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Introduction

uwe[0,1)
— 1 Modulator

Waveform communication:

Estimator

@ Parameter u conveyed via an AWGN channel.

@ How well can we estimate u for the best modulator?

@ Problem € {IT} N {Estimation theory}

e IT:Joint source—channel coding - source block length= 1.
e Estimation theory: Most bounds - for a given modulator.
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Known Results

For AWGN channel without bandwidth constraints:
@ Achievability: PPM/FPM/Uniform quantization and optimal
channel code -
. 2
—ul* < S
E|ii —u|" <exp ( 3 N0>
@ Converse:
o Data processing theorem bound
. PT
E|il — u*>exp (—2~ No) .
o Cohn (1970)
: 1 PT
E|f—ul?> ).
it —ul Zexp ( 2.89 NO)
o Burnashev (1984, 1985)

E|il — u*>exp (—; : ;T)
0

@ Upper and lower bounds match.
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Bandwidth Constraints

What if the input signals are band-limited to W?
@ Data processing bound (R(D) < CT):

E|ii — u*>exp [—T.zwmg <1 + Nopwﬂ .

@ In this work: three better lower bounds + upper bound.
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Problem Formulation

@ Modulation-estimation system Sr.
@ Modulator u — s(t,u),u €[0,1),0<t<T.
o Time limitation f € [0,T).

e Bandwidth limitation W (almost).
o Power limitation
1 /T 5
f/ 2(tu)dt <P, Yue[o1).
T Jo
@ AWGN channel, Z(t) with spectral density No/2,
Y(t) =s(t,u) + Z(t).

e Estimator 1 = ¢{Y(t),0 <t < T}.
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Performance Criterion

@ The mean power-a error (MPaE)

ex(Sr) = sup E, {|f—ul"}.
uel0,1)

@ The MPaE exponent

P N . 1
E, (NO,W> = %?Xh?j:jp [_T 10g€¢x(ST):| .

@ The MP«E exponent per unit bandwidth

P
E, (M,w) =W -F,(T),

where T £ NOLW is the SNR.
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MP«E Exponent - Unlimited Bandwidth

@ The unlimited-bandwidth MPaE

minea(ST) = e_%\"PT/NO.
St
@ Burnashev (1985)
(1Jlra) min{a, (a)}, 0<a<ag
Y0 S ] g |1 ], m<as2,
2 ta)” a>2

where ay ~ 1.5875 and

() £1+a —max [Zaq+4q\/(1 —9)g(1+a) —*(Ba +1)|.

q>1/2

@ Achieved for « > 2 (PPM/FMM/Channel code).
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MP«E Exponent - Limited Bandwidth

o Lower bounds:

o The channel coding converse bound.
o The spherical cap bound.
o The spectrum replication bound.

o Upper bound:

o The channel coding achievability bound.
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Methodology

@ Spherical cap/spectrum replication bounds:

@ Consider an arbitrary band-limited system.
© Construct from (1) a new wideband system.
© MPaE exponent of new system 7, - NLO

© Relate the MP«E’s of the two systems.

@ Obtain a bound for (1).

@ Channel coding bounds: Adapted from Merhav (2014),
originally derived for DMCs.
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The Channel Coding Converse Bound

e Gallager’s random coding function

Ealp0) 2 5 | (1= fo)(1-+p) 4T+

r
log (,BO — 1—i—p> + plog,Bo] ,

where

A1 T 4Tp
2 (14— ) |14,/1-—L 1.
Po 2( +1+p> +\/ (1+p+T)2

Proposition (channel coding converse bound)

The MP«E exponent per unit bandwidth is upper bounded as

Fo(T) <min{2Ey(a,T),v.T}.
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The Spherical Cap Bound

Theorem (spherical cap bound)

The MP«E exponent per unit bandwidth is upper bounded as

Yal, <>
= {zx“[log(?ir) +1], T> z—
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The Spherical Cap Bound - Proof Outline

e B\

A B C D

joining: N\

rescaling: ‘L \
A B=

@ Signals € 2WT-dimensional sphere, radius v/ PT.
@ I cap of angle 6 corresponding to “significant” portion of [0,1).
@ Construct a new system for this portion: join and rescale.

4
ea(Sp) > max [ Area(capy) ] g ePTsin(0)/,

Area(sphere)
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The Spectrum Replication Bound

For p € [0,1] define
®(p,T) £ p[n —1—logy] +n+T+

'+1+1
1 g[V‘LUZ;JF — BT+,
with
r+\/r2 4(02+1)(p+1)2
2(p+1)2 ’
and ®(oT r
A,X(F)é sup {(‘O' )~ 7 }
0<p<1 %

Theorem (spectrum replication bound)

The MP«E exponent per unit bandwidth is upper bounded as

Fo(T) < 9ul’ — ["‘Aa(r)h
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The Spectrum Replication Bound - Proof Outline

AA ATA ATA

3w

@ St - limited to [0, W].

@ Construct a wideband system St: Duplicate signals by frequency
translations {711W}17\n/1:_11

@ Modulator:

o Coarse part of u <+ frequency band m.
@ Fine part of u <+ signal within band.

@ Estimator:

@ Decode band index 7i- estimate coarse part.
o Estimate fine part using the estimator of St.

P [1it # m] + ~—ea(ST) > ea(Sp) = e ™"/

@ Optimize over M.

2
M"‘
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The Channel Coding Achievability Bound

o Gallager’s expurgated function

Proposition (achievability bound)

The MP«E exponent per unit bandwidth is lower bounded as

Fy(T) >2-max<{ sup “Eo(p'm,sup «Ex(p,T) '
0<p<1t PHa o> pta
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Results -« = 0.1

[~--Channel coding converse bound
0.91|— —Spherical cap bound
Spectrum replication bound
0.8H —ani.mited bandwidth bound
— Achievability bound
0.7
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Channel coding converse bound dominates (tight for a | 0).
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Results-a =1

[~--Channel coding converse bound
—=Spherical cap bound
Spectrum replication bound

| Unlimited bandwidth bound
— Achievability bound

[S))

—

Channel coding converse bound - best for most SNRs.
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Results -a =2

(o2}
T

[~--Channel coding converse bound

—=Spherical cap bound
Spectrum replication bound

~—Unlimited bandwidth bound
— Achievability bound

Spectrum replication bound - best for most SNRs.
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Results - « = 10
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457

----Channel coding converse bound
—=Spherical cap bound
Spectrum replication bound

I —Unlimited bandwidth bound

— Achievability bound

———

60

The spherical cap bound dominates.
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High SNR Scaling

Proposition

The converse bounds at I — oo are given by

Fo(T) < walogT + ¢ +0(T)

with
a— (14 a)log(1+w), channel coding converse bound
e =14 alog (1) +a, spherical cap bound
wlog(§), spectrum replication bound, o > 2
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High SNR Scaling - Value of ¢,

Channel coding converse bound
—-Spherical cap bound
—Spectrum replication bound
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Summary

@ Two new bounds under bandwidth constraints.
@ Challenge: close the gap between the bounds!

N. Weinberger and N. Merhav,

“Lower Bounds on Parameter Modulation-Estimation Under
Bandwidth Constraints,”

arXiv:1606.06576, June 2016.

Thank You !

21/21



