] - \sqrt{4\eta\Gamma + 1},\end{aligned}$$

with

$$\eta = \frac{\Gamma + \sqrt{\Gamma^2 - 4(\rho^2 + 1)(\rho + 1)^2}}{2(\rho + 1)^2},$$

and

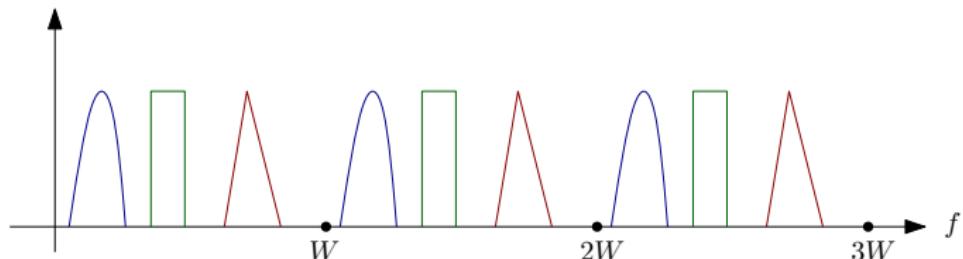
$$\Lambda_\alpha(\Gamma) \triangleq \sup_{0 < \rho \leq 1} \left\{ \frac{\Phi(\rho, \Gamma) - \gamma_\alpha \Gamma}{\rho} \right\}.$$

Theorem (spectrum replication bound)

The MP α E exponent per unit bandwidth is upper bounded as

$$F_\alpha(\Gamma) \leq \gamma_\alpha \Gamma - [\alpha \Lambda_\alpha(\Gamma)]_+.$$

The Spectrum Replication Bound - Proof Outline



- \mathcal{S}_T - limited to $[0, W]$.
- Construct a wideband system $\tilde{\mathcal{S}}_T$: Duplicate signals by frequency translations $\{mW\}_{m=1}^{M-1}$.
- Modulator:
 - Coarse part of $u \leftrightarrow$ frequency band m .
 - Fine part of $u \leftrightarrow$ signal within band.
- Estimator:
 - Decode band index \hat{m} - estimate coarse part.
 - Estimate fine part using the estimator of \mathcal{S}_T .

$$\mathbb{P}[\hat{m} \neq m] + \frac{2}{M^\alpha} e_\alpha(\mathcal{S}_T) \geq e_\alpha(\tilde{\mathcal{S}}_T) \geq e^{-\gamma_\alpha PT/N_0}$$

- Optimize over M .

The Channel Coding Achievability Bound

- Gallager's expurgated function

$$E_x(\rho, \Gamma) \triangleq (1 - \beta_x)\rho + \frac{\Gamma}{2} + \frac{\rho}{2} \log \left[\beta_x \left(\beta_x - \frac{\Gamma}{2\rho} \right) \right],$$

where

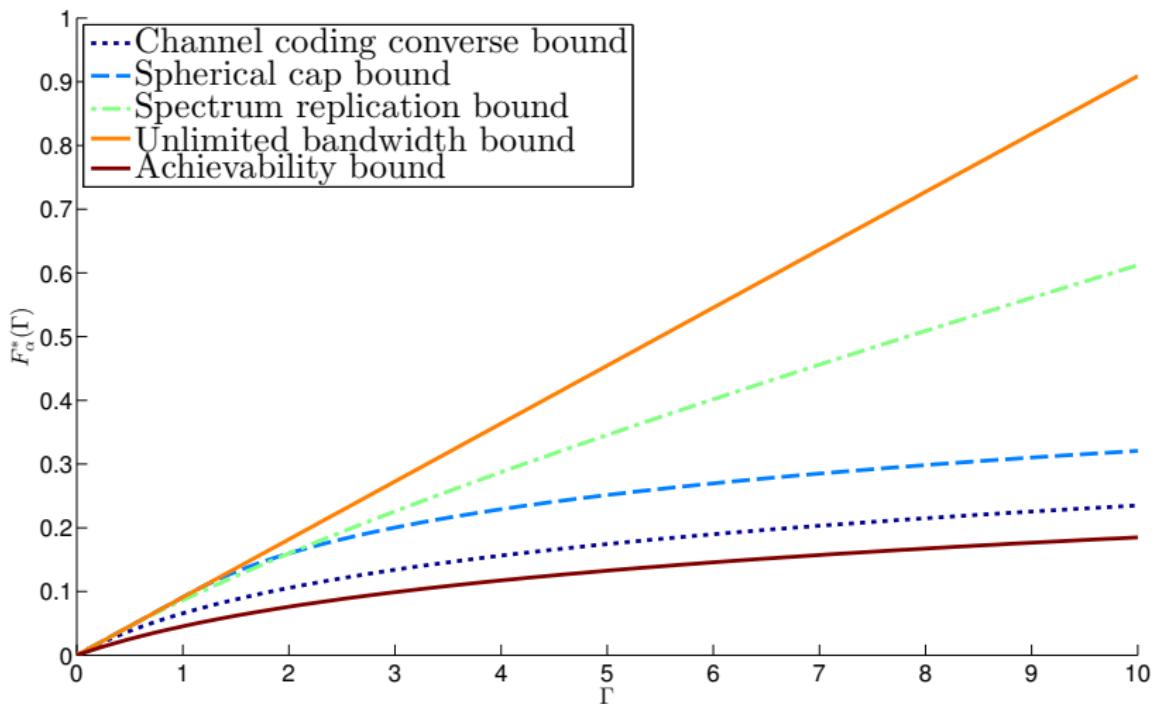
$$\beta_x \triangleq \frac{1}{2} + \frac{\Gamma}{4\rho} + \frac{1}{2} \sqrt{1 + \frac{\Gamma^2}{4\rho^2}}.$$

