

An Information–Theoretic View of Watermark –Detection and Geometric Attacks

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

WaCha '05, Barcelona, Spain, June 2005

Outline

- An IT approach to WM embedding and detection (no attacks).
- Extending the framework to geometric attacks (GA's).
- Discussing a few variations and extensions (in time permits).

Bottom line: The ES approach is as good as if there was no GA.

Background

The most popular approach — additive embedding:

Given a host vector $\mathbf{x} = (x_1, \dots, x_n)$ and a WM, $\mathbf{w} = (w_1, \dots, w_n)$ ($w_i \in \{\pm 1\}$), the stegovector $\mathbf{y} = (y_1, \dots, y_n)$ is created by

$$\mathbf{y} = \mathbf{x} + \alpha \mathbf{w},$$

where the choice of α trades off quality (distortion) and detectability.

Given this embedding function, \mathbf{x} is like “noise”, and in the Gaussian case, classical detection theory tells that the best detector is based on correlation.

Background (Cont'd)

In classical detection theory, the additive structure (of the channel) is given, but here we have the freedom to select any function

$$\mathbf{y} = f(\mathbf{x}, \mathbf{w}).$$

For an arbitrary f , the correlation detector is no longer necessarily optimal.

How should we design f together with the detector?

The Approach

Joint optimization of the embedder and detector is not easy.

Instead, let us confine ourselves to a certain **class** of detectors – the class of all detectors that base their decisions on a given set of statistics extracted from y and w .

Examples:

- The joint empirical distribution $\hat{P}(w, y) = n(w, y)/n$.
- Correlation $\frac{1}{n} \sum_{i=1}^n w_i y_i$, energy $\frac{1}{n} \sum_{i=1}^n y_i^2$.
- Similar joint statistics of y and shifted versions of w .

Problem Definition

Let \mathbf{w} be given, and $\mathbf{x} \sim P$ – a finite alphabet memoryless source.

A decision rule partitions \mathcal{Y}^n two complementary regions Λ and Λ^c :

$\mathbf{y} \in \Lambda \rightarrow$ decide for $H_1 : \mathbf{y} = f(\mathbf{x}, \mathbf{w})$.

$\mathbf{y} \in \Lambda^c \rightarrow$ decide for $H_0 : \mathbf{y} = \mathbf{x}$.

Neyman–Pearson criterion:

Minimize $P_{e_1} = \Pr\{f(\mathbf{x}, \mathbf{w}) \in \Lambda^c\}$ (FN)

s.t. $P_{e_2} = \Pr\{\mathbf{x} \in \Lambda\} \leq e^{-\lambda n}$ (FP constraint)

and $d(\mathbf{x}, \mathbf{y}) \leq nD$.

Asymptotically Optimal Detector and Embedder

Among all detectors that are based on $\hat{P}(w, y)$, the following one is asymptotically optimum in the error–exponent sense:

$$\Lambda_* = \{\mathbf{y} : \ln P(\mathbf{y}) + n\hat{H}(Y|W) + \lambda n \leq 0\}$$

regardless of the choice of f !

The optimum f is now the following:

$$f^*(\mathbf{x}, \mathbf{w}) = \operatorname{argmin}_{\mathbf{y}: d(\mathbf{x}, \mathbf{y}) \leq nD} [\ln P(\mathbf{y}) + n\hat{H}(Y|W)].$$

Computational Complexity of f^*

Although it involves minimization over a sphere $\{\mathbf{y} : d(\mathbf{x}, \mathbf{y}) \leq nD\}$, it does not really take an exponentially large exhaustive search.

Note that for an additive distortion measure

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n d(x_i, y_i),$$

both $d(\mathbf{x}, \mathbf{y})$ and $[\ln P(\mathbf{y}) + n\hat{H}(Y|W)]$ depend on (\mathbf{x}, \mathbf{w}) only via the joint empirical distribution of $(\mathbf{x}, \mathbf{w}, \mathbf{y})$, and the search over empirical distributions is polynomial in n .

Universality in the Covertext Statistics

If P is unknown (but still known to be memoryless), it makes sense to require that $P\{x \in \Lambda\} \leq e^{-\lambda n}$ would hold for **every** memoryless P .

The resulting version of Λ_* is a **mutual information** detector, i.e., it accepts H_1 iff

$$\hat{I}(W; Y) \geq \lambda,$$

and the corresponding embedder would be

$$f^*(x, w) = \operatorname{argmax}_{y: d(x, y) \leq nD} \hat{I}(W; Y).$$

Continuous Alphabets

One of the most customary models is $x \sim \mathcal{N}(0, \sigma^2 I)$, where σ^2 is unknown.

