IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 12, DECEMBER 1995

2937

Min-Norm Interpretations and
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Abstract— The multiple signal characterization (MUSIC) ap-

proach, its generalization to correlated signals known as the
method of direction estimation (MODE), and the deterministic
maximum likelihood (ML) approach for bearing estimation in ar-
ray processing are shown to be signal subspace fitting approaches
in a minimum norm sense. MODE, for example, is shown to be
an approach in which the array manifold is linearly estimated
from principal empirical eigenvectors in a minimum weighted
Frobenius norm sense. Using the min-norm interpretations, a
unified proof for strong consistency of the three approaches is
provided for stationary and ergodic signals.

1. INTRODUCTION

STIMATION of bearing parameters of a set of signals
impinging on an array of sensors has attracted much
attention in the past two decades. Two estimation approaches
have dominated the field. The first is the multiple signal
characterization (MUSIC) approach developed in [1]. The

second is the classical maximum likelihood (ML) parameter

estimation approach under Gaussian assumptions considered in
[2] and [3]. A third approach, known as the method of direction
estimation (MODE) [4, eq. (3.6)], constitutes a generalization
of MUSIC to bearing estimation of correlated signals. The
three approaches have been extensively studied, see, e.g.,
[1]-[14] and the references therein. They are also the subject
of this paper.

The theoretical basis of MUSIC is that under ideal condi-
tions, when the exact covariance matrix of the noisy signals
is known, and the noise is white, each steering vector is
orthogonal to the noise subspace spanned by the nonprincipal
eigenvectors of the covariance of the noisy signals. MUSIC is
implemented by replacing the unknown covariance matrix of
the noisy signals with its empirical estimate. The deterministic
ML approach assumes that the signals are deterministic un-
known and the noise is Gaussian. Hence, joint ML estimation
of the signals and their bearings is performed. Since the signals
are nuisance “‘parameters” in this formulation, deterministic
ML has been controversial. Indeed, it leads to inefficient
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bearing estimates for any finite number of sensors [6, theorem
5.2], [8, corollary 1]. The cost function of the MODE approach
was originally derived in [5, theorem 6.1] as an asymptotic
version of the deterministic likelihood function. Nevertheless,
a version of the MODE approach was shown in [7] to be
asymptotically efficient relative to the stochastic Cramer—Rao
bound [14].

In this study new nonasymptotic interpretations of MODE
and ML as signal subspace fitting approaches in a minimum
norm sense -are provided. These interpretations reveal the
estimation criterion under which each approach is optimal.
For example, MODE is shown to be an approach in which the
array manifold is linearly estimated from principal empirical
eigenvectors in the minimum weighted Frobenius norm sense.
The weighting matrix is the covariance of the signals.

Our signal subspace fitting approach differs from that of
Viberg and Ottersten [8]. Their approach was applied to
the deterministic ML, ESPRIT, and multidimensional MU-
SIC (MD-MUSIC). In this approach the empirical data is
linearly fitted by the array manifold in the minimum Frobenius
norm sense. The definition of empirical data depends on the
approach being interpreted. For example, in interpreting MD-
MUSIC the data is represented by the matrix of empirical
principal eigenvectors. Our signal subspace fitting approach
does the opposite in interpreting MODE. While they fit the
data by the model we estimate the model from the data. Note
that unlike MODE, MD-MUSIC does not reduce to MUSIC
when the signals are uncorrelated. MD-MUSIC degenerates to
MUSIC when there is a single source and the norm of the
steering vector is independent of the bearing parameters.

Using the min-norm signal subspace fitting interpretations,
a unified proof for strong consistency of MUSIC, MODE and
ML is developed. This proof is applicable to any stationary
and ergodic correlated signals. The proof uses elements from
existing proofs given in {5] and [8], but it appears to be more
complete. Note that the proof could not be inferred as a particu-
lar case of the analysis in [6] since that analysis was performed
under Gaussian assumptions. We do not make this assumption.
Furthermore, the proof.could not be inferred from the results in
[8] which are concerned only with asymptotic versions of MD-
MUSIC and ML. These criteria do not coincide with MODE
or ML.

