

On the Shannon Cipher System with a Capacity–Limited Key Distribution Channel

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

The 44th Annual Allerton Conference on C^3 :
Monticello, IL, September 28, 2006

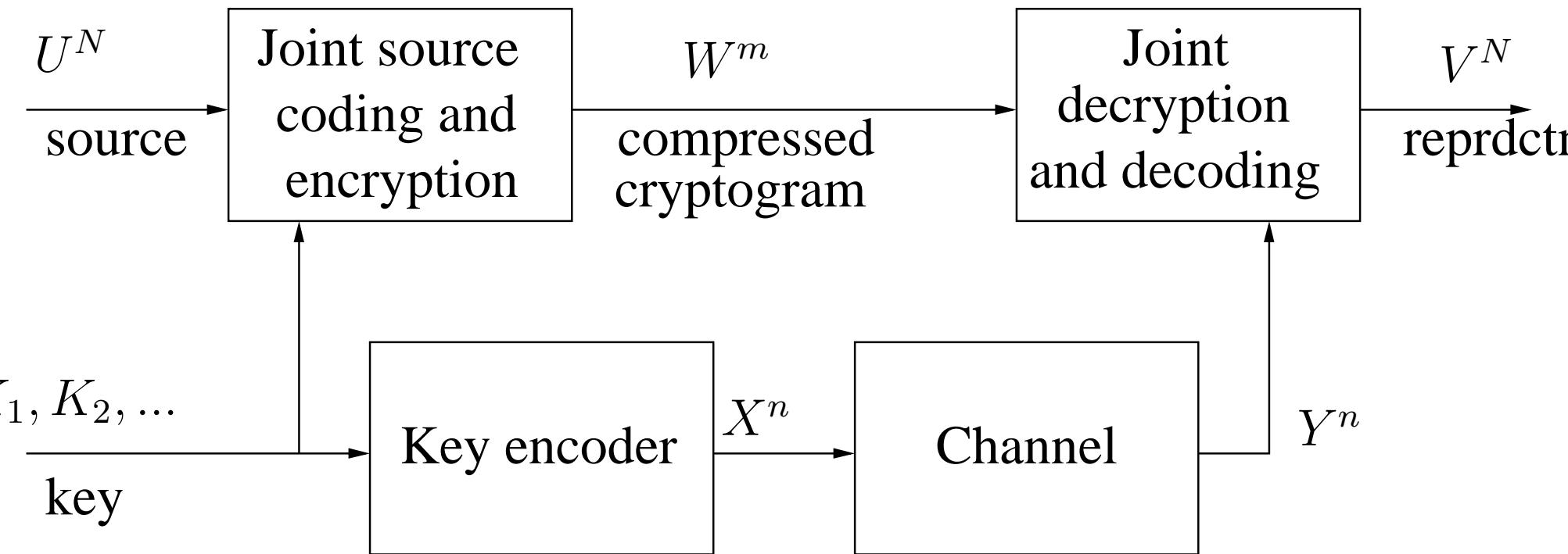
General

In the classical Shannon–theoretic setting of cipher systems, a few assumptions are commonly made:

- The reconstruction of the plaintext should be **error–free**.
- The encryption and decryption are carried out using the **same key**.
- The secure channel through which the key is delivered, is **clean**.

Yamamoto (1997) relaxed the first assumption.

Let us examine what happens also in the absence of the two other assumptions.



Problem Description

Given a:

- source $P(U^N) = P(U_1)P(U_2)\dots P(U_N)$,
- a distortion measure $d : \mathcal{U} \times \mathcal{V} \rightarrow \mathbb{R}^+$,
- an unlimited reservoir of key bits $\mathbf{K} = (K_1, K_2, \dots)$, and
- a DMC $P(Y^n|X^n) = P(Y_1|X_1)P(Y_2|X_2)\dots P(Y_n|X_n)$,

