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General Motivation

Encryption and watermarking are related, but different:

Encryption – hiding the contents of secret information.

Watermarking – hiding the existence of secret information.

In the last few years, there are increasingly more efforts in combining

watermarking and encryption, both in the fronts of research and in actual

technologies used in commercial products with copyright protection, like the

CD and the DVD.
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Some Internet content providers post in their websites warning messages, like

the following one:

Copyright c© 2001 Genealogy LeavesTM

All of the scanned maps are protected by copyright and have an embedded Digimark digitally

encrypted watermark. Use of these maps for any other purpose other than personal

genealogical research is not permitted.

http://genealogy.lv/1864Lancaster/copyright.htm
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Objectives

Our main objective is to address the problem of joint coding for watermarking

and encryption from an information–theoretic point of view.

Specifically: to explore fundamental limits and coding strategies for the best

possible tradeoffs between several parameters:

Reliable WM decoding: small bit/block error probability.

Reasonably small degradation in quality: small distortion.

Good security of the watermark: high equivocation.

Good compressibility of the stegotext: low entropy.
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The Problem (Without Attack)

For memoryless UN , Xn, Kn, and N/n = λ, find an encoder

Y n = f(UN ,Xn, Kn)

and decoder

ÛN = g(Y n, Kn) with small Pe = Pr{ÛN 6= UN}

under the following specifications:

1. Quality: 1
n

Pn
i=1 Ed(Xi, Yi) ≤ D.

2. Compressibility: 1
nH(Y n) ≤ Rc.

3. Security: 1
N H(UN |Y n) ≥ h.

What are the conditions on D, Rc and h for which this is possible?
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A Solution Strategy

Compress UN to NH(U) bits.

Encrypt Nh compressed bits by nH(K) = NH(K)/λ key bits.

Use the encrypted msg for selecting a R–D codebook for Xn

(∃ 2nH(Y |X) distinct codebooks).

(D, Rc, h) can be achieved this way if:

h ≤ H(K)/λ

∃ PY |X such that: H(Y |X) ≥ λH(U), λH(U) + I(X;Y ) ≤ Rc, and

Ed(X,Y ) ≤ D.

Q: Is this the best one can do?
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Optimality

A: Yes, in the sense that the conditions are also necessary.

This gives rise to a separation principle:

Lossless compression → encryption → R-D embedding.
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Lossy Reconstruction

Suppose now that some distortion is allowed

1

N

N
X

i=1

Ed′(Ui, Ûi) ≤ D′

and that we would then like to secure also ÛN :

1

N
H(ÛN |Y n) ≥ h′.

Q: What are the conditions for the achievability of (D, Rc, h,D′, h′)?
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A: A quintuple (D, Rc, h,D′, h′) is achievable iff:

h ≤ H(K)/λ + H(U) − RU (D′), h′ ≤ H(K)/λ.

∃ PY |X such that: H(Y |X) ≥ λRU (D′),

λRU (D′) + I(X; Y ) ≤ Rc, and Ed(X,Y ) ≤ D.

Achievability – same as before except that lossless compression of UN is

replaced by lossy compression to RU (D′).

The earlier separation principle still applies.
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What happens in the Presence of Attack?

The decoder has access to Zn, instead of Y n, where

P (Zn|Y n) =

n
Y

i=1

P (Zi|Yi).

We can now re–define the equivocation requirements as

1

N
H(UN |Y n, Zn) ≥ h and

1

N
H(ÛN |Y n, Zn) ≥ h′.

What are now the best tradeoffs?
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Joint coding under attack

Theorem: A quintuple (D, Rc, h,D′, h′) is achievable iff there exist RV’s V and

Y with P (K,X, V, Y, Z) = P (X)P (K)P (V, Y |K, X)P (Z|Y ) s.t.

h ≤ H(K|Y )/λ + H(U) − RU (D′), h′ ≤ H(K|Y )/λ.

λRU (D′) ≤ I(V ; Z|K) − I(V ; X|K).

Rc ≥ λRU (D′) + I(X; Y, V |K) + I(K;Y ), D ≥ Ed(X,Y ).

