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Separate vs. Joint Detection and Info Processing

Classical hypothesis testing: optimal decision – based on the LRT.

In certain applications, signal detection is only the first phase.

Second–phase processing: decoding, estimation, compression, ...

Conventional approach: separate detection & second–phase processing:

Apply the LRT regardless of the second–phase task.

Apply the optimal second–phase task regardless of the detection.

Alternative: joint detection and second–phase processing:

Optimal decision rule: incorporates cost of the second–phase task.

Optimal second phase–task: uses the fact that a signal was detected.
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Related Work

Moustakides (2011), Moustakides et al. (2012): parameter estimation.

Yilmaz et al. (2013): sequential estimation.

Wang (2010), Wang et al. (2011): slotted asynchronous communication.

Weinberger & Merhav (2014): codeword or noise?

Weinberger & Merhav (2015): channel det. + decoding (Wednesday).

Merhav (2015): data compression.
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Generic Problem Definition

Let Y ∼ P0/P1 be an observable.

Let ℓ : Y → IR be a cost function associated with the second–phase task.

Find a partition the observation space X into Ω and Ωc:

minimize E1{ℓ(Y )|Y ∈ Ω}

subject to P0(Ω) ≤ ǫFA

P1(Ω
c) ≤ ǫMD

or, alternatively, replace the FA constraint by a constraint on:

E0{ℓ(Y )|Y ∈ Ω} · P0(Ω)

Comment: ǫMD and ǫFA cannot be both too small (due to the Neyman–Pearson
lemma). Relaxing the tension between them creates more room for minimizing
the objective.
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Generic Problem Definition (Cont’d)

More formally, find:

minimize
X

y∈Ω

f(y)

subject to
X

y∈Ω

g(y) ≤ G

X

y∈Ωc

h(y) ≤ H

where the minimization is over all subsets {Ω} and where G and H are
prescribed numbers.
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A Simple Extension of the Neyman–Pearson Lemma

Let f , g and h be any three functions from X to IR and let

Ω⋆ = {y : f(y) + a · g(y) ≤ b · h(y)},

where a ≥ 0 and b ≥ 0 are fixed numbers. Let Ω be any other subset of X . If

X

y∈Ω

g(y) ≤
X

y∈Ω⋆

g(y)

and
X

y∈Ωc

h(y) ≤
X

y∈Ωc

⋆

h(y)

then
X

y∈Ω⋆

f(y) ≤
X

y∈Ω

f(y).

In other words, no competing partition Ω dominates Ω∗ in all three criteria.
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Comments

Ω⋆ = {y : f(y) + a · g(y) ≤ b · h(y)}.

a and b – two “Lagrange multipliers” for controlling the two constraints.

Classic N–P Lemma: special case of a = 0 (drops the g–constraint).

Letting a, b → ∞ with fixed a/b:

Full tension between the constraints.

Only one Ω satisfies both constraints.

No room for optimization.

Separate detection and second–phase task.
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Application No. 1 – “Codeword or Noise?”

Weinberger & Merhav (2014):
Y = (Y1, . . . , Yn) is the output of a channel W (y|x) fed by x = (x1, . . . , xn).

H0 : Y ∼ W (y|0n) no transmission; Y is pure noise.

H1 : Y ∼
1

M

X

x∈C

W (y|x) Y is a noisy version of a message.

Joint detection and decoding:

maximize

Pc
z }| {

1

M

X

y∈Ω

max
x∈C

W (y|x)

subject to
X

y∈Ω

W (y|0n) ≤ ǫFA

X

y∈Ωc

1

M

X

x∈C

W (y|x) ≤ ǫMD
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“Codeword or Noise” (Cont’d)

Here we can apply the extended N–P lemma with the following assignments:

f(y) = −
1

M
· max
x∈C

W (y|x)

g(y) = W (y|0n)

h(y) =
1

M

X

x∈C

W (y|x)

The resulting detector–decoder:

Ω⋆ =

8

<

:

y : a ·
X

x∈C

W (y|x) + max
x∈C

W (y|x) ≤ b · W (y|0n)

9

=

;

.

For y ∈ Ω⋆, apply ordinary ML decoding.

For a and b to affect error exponents, a = enα and b = enβ .

Application no. 2 – channel det.–dec.: W (y|0n) → 1
M

P

x∈C V (y|x).
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Application No. 3 – Lossless Compression

A seemingly natural goal would be to solve the problem:

minimize E1{L(Y )|Y ∈ Ω}

subject to P0(Ω) ≤ ǫFA

P1(Ω
c) ≤ ǫMD

However, in this case, it makes sense to impose exponentially decaying MD
and FA probabilities:

ǫMD = exp{−nEMD}

ǫFA = exp{−nEFA}

in which case, P1(Ω) ≈ 1, and so, E1{L(Y )|Y ∈ Ω} ≈ E1{L(Y )}, and the
problem actually decouples into separate detection and compression.
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Lossless Compression – Exponential Moments

Consider now

minimize E1{exp{θL(Y )}|Y ∈ Ω} θ > 0

subject to P0(Ω) ≤ ǫFA

P1(Ω
c) ≤ ǫMD

For a given Ω,

L∗(y) = − log

"

[P1(y)]1/(1+θ)

P

y′∈Ω[P1(y′)]1/(1+θ)

#

, y ∈ Ω

E1{exp[θL∗(Y )]|Y ∈ Ω} ≈

0

@

X

y∈Yn

[P1(y)]1/(1+θ)

1

A

1+θ

,

thus, we choose

f(y) = [P1(y)]1/(1+θ), g(y) = P0(y), h(y) = P1(y).
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Lossless Compression – Exponential Moments (Cont’d)

The resulting detector, for a = enα, b = enβ :

Ω⋆ = {y : [P1(y)]1/(1+θ) + enαP0(y) ≤ enβP1(y)},

or, equivalently,

Ω⋆ =

8

>

>

>

>

<

>

>

>

>

:

y :
P1(y)

P0(y)
| {z }

ordinary LR

·
“

1 − e−nβ [P1(y)]−θ/(1+θ)
”

| {z }

correction factor

≥ en(α−β)

9

>

>

>

>

=

>

>

>

>

;

.

Unlike classic LRT, here the test statistics doesn’t depend only on the LR.

Correction factor: reject y’s with small P1(y) – cost of coding is high.

Error exponents can easily be analyzed using the method of types.
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Another Variant of the Problem

Consider now the problem:

minimize E1{exp{θL(Y )}|Y ∈ Ω}

subject to E0{exp{θL(Y )}|Y ∈ Ω} · P0(Ω) ≤ ǫFA

P1(Ω
c) ≤ ǫMD

Here, we would like to use

g(y) = P0(y) exp{θL∗(y)} = P0(y)[P1(y)]−θ/(1+θ)

0

@

X

y′∈Ω

[P1(y
′)]1/(1+θ)

1

A

θ

.

Difficulty: The extended N–P lemma cannot be applied since g depends on Ω.
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A Possible Remedy

Consider the length function of a universal code L(y) ≈ nĤ(y), which is
asymptotically optimal for every memoryless P and for every θ. