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Outline

An IT approach to WM embedding and detection (no attacks).

Extending the framework to geometric attacks (GA’s).

Discussing a few variations and extensions (in time permits).

Bottom line: The ES approach is as good as if there was no GA.
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Background

The most popular approach — additive embedding:

Given a host vector x = (x1, . . . , xn) and a WM, w = (w1, . . . , wn) (wi ∈ {±1}),

the stegovector y = (y1, . . . , yn) is created by

y = x + αw,

where the choice of α trades off quality (distortion) and detectability.

Given this embedding function, x is like “noise”, and in the Gaussian case,

classical detection theory tells that the best detector is based on correlation.
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Background (Cont’d)

In classical detection theory, the additive structure (of the channel) is given, but

here we have the freedom to select any function

y = f(x, w).

For an aribtrary f , the correlation detector is no longer necessarily optimal.

How should we design f together with the detector?
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The Approach

Joint optimization of the embedder and detector is not easy.

Instead, let us confine ourselves to a certain class of detectors – the class of

all detectors that base their decisions on a given set of statistics extracted from

y and w.

Examples:

The joint empirical distribution P̂ (w, y) = n(w, y)/n.

Correlation 1
n

Pn
i=1 wiyi, energy 1

n

Pn
i=1 y2

i .

Similar joint statistics of y and shifted versions of w.
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Problem Definition

Let w be given, and x ∼ P – a finite alphabet memoryless source.

A decision rule partitions Yn two complementary regions Λ and Λc:

y ∈ Λ → decide for H1 : y = f(x, w).

y ∈ Λc → decide for H0 : y = x.

Neyman–Pearson criterion:

Minimize Pe1
= Pr{f(x, w) ∈ Λc} (FN)

s.t. Pe2
= Pr{x ∈ Λ} ≤ e−λn (FP constraint)

and d(x, y) ≤ nD.
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Asymptotically Optimal Detector and Embedder

Among all detectors that are based on P̂ (w, y), the following one is
asymptotically optimum in the error–exponent sense:

Λ∗ = {y : ln P (y) + nĤ(Y |W ) + λn ≤ 0}

regardless of the choice of f !

The optimum f is now the following:

f∗(x, w) = argminy: d(x,y)≤nD[ln P (y) + nĤ(Y |W )].
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Computational Complexity of f ∗

Although it involves minimization over a sphere {y : d(x, y) ≤ nD}, it does not

really take an exponentially large exhaustive search.

Note that for an additive distortion measure

d(x, y) =

n
X

i=1

d(xi, yi),

both d(x, y) and [ln P (y) + nĤ(Y |W )] depend on (x, w) only via the joint

empirical distribution of (x, w, y), and the search over empirical distributions is

polynomial in n.
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Universality in the Covertext Statistics

If P is unknown (but still known to be memoryless), it makes sense to require

that P{x ∈ Λ} ≤ e−λn would hold for every memoryless P .

The resulting version of Λ∗ is a mutual information detector, i.e., it accepts H1

iff

Î(W ; Y ) ≥ λ,

and the corresponding embedder would be

f∗(x, w) = argmaxy: d(x,y)≤nD Î(W ; Y ).
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Continuous Alphabets

One of the most customary models is x ∼ N (0, σ2I), where σ2 is unknown.

Suppose that our class of detectors depend on the correlation
Pn

i=1 wiyi and

the energy
Pn

i=1 y2
i , then the corresponding mutual information detector

compares

ρ̂2 =
( 1

n

Pn
i=1 wiyi)

2

1
n

Pn
i=1 y2

i

to a threshold.

The embedder, in the case of quadratic distortion d(x, y) = (x − y)2, maximizes

ρ̂2 s.t.
Pn

i=1(xi − yi)
2 ≤ nD.
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Continuous Alphabets (Cont’d)

Consider the optimization problem

max
(
Pn

i=1 wiyi)
2

Pn
i=1 y2

i

s.t.
n

X

i=1

(xi − yi)
2 ≤ nD.

Every solution y can be represented as

y = ax + bw + z

where z is orthogonal to x and w.

Note, however, that WLOO, z = 0 as every non–zero z increases the

denominator without increasing the numerator and without improving the

distance to x. Thus,

y = ax + bw
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Continuous Alphabets (Cont’d)

It remains to optimize only over two parameters, a and b. Some simple

manipulations reduce this further to a one–dimensional line search.

Note that

y = a∗x + b∗w

is not a linear embedder, as a∗ and b∗ depend on x and w.

– p. 12/17



Attacks

In the case of attack, the detector sees a “forgery” z, instead of y, where z is

created from y via an attack channel W (z|y).

In the case of a memoryless channel, the optimal detector is the same as

before except that y is replaced by z.

The optimal embedder would then be

f∗(x, w) = argminy: d(x,y)≤nD

X

z∈Λc

∗

W (z|y).
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Geometric Attacks

A geometric attack can be thought of as an (unknown) transformation of the

coordinates of the signal/image (e.g., a cyclic shift).

We will model it as a randomly chosen permutation: Given a set of M

permutations {π1, . . . , πM}, let:

W (z|y) =
1

M

M
X

i=1

1{z = πi(y)}.
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Geometric Attacks (cont’d)

It can be shown that if M is sub–exponential in n, an exhaustive search applied

to Λ∗:

ΛES = {z : ln P (z) + n · min
i

Ĥ(Y |W i) + λn ≤ 0}

is not only optimum in the error exponent sense, but it also as good as if there

was no attack.

An asymptotically optimum embedder:

f∗(x, w) = argminy: d(x,y)≤nD[ln P (y) + n · max
j

min
i

Ĥ(Y j |W i)].

This seems to require a full search over the sphere because of the maxmin.
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Geometric Attacks (cont’d)

If, however, the set of permutations {π1, . . . , πM} forms a group, with the

operations:

πi(πj(·)) = πi?j(·), π−1
i (·) = πi−1(·),

then the above can be simplified to

f∗(x, w) = argminy: d(x,y)≤nD[ln P (y) + n · min
i

Ĥ(Y |W i)],

where the order of the minimizations can be interchanged, and so, the

computational complexity is proportional to M , which is sub–exponential.
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Closing Remarks

We have developed on IT framework for WM embedding and detection.

The above leads to the principle of maximum mutual information.

Good embedders are not linear in general.

The ES approach is asymptotically optimum.

Easy to extend to the case of private WM – better exponents.

For multi–bit WM, the capacity is C = max{H(Y |X) : Ed(X,Y ) ≤ D}, in

both private and public settings, with and without GA’s.
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