II. PRELIMINARIES

Assume M plane wave sources impinging on an array
of L sensors with arbitrary but known geometry. Let 6,,
denote the vector of bearing parameters of the mth source. Let
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© 2 (#;,---,0)) denote the matrix of bearing parameters
from the different sources. Let S(t) £ (s1(¢),---,sa(8)T
denote the M x 1 vector of signals from the different sources
at time ¢ where (-)7 denotes vector iranspose. Similarly, let
V() 2 (01(0), -, v ()T and Y(8) 2 (n(8),- -,y (8)”
denote the L x 1 vectors of noise and received signals at the
L sensors, respectively. For narrow band signals, S(¢),V(¢)
and Y'(t) represent complex envelopes and
Y(t) = D(©)S(t) + V() M
where D(O) represents an L x M matrix of steering vectors
~ {d(6m)} or the array manifold. It is assumed that M < L
and that any set of M distinct steering vectors are linearly
independent. Thus, the rank of D(®) is M. Furthermore, as
‘usual, the noise is assumed spatially and temporarily white
with variance o2.

When the signals are assumed random, such as in the
MUSIC and MODE approaches, the covariance matrix of Y (%)
is given by

R(©) = D(©)PD#(©) + 021 @
where P denotes the covariance matrix of the signal vector
S(t) and it is assumed positive definite, and (-)# denotes
conjugate transpose. Since the noise is assumed spatially
white, R(©), D(©)PD#(0), and ¢2I have the same set of
eigenvectors. Since rank{D(0)} = M < L, the covariance
matrix D(©)PD#(©) has L — M zero eigenvalues In ad-
dition, since all eigenvalues of ¢2J equal o2, the covariance
matrix R(©) has L — M eigenvalues such that each equals
to o2. :

Let U(O©) = [u1(©),---,ur(©)] and A(O) diag
(A1(®), -+, AL(®)) denote the matrices of eigenvectors and
eigenvalues of R(©), respectively. Assume that {1;(©)} are
given in a descending order. Let U(0) = [U1(®),U(©)]
where U1(©) = [u1(®), -, up(O)] denotes the L x M
matrix of eigenvectors of R(©) whose corresponding
eigenvalues are greater than o2. These eigenvectors are
referred to as the principal eigenvectors. It is well known
that the columns of U1(0) span the signal subspace defined
as the span of the steering vectors D(©). The columns of
Ux(©) span the complementary orthogonal noise stibspace.

Since R(O) is not available, it is commonly replaced by its
empirical covariance

N
Re -]lv SV ()Y (1),
n=1

In this case, U = [@1,---, 4] and A= diag(j\l, ceey 5\[,)
denote the eigenvectors and eigenvalues of R, respectively,
where the eigenvalues are assumed to be in a descendmg order.
In addition, U = [Uy, U,)] where Uy = [@1,- -+, @] denotes
the set of principal empirical eigenvectors which correspond
to the M largest empirical eigenvalues.

®3)

III. MIN-NORM MUSIC, MODE AND ML

A. Min-Norm MUSIC

We first show that MUSIC is an approach in which each
steering vector is linearly estimated in the least squares sense
from principal empirical eigenvectors, i.e., the MUSIC esti-
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mate of 6, is obtained from

2

M
minmin ||d(0n) = Y em ()i )
™ m =1
where ¢, = (em (1), -, ¢ (M))T denotes a vector of coeffi-

cients and |- {| denotes the Euclidean norm. This interpretation
was originally given by Schmidt in [1, p. 62] but it has not
received much attention in the literature. ‘

The minimizing coefficients in (4) are glven by én(i) =
a7 d(6,,). Hence,

mlIl mm

O

m) _Zcm Z)u’b
m)—Zulu d( m)

= rgm”d( m) — UlUl#d( Om)||?

= mln

= rrelin“(f— U1ﬁ#)d(6m)”2

)i
= min d* (0, 02U d(0,,)

= Iélin WU d(b,,
®

which is identical to the MUSIC approach in [1, p. 96].

The above formulation provides a min-norm interpretation
of MUSIC in estimating a single bearing parameter 6,,.
MUSIC can also be interpreted as a min-norm approach for
simultaneous estimation of all bearing parameters ©. Consider
estimation of © from U through linear estimation of the
array manifold D(®) using the weak or Frobenius norm [15].
Specifically, let Czs £ [e1,- -, car] be an M x M matrix of
coefficients and estimate © from

o A 2
min min |D(©) — U1Ch] (6)
where the weak norm is defined by
1 1 &
|BI* & Ftr{B#B} =+ Z [1bmI? o

and b, is the mth column of B. Substltutmg B = D(©) -
U1Cut, (6) becomes ‘

M
o1 2 2
mem Iggl Z mE:.l ”d(am) - Ulcm“

M
1 . . A
= 13 minmind0n) - Orenl®  ®
m=1 " " ~

where each summand on the right hand side of (8) is identical
to (4).
B. Min-Norm MODE

We now show that the MODE estimate of © can be obtained
from linear estimation of the array manifold D(©) from the
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principal empirical eigenvectors U, by minimizing a weighted
Frobenius norm, i.e.,

min min |D(©) — U1Cx|% , )
(€] CM

where

B3 2 %tr{BPB#} - (10)

M
pIRE bfb;
and P;; denotes the complex conjugate of F; ;. Since P is
Hermitian positive definite, |B|p is a norm.