Problem Description (Cont'd)

we seek an encoder

$$W^m = f(U^N, \mathbf{K}); \quad X^n = g(\mathbf{K})$$

and a decoder

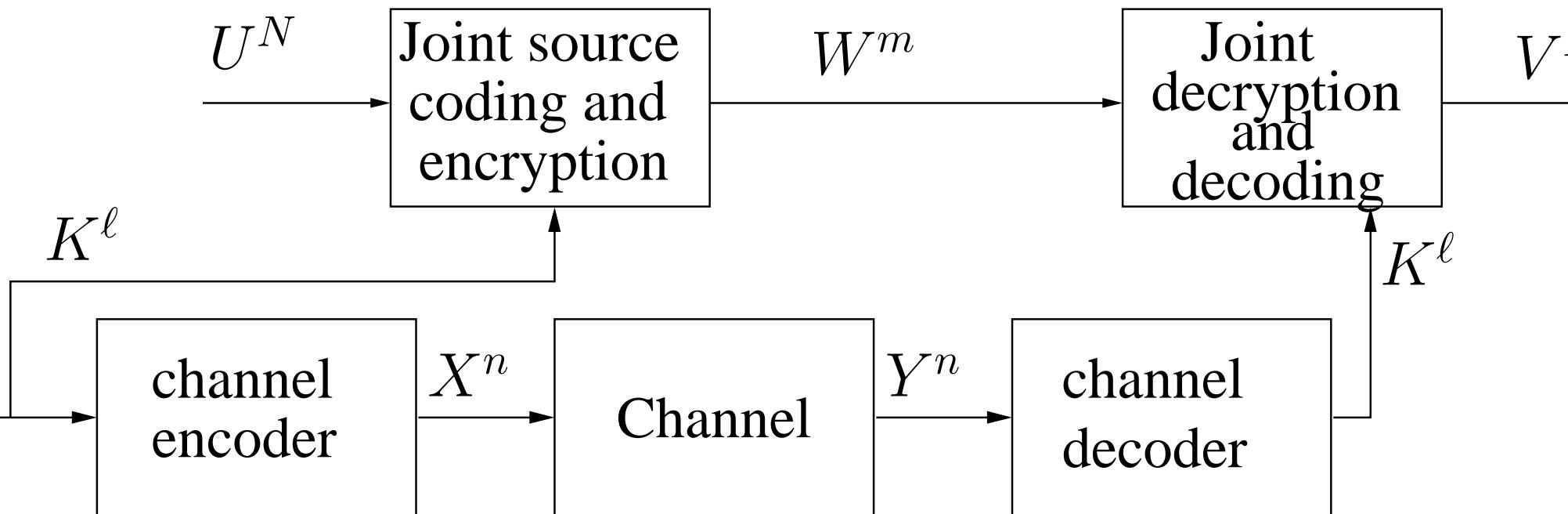
$$V^N = h(W^m, Y^n)$$

such that:

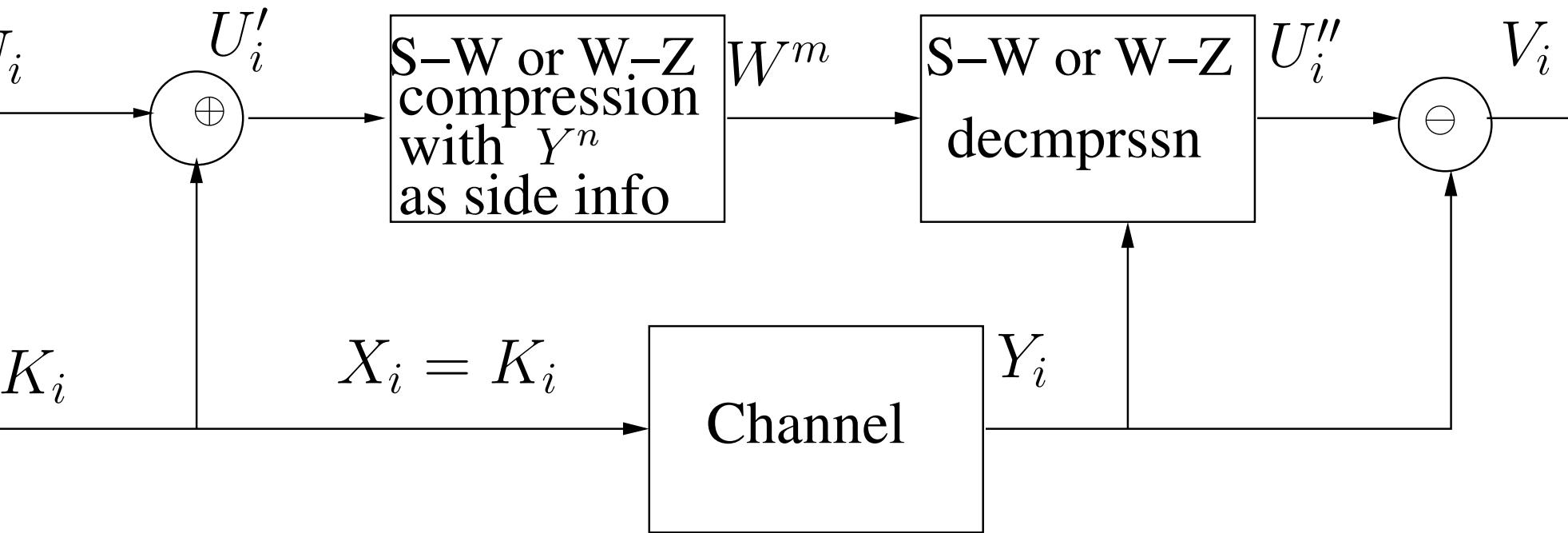
$$\sum_{i=1}^N E\{d(U_i, V_i) \leq ND, \quad \mu = \frac{m}{N} \leq R_c, \quad \text{and} \quad H(U^N | W^m) \geq Nh.$$

