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General

In the classical Shannon–theoretic setting of cipher systems, a few

assumptions are commonly made:

The reconstruction of the plaintext should be error–free.

The encryption and decryption are carried out using the same key.

The secure channel through which the key is delivered, is clean.

Yamamoto (1997) relaxed the first assumption.

Let us examine what happens also in the abence of the two other assumptions.
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Problem Description

Given a:

source P (UN ) = P (U1)P (U2) . . . P (UN ),

a distortion measure d : U × V → IR+,

an unlimited reservoir of key bits K = (K1, K2, . . .), and

a DMC P (Y n|Xn) = P (Y1|X1)P (Y2|X2) . . . P (Yn|Xn),

– p. 4/19



Problem Description (Cont’d)

we seek an encoder

Wm = f(UN , K); Xn = g(K)

and a decoder

V N = h(Wm, Y n)

such that:

N
X

i=1

E{d(Ui, Vi) ≤ ND, µ =
m

N
≤ Rc, and H(UN |Wm) ≥ Nh.

What is the achievable region of {(D, Rc, h)} and how can we achieve it?
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Solution 1: Separate channel coding for the key
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Solution 2: Encrypt and Compress with SI
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Solution 2’: Encrypt and Compress with SI
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Solution 3: Use the cryptogram as SI to encode the key
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Informal Description of the Main Result

We show that no solution is better than the first one, namely:

Transmit min{nC,NR(D)} key bits reliably by channel coding.

Compress UN to NR(D) bits.

Use the key bits to encrypt (one–time pad) the compressed bit–stream.

At the receiver: decode the key, decrypt the bit–stream, and decompress.
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Informal Description of Main Result (Cont’d)

This result is in the spirit of the classical source–channel separation theorem:

Complete decoupling between source coding (of UN ) and channel coding

(of the key).

Best strategy of controlling the distortion is by rate–distortion coding.

A necessary and sufficient condition for perfect secrecy is: R(D) ≤ λC,

λ = n/N .
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Coding Theorem

A triple (D, Rc, h) is achievable iff the following two conditions hold:

h ≤ h(D)
∆
= H(U) − [R(D) − λC]+, and

Rc ≥ R(D).

Comments:

For a given D: no conflict between minimizing Rc and maximizing h.

Perfect secrecy – h = H(U) can be achieved iff R(D) − λC ≤ 0.
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Simple Coding in Some Special Cases

Suppose that the compressibility of Wm is not an issue (Rc = ∞).

As in ordinary joint source–channel coding, there are situations where simple

single–letter codes are optimal as in Gastpar (2003).

For example, let us suppose that:

U is uniform and U = X = Y = V, whose cardinality is a power of 2,

λ = 1, N = n = 1.

d – a difference distortion measure, d(u, v) = ρ(u 	 v) = ρ(v 	 u).

C – achieved by the uniform input distribution, and

P (Y |X) – is the test channel that achieves the rate–distortion function of

the uniform distribution.
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Simple Coding in Some Special Cases (Cont’d)

Then, the following simple scheme is optimal:

Generate a uniform RV X on X using log |X | bits from K .

Encryption: W = U ⊕ X.

Send X via the channel as is.

At the receiver, decrypt: V = W 	 Y .

In this case, we have:

Equivocation: H(U |W ) = log |X | which is perfect secrecy.

Distortion: Eρ(U 	 V ) = Eρ(X 	 Y ) = D = R−1
U

(C).
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Securing the ReproductionV N

Suppose that there is an additional security requirement:

H(V N |Wm) ≥ Nh′.

A restatement of the necessity part of our coding theorem is as follows:

If (D, Rc, h, h′) is achievable, then there exist a channel P (V |U) and a source
P (X) such that the following inequalities hold at the same time:

h ≤ H(U) − [I(U ; V ) − λI(X;Y )]+, h′ ≤ min{H(V ), λH(Y )},

Rc ≥ I(U ; V ), D ≥ Ed(U, V ).

H(Y ) = I(X;Y ) + H(Y |X) =reliable key–rate via channel+randomness
generated by the channel.

We don’t maximize I(X;Y ) and minimize I(U ;V ) because of H(V ) and H(Y ).

Thus, there is no full separation in this setting!
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Securing the ReproductionV N (Cont’d)

The achievability of the this region of {(D, Rc, h, h′)} remains open in general.

However, it is known at least for the case of a deterministic channel

H(Y |X) = 0, in which case, we can again maximize

C = max
X

I(X;Y ) = max
X

H(Y )

but still cannot minimize I(U ; V ).
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Securing the ReproductionV N (Cont’d)

The achievability is based on the fact that given P (U, V ), ∃ ≈ 2NH(V |U) distinct

rate–distortion codebooks, each of size 2NI(U ;V ) that produce a jointly typical

V N for every typical input UN .

The coding scheme works as follows:

If H(V ) ≤ λC, use NH(V |U) key bits to choose a codebook plus

NI(U ; V ) key bits to encrypt the codeword.

If I(U ; V ) ≤ λC ≤ H(V ), use nC − NI(U ;V ) key bits to choose a

codebook plus NI(U ;V ) key bits to encrypt the codeword.

If λC ≤ I(U ; V ), use nC key bits to partially encrypt the codeword (of one

specified codebook).
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Feedback

Suppose that prior to the encryption/compression of UN , the transmitter

receives noiseless feedback of Y n. This is similar to a deterministic channel

(Xn, Y n) → Y n.

It is clear too how to secure V N to the (maximum) level

h′ = min{H(V ), λH(Y )} (simply use Y n alone as the common key).

The security of UN can be enhanced to the (maximum) level

h = H(U) − [I(U ; V ) − λH(Y )]+.

Here, K is just used to simulate an input X that maximizes H(Y ).

Thus, although feedback does not increase capacity of a DMC, it improves its

effectiveness when this channel is harnessed for delivering a key.
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Conclusion

We addressed the problem of joint lossly compression and encryption

when the key delivery channel is of limited capacity.

We characterized the achievable region of D, Rc, and h.

This characterization suggests a “separation theorem.”

When the security of the reproduction becomes a factor, separation fails.

There is a gap between the necessary and sufficient conditions, which

vanishes when the channel is deterministic or when there is feedback.
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