The minimization of (9) over Cys gives Cyy = [:71# D(o).
Hence,

h]

. . _ A 2
min min |D(©) — U1Cum|p

= min |D(6) - G0 D(©) 3

= min {00 D(O) 5

1 P
= min ztr{D#(@))UszD(@)P}, (11)
which is identical to the MODE approach in [4, eq. (3 6)].
Contmumg the development of (11) using (2) and U2U # =
I — @G, where G = U, U1 is the projection matrix onto the
column space of U1 [15], gives

m@in Ig}l\;l |D(©) — U1CMI%>

= min %tr{ﬁzt}fp(e)zvp#(@)}

1 A
= min ztr{([ ~ G)(R(©) — ¢21)}

L-M ,

A
Hence, the MODE estimate of © can be obtained from
minimization of tr{(I — G)R(©)}.

Note that for uncorrelated sources P is a diagonal matrix
and minimization of either |B|? or |B|% results in the same
estimate of ©. In this case the bearing of each source can be
independently estimated using the standard MUSIC approach.
When the sources are correlated, however, all bearings must be
simultaneously estimated and the two norms provide different
estimates of ©.

Note also that the proposed signal subspace fitting approach
can lead to new bearing estimation approaches if other than the
Frobenius norm are considered in (9). A possible norm is the
strong norm ||B||?2 = Amax{B¥ B} where Amax{-} denotes
the largest eigenvalue.

= min %tr{([ — &)R(O)} - (12)

C. Min-Norm ML

The deterministic ML estimation approach is now inter-
preted as a min-norm approach for estimating ©. It is shown

that the ML estimate of © is obtained from
min min [T — Ui(®)Crl3 (13)

where C is an M x L matrix of estimation coefficients.
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To prove (13) note that

1

U - 0n(@)C1l} = 5

L
Z it — U (®)arl2.  (14)

Minimization of (14) over Oy, gives & = UF(©)d, | =

-, L. Hence,
L
. . X A o) 2
ngnncl’anlE_l l”‘Ul Ui ( )Cl”

. L
= ménz Mllé — UL(©)U#(©)ay|?

&

me Z i (I - Uy (@)UF(0))iy
lenZ)\l

L
(I - G(®)) Zﬂ,ala#}
=1

= mintr{(I ~ G(©))R}
=tr{R} - maxtr{G(@)R}

H

™

(©))iu

= min tr
©

r—"—-\

(15)

which is equ1valent to the ML approach of [3] Equality
(i) results from the relation G(©) = Uy(©)U¥(©) for the
projection matrix G(®) onto the column space of U; (©) [15].

Note that in the min-norm interpretation of ML the empirical
eigenvectors {4;} are linearly fitted by principal eigenvec-
tors of the theoretical covariance R(®). In' the min-norm
interpretation of MODE the steering vectors were linearly
estimated from the principal empirical eigenvectors. Since
each eigenvector of R(©) depends on all bearing parameters,
all {6,,} must be simultaneously estimated in the ML ap-
proach. Another difference between the two approaches is that
MODE estimation involves M empirical eigenvectors while
ML estimation involves all L empirical eigenvectors. This
observation was first made by Ziskind and Wax [3] when they
compared ML with MUSIC.

D. Consistency of MUSIC, MODE, and ML

We have seen in (12) and (15) that the MODE estimate
and the deterministic ML estimate of the bearings © of
possibly correlated signals can respectively be obtained from
minimization of the empirical cost functions

Lyiope(®) £ tr{(I - G)R(0)} (16)

and

Luvn(©) 2 tr{(I - G(®))R}. an
We now present a unified general proof for strong consistency
of the two algorithms when the noisy signals are only assumed
stationary and ergodic. The proof applies to MUSIC as a
particular case of MODE when the sources are uncorrelated.
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As mentioned earlier, consistency of the two algorithms
could not be inferred from the analysis in [S]-[8]. We further
note that the proof of consistency given in [8], and the
independent proof for consistency of the ML approach given
in [5] without the Gaussian assumption, are incomplete as we
elaborate below.