Comments:

1. No separation between encryption and WM.

2. Channel with SI: X at the encoder, K – at both ends.

3. R-D coding of UN – still separate.
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Embedding and Stegotext Compression

Given Kn, generate 2nI(V ;Z|K) random codewords {V n} according to

P (V |K) and partition them into 2NRU (D′) bins, each of size ≥ 2nI(V ;X|K).

Given (Kn, V n), generate 2nI(X;Y |V,K) random stegowords {Y n}

according to P (Y |K, V ).

For (Xn, Kn), find a typical V n within the appropriate bin.

For (Xn, Kn, V n), find a jointly typical Y n.

Compress Y n to log |{Y n}| ≈ n[λRU (D′) + I(X;Y, V |K) + I(K;Y )].

The decoder estimates V n reliably from (Zn, Kn) and then decodes

according to the bin.
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Extensions

Allowing dependence between K and X:

P (Kn|Xn) =

n
Y

i=1

P (Ki|Xi).

As Kn plays the role of SI, it makes sense to talk about “private”

compression:

1

n
H(Y n|Kn) ≤ R′

c.

What are now the achievable sixtuples (D, Rc, h, D′, R′
c, h

′)?
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Coding theorem revisited

Theorem: A quintuple (D, Rc, h,D′, R′
c, h

′) is achievable iff there exist RV’s V

and Y with P (K,X, V, Y, Z) = P (X, K)P (V, Y |K, X)P (Z|Y ) s.t.

h ≤ H(K|Y )/λ + H(U) − RU (D′), h′ ≤ H(K|Y )/λ.

λRU (D′) ≤ I(V ; Z|K) − I(V ; X|K).

Rc ≥ λRU (D′) + I(X; Y, V |K) + I(K;Y ), D ≥ Ed(X,Y ).

R′
c ≥ λRU (D′) + I(X; Y, V |K).

Comments:

1. K now depends on X.

2. R′
c has a similar lower bound as Rc, just without the last term.
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Excess Key Rate

Thus far, we have implicitly assumed that H(K) ≤ λRU (D′):

For the purpose of securing UN , there is no need for more key rate.

For the purpose of further securing ÛN , however, excess key rate can improve

secrecy.
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If H(K) > λRU (D′), we can make H(K|Y ) > λRU (D′), and use the

T = n[H(K|Y ) − λRU (D′)] extra key bits for selection among 2T distinct

rate–distortion codebooks among the totality of 2NH(Û|U) that exist. Thus, it is

possible to improve the security of ÛN to the level of

h′ = min{H(Û), H(K|Y )/λ}

but not any further.

But once we do that, it is no longer clear that Û should correspond to the

rate–distortion–optimal test channel, that minimizes I(U ; Û) subject to the

distortion constraint.
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Coding theorem re–revisited

Theorem: A quintuple (D, Rc, h,D′, R′
c, h

′) is achievable iff there exist a

channel P (Û |U) and RV’s V and Y as before s.t.

h ≤ H(U) − [I(U ; Û) − H(K|Y )/λ]+.

h′ ≤ min{H(Û),H(K|Y )/λ}.

λI(U ; Û) ≤ I(V ; Z|K) − I(V ; X|K).

Rc ≥ λI(U ; Û) + I(X;Y, V |K) + I(K;Y ), D ≥ Ed(X,Y ).

R′
c ≥ λI(U ; Û) + I(X;Y, V |K).

D′ ≥ Ed′(U, Û).

Separation fails completely now, as the test channel U → Û is affected here by

the other ingredients of the system.
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Conclusion

Defining and studying a framework of combined WM, encryption, and

compression.

Substantial differences between the cases with and without attack.

Cryptographic key may play a role of SI.

Separation holds in simple special cases, but falls apart with increasing

generality.

Characterizing structures of optimal coding systems.
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Future Questions

The case where the stegotext has to be secured.

Allowing a non–memoryless channel P (Kn|Xn).

Key distribution via a capacity–limited channel.

Devising practical algorithms (linear/lattice, Turbo, LDPC codes).

Public–key methods.

– p. 21/22



THANK YOU!!
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