Proposition (achievability bound)

The MP α E exponent per unit bandwidth is lower bounded as

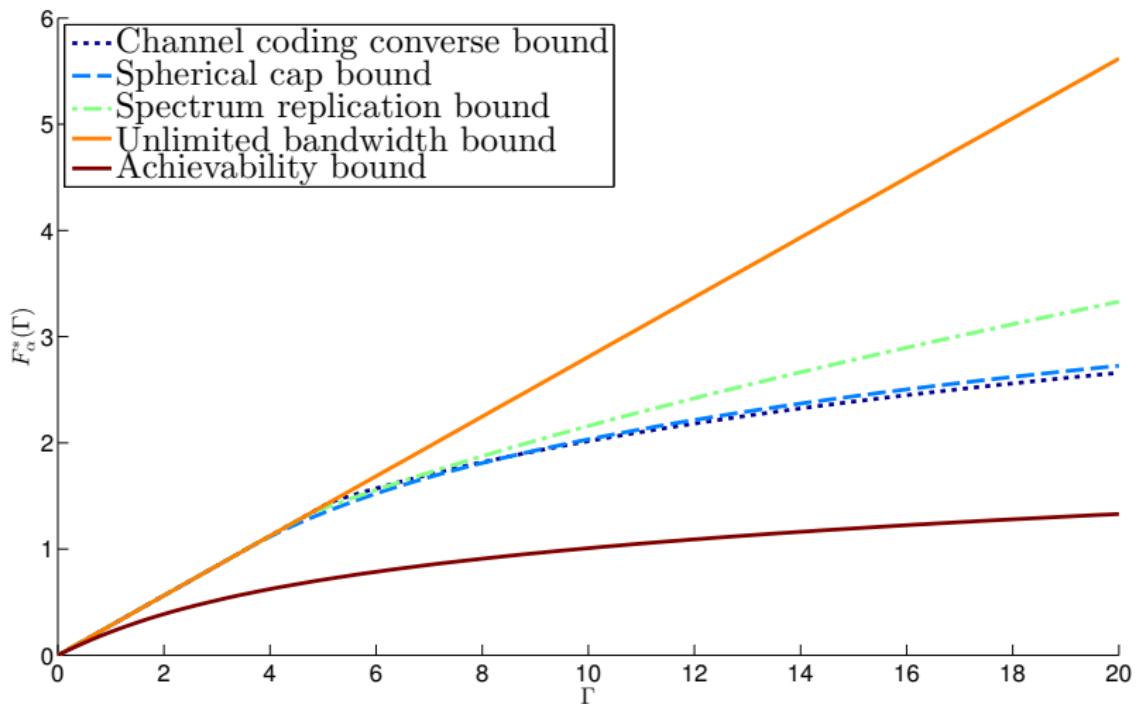
$$F_\alpha(\Gamma) \geq 2 \cdot \max \left\{ \sup_{0 \leq \rho \leq 1} \frac{\alpha E_0(\rho, \Gamma)}{\rho + \alpha}, \sup_{\rho \geq 1} \frac{\alpha E_x(\rho, \Gamma)}{\rho + \alpha} \right\}.$$