We prove consistency in three steps. First we show that as
N — oo, both Lyopr(©) and Ly, (0) converge uniformly
w.p. 1. to the following limit functions:

Lyiope(0) 2 tr{(I ~ G(6")R(©)}
Lyn(©) 5 tr{(I - G(©))R(6*)}

18
19

where ©* denotes the true value of ©. Second, we show that
both limit functions in (18) and (19) have unique minimizers
at ©® = ©*. Third, we show that convergence of the empirical
cost functions in (18) and (19) imply convergence of the
MODE estimator @MODE and the ML estimator @ML to ©*.

The third step in our proof is crucial, since uniform con-
vergence of the empirical cost function of an estimator does
not necessarily imply convergence of the estimator sequence
itself to the minimizer of the limit function nor it implies

_ convergence of that sequence at’ all. Unfortunately, this step
is missing from the proofs presented in [5] and [8]. The proof
given in [5] for the consistency of the ML estimator is only
concerned with the second step outlined above. The proof
given in [8] for the consistency of a family of signal subspace
fitting approaches (which includes an asymptotic version of
the ML estimator) is only concerned with the first two steps
outlined above. The proof given in [13] for consistency of
the ML approach contains all three steps. The second step,
however, is somewhat implicit in that proof, and the third step
relies heavily on the setup of the array processing problem.
The second step is important, since the existence of a unique
minimizer of the limit function is a necessary and sufficient
condition for convergence of the estimator sequence.

-Consistency of MODE and ML is proven here under the
following assumptions: A1) The source signals and noise are
stationary and ergodic; A2) The principal eigenvalues of R(©)
are distinct; A3) The covariance matrix P of the sources is
positive definite; A4) M < L; AS) Any set of M + 1 distinct
steering vectors are linearly independent; A6) The parameter
space. of © is compact; A7) The empirical cost functions
Lyiope(©) and Ly, (©) are continuous in ©.

Assumption Al implies that 2 — R(©*) wp. l.as N —
00. Assumptions A1-A2 imply that {/; — U;(©*) wp. 1.
[8, lemma 3]. Assumption A3 guarantees that the rank of the
covariance matrix of the received clean signals D(®©)PD(©)
equals the number of sources M. This assumption together
with A4) were used in the derivation of MUSIC. In addition,
A3 and A5 will be important in determining uniqueness of the
estimator. Assumption A6 is automatically satisfied since we
are considering bearing estimation in which each component of
0 € [0,27]. Assumption A7 is satisfied if the steering vectors
{d(8,,)} are continuous functions of {f,,}. This assumption
is usually met in practice.

We provide here a proof for consistency of both MODE
and ML in which each step is explicitly shown. In addition,
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the proof of the third crucial step is given for a general
setup. This proof may be useful for other problems besides
the array processing problem. We begin our proof by showing
the validity of (18). Note that for any ©,

G- 6(0)| £ [l6©) - ¢
= |w(®)UF (0) — T T
= |U(e)Uf (©) - U1 (©)UF
+ U (@0 — 0 UF|

= [U2(€)(U2(©) ~ Un)*

+(U1(0) ~ )07 ||
< v e)wie) - B
+H(U1<®) mUE|
< @) Hiws(e) - ¥
AT G AT
S AR AR ACIEA
AR 20)

where (i) results from the fact that the strong norm dominates
the weak norm, i.e., for any two matrices A and B, |4] < ||A[);
(ii) results from the triangle inequality for -the strong norm:
|14+ Bl < ||All + [|B]l; Inequality (iii) results from [16,
p. 3641: ||AB|| < [|A|l|B|l; And (iv) results from [|U] =
[T:(@)] = 1. Now,

sup [Cusops(®) — tr{(f = G(6” DR©)]
@ sgp tr{(G — G(©*))R(©)}|
4 Lsup||R(©)]) |G - 6(0")]

(iii) .
< 2Lsupl|R(O)]] [T - U1(6"))] @

where (i) Tesults from (16); (i) is a consequence -of - the
inequality f|tr{AB}| < |A[|B| which can be easily shown
using the Schwarz inequality [17]; and (iii) results from
(20). Since R(®) is uniformly bounded, and by Assumptions
AI-A2 U; — U1(0*) w.p. 1. as N — oo, we have that

sup |£MQDE(@)-’tT{(I ~ G(©"))R(©)} ‘
—0wp lias N —oco. (22)

Thus : ‘
Laope(®) > tr{(I — GO NR(O)} wp. 1. (23)