What is the achievable region of $\{(D, R_c, h)\}$ and how can we achieve it?

Solution 1: Separate channel coding for the key

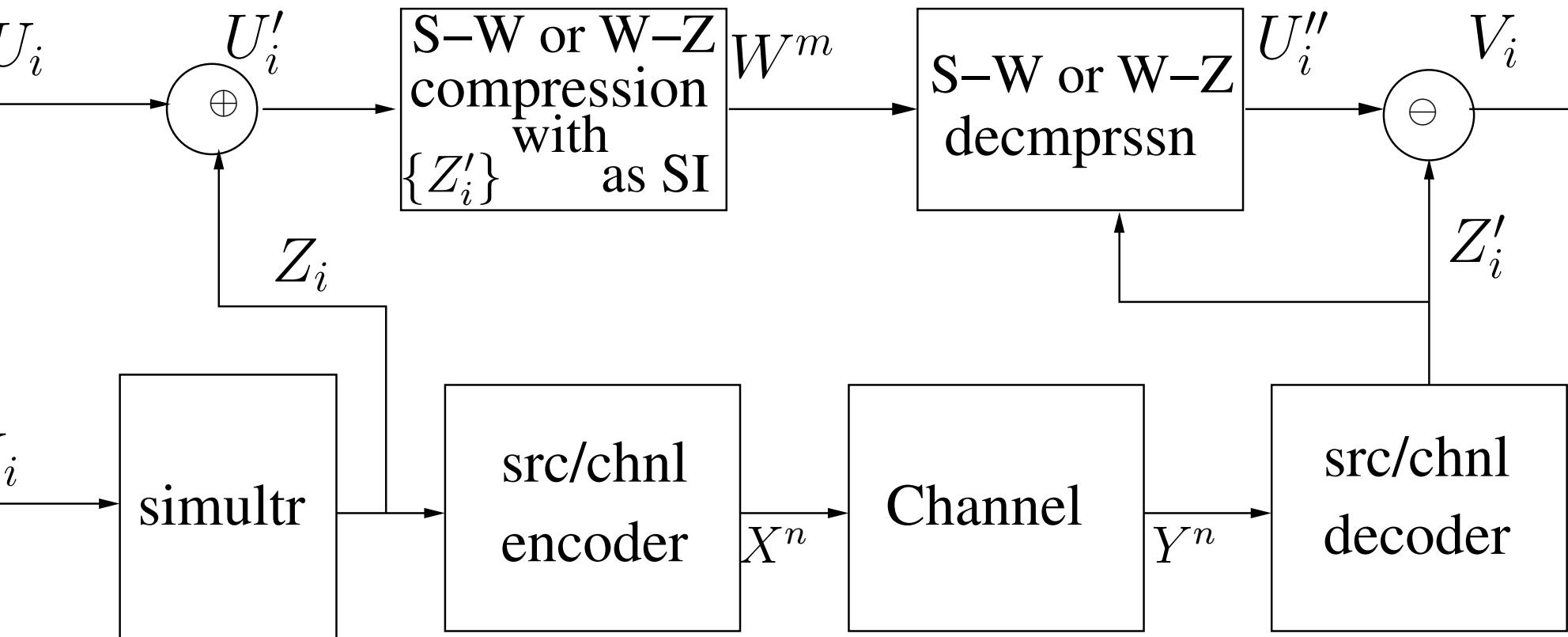


Solution 2: Encrypt and Compress with SI

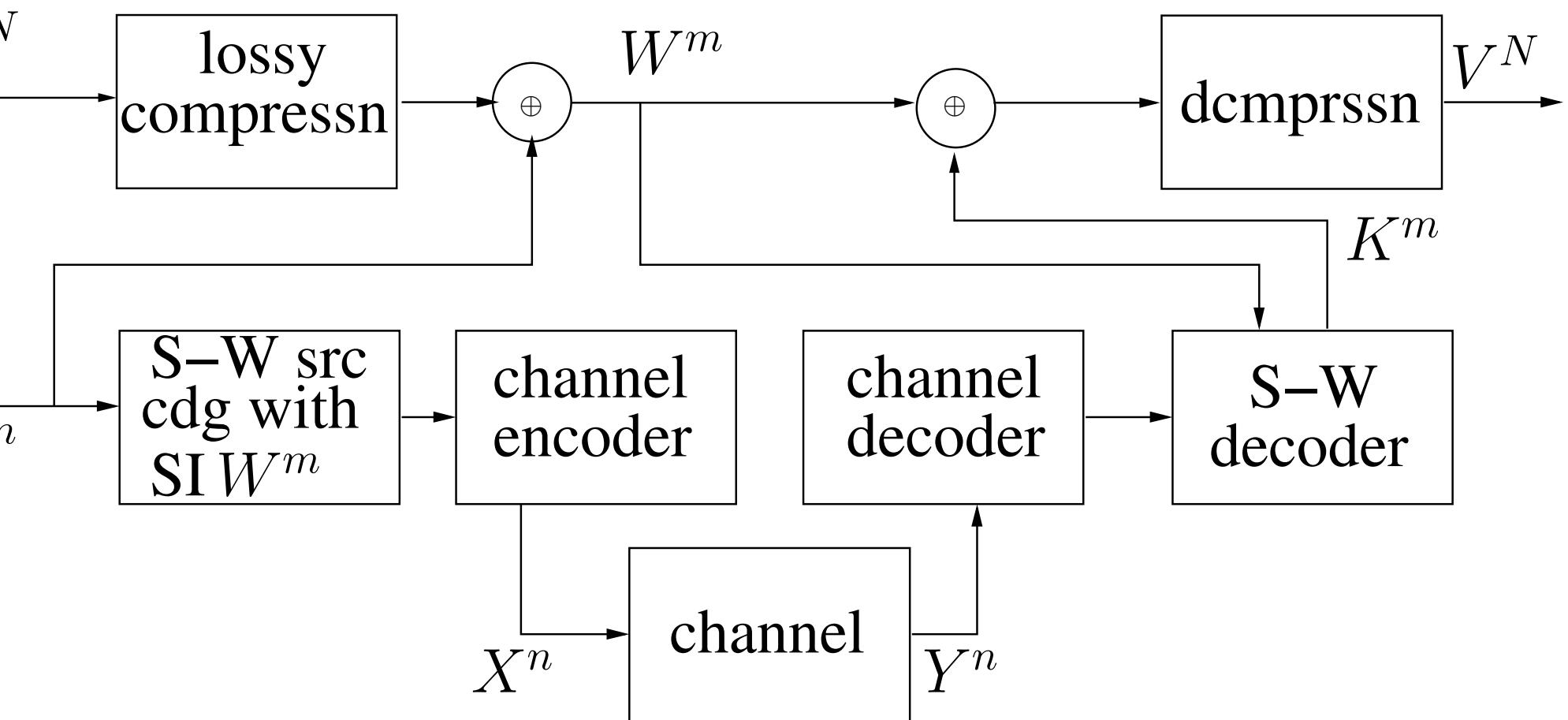


Johnson et. al. (2004)

Solution 2': Encrypt and Compress with SI



Solution 3: Use the cryptogram as SI to encode the key



Informal Description of the Main Result

We show that no solution is better than the first one, namely:

- Transmit $\min\{nC, NR(D)\}$ key bits reliably by channel coding.
- Compress U^N to $NR(D)$ bits.
- Use the key bits to encrypt (one-time pad) the compressed bit-stream.
- At the receiver: decode the key, decrypt the bit-stream, and decompress.

Informal Description of Main Result (Cont'd)

This result is in the spirit of the classical source–channel separation theorem:

- Complete **decoupling** between **source** coding (of U^N) and **channel** coding (of the key).
- Best strategy of controlling the distortion is by rate–distortion coding.
- A necessary and sufficient condition for **perfect secrecy** is: $R(D) \leq \lambda C$, $\lambda = n/N$.

Coding Theorem

A triple (D, R_c, h) is achievable iff the following two conditions hold:

- $h \leq h(D) \triangleq H(U) - [R(D) - \lambda C]_+$, and
- $R_c \geq R(D)$.