Results - $\alpha = 0.1$



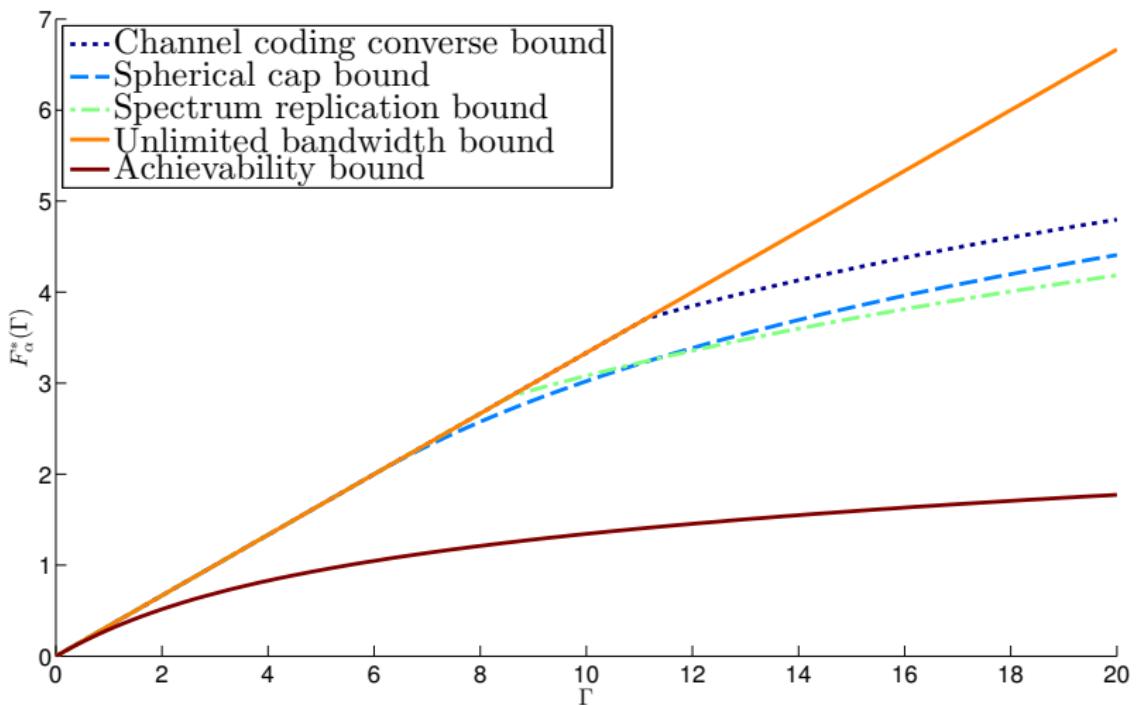
Channel coding converse bound dominates (tight for $\alpha \downarrow 0$).

Results - $\alpha = 1$



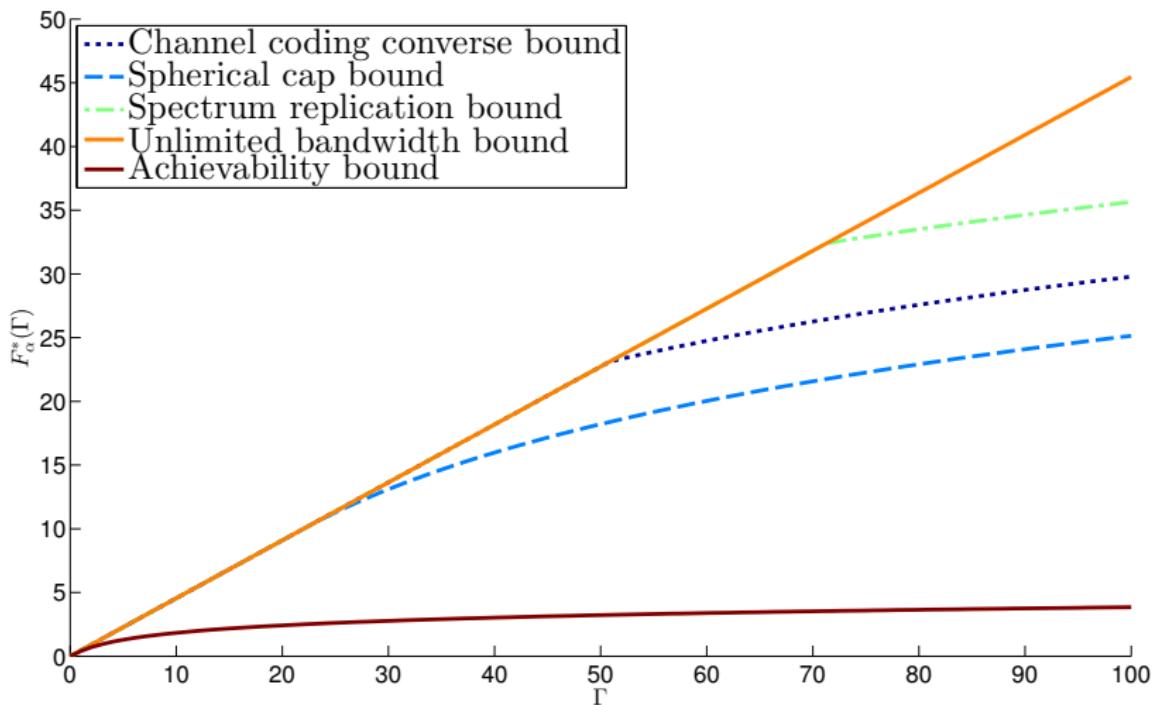
Channel coding converse bound - best for most SNRs.

Results - $\alpha = 2$



Spectrum replication bound - best for most SNRs.

Results - $\alpha = 10$



The spherical cap bound dominates.

High SNR Scaling

Proposition

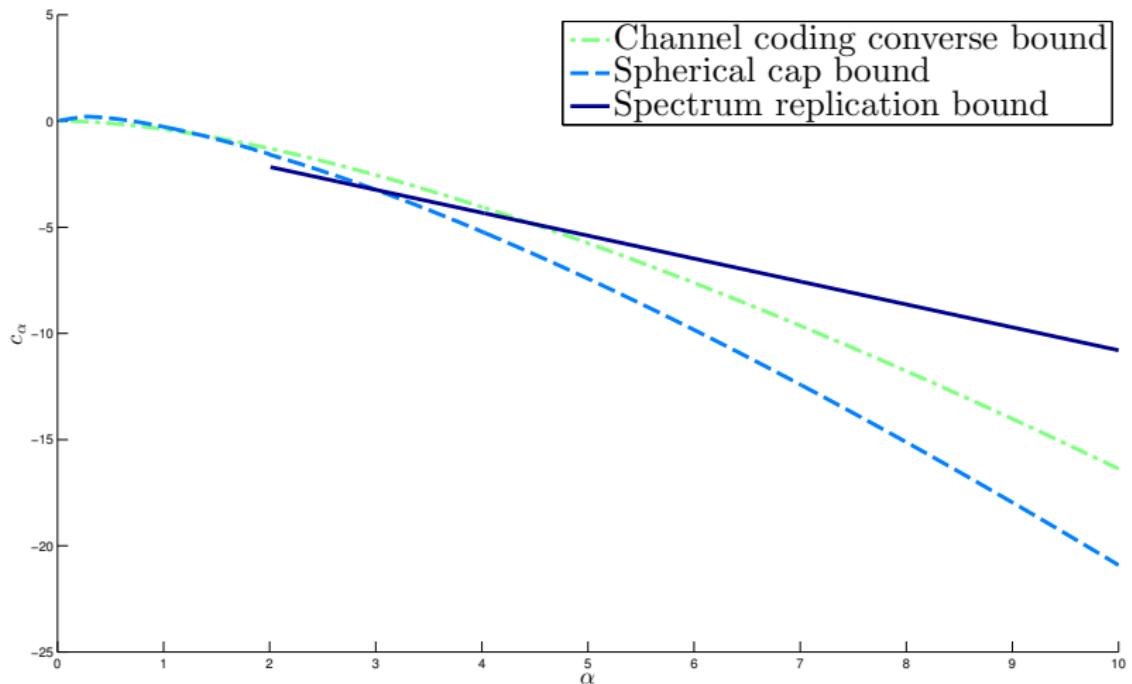
The converse bounds at $\Gamma \rightarrow \infty$ are given by

$$F_\alpha(\Gamma) \leq \alpha \log \Gamma + c_\alpha + o(\Gamma)$$

with

$$c_\alpha = \begin{cases} \alpha - (1 + \alpha) \log(1 + \alpha), & \text{channel coding converse bound} \\ \alpha \log\left(\frac{\gamma_\alpha}{\alpha}\right) + \alpha, & \text{spherical cap bound} \\ \alpha \log\left(\frac{e}{8}\right), & \text{spectrum replication bound, } \alpha \geq 2 \end{cases}.$$

High SNR Scaling - Value of c_α



- Two **new** bounds under bandwidth constraints.
- Challenge: close the **gap** between the bounds!

N. Weinberger and N. Merhav,
“Lower Bounds on Parameter Modulation–Estimation Under
Bandwidth Constraints,”
arXiv:1606.06576, June 2016.

Thank You !