The theoretical cost function fr{(I — G(0*))R(O)} corre-
sponding to the MODE algorithm is minimized by a unique
© = ©. To show this result notice that

tr{(I — G(0"))R(0)}
=tr{(J - G(O")(R(®) — 021)} + o2tx{(I — G(©"))}
= tr{(I — G(©*))D(©)PD*(©)}

+02(L— M) > o2(L—-M) (24)
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since

tr{(I - G(6"))D(6)PD*(®)}
= tr{(I - G(©*))D(©)PD*(©)(I - G(©*))} >0
(25)

due to the positive definiteness of P assumed in A3. If © = ©*
then (I — G(©*))D(©) = 0 since G(©*) is the projector onto
the column space of D(©*). Hence, (25) holds with equality.
If © # ©* then (I — G(©*))D(©) # 0 since if not, then
(I-G(0*))D(©) = 0, and as before, (I-G(©*))D(0*) = 0.
This means that G(©*) is the projector onto the column space
of D(©*) and D(©). By Assumption A5, the dimension of this
column space is at least M + 1. This, however, contradicts the
fact that G(©*) is a projector on an M-dimensional subspace.
Since, in addition, P is positive definite by Assumption A3,
we have from (25) that tr{(I — G(©*))D(©)PD#(©)} > 0
when © # ©*. Thus, equality in (24) holds iff ©® = ©* and
the minimizer of tr{(I — G(©*))R(©)} is unique.

Using similar arguments it can be shown that Ly, (©)
converges uniformly to tr{(I-G(©))R(0©*)} w.p. 1., and that
the minimizer of tr{(I-G(©))R(©*)} is unique. Specifically,

sup |£mL(©) — tr{(I — G(©))R(6")}|
@ sup Jor{ (1 - G(©))(k - R(®*)}|

(i) .

< Lswp(I- GO IR-RO @9
where (i) results from (17) and (ii) results from the Schwarz
inequality. Since |I — G(©)| is uniformly bounded, and R —
R(©*) w.p. 1. as N — oo, we have shown uniform conver-
gence of Lyr(©) to tr{(I — G(©))R(©*)}. Uniqueness of
the minimizer of tr{(I — G(©))R(0*)} can be shown using
an identical argumerit to that given in (24) and (25).

In summary, we have shown that Lyopr(©) and Lyv,(©)
converge uniformly to tr{(I — G(©*))
G(©))R(©*)}, respectively, and both limit functions are
minimized by the unique © = ©*. We now show that these
facts together with Assumptions A6—A7 imply convergence of
the estimator sequences é)ML and é)MODE to ©F.

Let fn(©) denote either Lyr(O) or Lyope(O). Let £(©)
denote either tr{(I—G(©))R(©*)} or tr{(I~G(O©*))R(O)}.
Let ©% denote the minimizer of fx(©). Recall that ©* is the
minimizer of f(©). We now show that

fn©) 5 f(e) = ey — o~ @7

From the uniform convergence of fn(©) to f(©) we have

that

If(ON) — fn(ON)] S en (28)
where ey — 0 as N — co. Furthermore,
f(©") —en < f(O)) —en < fN(OF) < fn(O7)
< f(O%) +en 29)

R(©)} and tr{(I —

2941

implies

Ifn(ON) — f(O%) < en- (30)
Hence, from (28) and (30)

IF(ON) — f(©")] < 2en €2))

and f(©%) — f(©*) as N — co. Hence, it suffices to show
that

f(Oy) — f(0*) = 0y — 0. (32)
Let O} — O, where O}, is a subsequence of ©%. The

existence of such convergent subsequence results from the

compactness of the parameter space. We have that

7@ 2 1im f(6%) € lim f(O),)

w. f(ilitgo Ox,) = /(©) (3
where i) results from the assumption in (32);' ii) results
from the fact that f(©%,) is a convergent sequence; and iii)
results from continuity of f(-) which in turns results from

-our assumption that f(-) are continuous and convergence is

uniform. Since the minimizer of f(-) is unique by assumption,
f(e) =

Thus, there exists a subsequence of ©% which converges to
(O

Assume next that ©%; does not converge to ©*. This means
that there exist e > 0 and ©%, such that ||©%. —O*|| > e. Yet,
the subsequence f(O},) converges to f(©*) since f (Oy) is
a convergent sequence From the previous discussion, O%,
must have a subsequence O}, ; such that @}‘V — ©O*, This,
however, can not happen since all elements of ©%, areata
minimum distance of ¢ from ©*. Hence, ©% must converge
to ©%.

F(®)=> 0 =0~ (34)
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