Suppose that our class of detectors depend on the correlation $\sum_{i=1}^n w_i y_i$ and the energy $\sum_{i=1}^n y_i^2$, then the corresponding mutual information detector compares

$$\hat{\rho}^2 = \frac{\left(\frac{1}{n} \sum_{i=1}^n w_i y_i\right)^2}{\frac{1}{n} \sum_{i=1}^n y_i^2}$$

to a threshold.

The embedder, in the case of quadratic distortion $d(x, y) = (x - y)^2$, maximizes $\hat{\rho}^2$ s.t. $\sum_{i=1}^n (x_i - y_i)^2 \leq nD$.

Continuous Alphabets (Cont'd)

Consider the optimization problem

$$\max \frac{(\sum_{i=1}^n w_i y_i)^2}{\sum_{i=1}^n y_i^2} \quad \text{s.t.} \quad \sum_{i=1}^n (x_i - y_i)^2 \leq nD.$$

Every solution y can be represented as

$$\mathbf{y} = a\mathbf{x} + b\mathbf{w} + \mathbf{z}$$

where \mathbf{z} is orthogonal to \mathbf{x} and \mathbf{w} .

Note, however, that WLOO, $\mathbf{z} = 0$ as every non-zero \mathbf{z} increases the denominator without increasing the numerator and without improving the distance to \mathbf{x} . Thus,

$$\mathbf{y} = a\mathbf{x} + b\mathbf{w}$$

Continuous Alphabets (Cont'd)

It remains to optimize only over two parameters, a and b . Some simple manipulations reduce this further to a one-dimensional line search.

Note that

$$\mathbf{y} = a^* \mathbf{x} + b^* \mathbf{w}$$

is **not** a linear embedder, as a^* and b^* depend on \mathbf{x} and \mathbf{w} .

Attacks

In the case of attack, the detector sees a “forgery” z , instead of y , where z is created from y via an attack channel $W(z|y)$.

In the case of a memoryless channel, the optimal detector is the same as before except that y is replaced by z .

The optimal embedder would then be

$$f^*(x, w) = \operatorname{argmin}_{y: d(x, y) \leq nD} \sum_{z \in \Lambda_*^c} W(z|y).$$

Geometric Attacks

A geometric attack can be thought of as an (unknown) transformation of the coordinates of the signal/image (e.g., a cyclic shift).

We will model it as a randomly chosen permutation: Given a set of M permutations $\{\pi_1, \dots, \pi_M\}$, let:

$$W(z|\mathbf{y}) = \frac{1}{M} \sum_{i=1}^M 1\{z = \pi_i(\mathbf{y})\}.$$

Geometric Attacks (cont'd)

It can be shown that if M is sub-exponential in n , an exhaustive search applied to Λ_* :

$$\Lambda_{ES} = \{\mathbf{z} : \ln P(\mathbf{z}) + n \cdot \min_i \hat{H}(Y|W^i) + \lambda n \leq 0\}$$

is not only optimum in the error exponent sense, but it is also as good as if there was no attack.

An asymptotically optimum embedder:

$$f^*(\mathbf{x}, \mathbf{w}) = \operatorname{argmin}_{\mathbf{y}: d(\mathbf{x}, \mathbf{y}) \leq nD} [\ln P(\mathbf{y}) + n \cdot \max_j \min_i \hat{H}(Y^j|W^i)].$$

This seems to require a full search over the sphere because of the maxmin.

Geometric Attacks (cont'd)

If, however, the set of permutations $\{\pi_1, \dots, \pi_M\}$ forms a group, with the operations:

$$\pi_i(\pi_j(\cdot)) = \pi_{i \star j}(\cdot), \quad \pi_i^{-1}(\cdot) = \pi_{i^{-1}}(\cdot),$$

then the above can be simplified to

$$f^*(x, w) = \operatorname{argmin}_{y: d(x, y) \leq nD} [\ln P(y) + n \cdot \min_i \hat{H}(Y|W^i)],$$

where the order of the minimizations can be interchanged, and so, the computational complexity is proportional to M , which is sub-exponential.

Closing Remarks

- We have developed an IT framework for WM embedding and detection.
- The above leads to the principle of maximum mutual information.
- Good embedders are not linear in general.
- The ES approach is asymptotically optimum.
- Easy to extend to the case of private WM – better exponents.
- For multi-bit WM, the capacity is $C = \max\{H(Y|X) : Ed(X, Y) \leq D\}$, in both private and public settings, with and without GA's.