Comments:

- For a given D : no conflict between minimizing R_c and maximizing h .
- Perfect secrecy – $h = H(U)$ can be achieved iff $R(D) - \lambda C \leq 0$.

Simple Coding in Some Special Cases

Suppose that the compressibility of W^m is not an issue ($R_c = \infty$).

As in ordinary joint source–channel coding, there are situations where simple single–letter codes are optimal as in Gastpar (2003).

For example, let us suppose that:

- U is uniform and $\mathcal{U} = \mathcal{X} = \mathcal{Y} = \mathcal{V}$, whose cardinality is a power of 2,
- $\lambda = 1, N = n = 1$.
- d – a difference distortion measure, $d(u, v) = \rho(u \ominus v) = \rho(v \ominus u)$.
- C – achieved by the uniform input distribution, and
- $P(Y|X)$ – is the test channel that achieves the rate–distortion function of the uniform distribution.

Simple Coding in Some Special Cases (Cont'd)

Then, the following simple scheme is optimal:

- Generate a uniform RV X on \mathcal{X} using $\log |\mathcal{X}|$ bits from K .
- Encryption: $W = U \oplus X$.
- Send X via the channel as is.
- At the receiver, decrypt: $V = W \ominus Y$.

In this case, we have:

- Equivocation: $H(U|W) = \log |\mathcal{X}|$ which is perfect secrecy.
- Distortion: $E\rho(U \ominus V) = E\rho(X \ominus Y) = D = R_U^{-1}(C)$.

Securing the Reproduction V^N

Suppose that there is an additional security requirement:

$$H(V^N | W^m) \geq Nh'.$$

A restatement of the necessity part of our coding theorem is as follows:

If (D, R_c, h, h') is achievable, then there exist a **channel** $P(V|U)$ and a **source** $P(X)$ such that the following inequalities hold at the same time:

- $h \leq H(U) - [I(U; V) - \lambda I(X; Y)]_+, \quad h' \leq \min\{H(V), \lambda H(Y)\},$
- $R_c \geq I(U; V), \quad D \geq Ed(U, V).$

$H(Y) = I(X; Y) + H(Y|X)$ =reliable key–rate via channel+randomness generated by the channel.

We don't maximize $I(X; Y)$ and minimize $I(U; V)$ because of $H(V)$ and $H(Y)$.

Thus, there is **no** full separation in this setting!

Securing the Reproduction V^N (Cont'd)

The achievability of the this region of $\{(D, R_c, h, h')\}$ remains open in general.

However, it is known at least for the case of a deterministic channel

$H(Y|X) = 0$, in which case, we can again maximize

$$C = \max_X I(X; Y) = \max_X H(Y)$$

but still cannot minimize $I(U; V)$.

Securing the Reproduction V^N (Cont'd)

The achievability is based on the fact that given $P(U, V)$, $\exists \approx 2^{NH(V|U)}$ **distinct** rate-distortion codebooks, each of size $2^{NI(U;V)}$ that produce a jointly typical V^N for every typical input U^N .

The coding scheme works as follows:

- If $H(V) \leq \lambda C$, use $NH(V|U)$ key bits to choose a codebook plus $NI(U;V)$ key bits to encrypt the codeword.
- If $I(U;V) \leq \lambda C \leq H(V)$, use $nC - NI(U;V)$ key bits to choose a codebook plus $NI(U;V)$ key bits to encrypt the codeword.
- If $\lambda C \leq I(U;V)$, use nC key bits to partially encrypt the codeword (of one specified codebook).

Feedback

Suppose that prior to the encryption/compression of U^N , the transmitter receives noiseless feedback of Y^n . This is similar to a deterministic channel $(X^n, Y^n) \rightarrow Y^n$.

- It is clear too how to secure V^N to the (maximum) level

$$h' = \min\{H(V), \lambda H(Y)\} \text{ (simply use } Y^n \text{ alone as the common key).}$$

- The security of U^N can be enhanced to the (maximum) level

$$h = H(U) - [I(U; V) - \lambda H(Y)]_+.$$

- Here, K is just used to simulate an input X that maximizes $H(Y)$.

Thus, although feedback does not increase capacity of a DMC, it improves its effectiveness when this channel is harnessed for delivering a key.

Conclusion

- We addressed the problem of joint lossy compression and encryption when the key delivery channel is of limited capacity.
- We characterized the achievable region of D , R_c , and h .
- This characterization suggests a “separation theorem.”
- When the security of the reproduction becomes a factor, separation fails.
- There is a gap between the necessary and sufficient conditions, which vanishes when the channel is deterministic or when there is feedback.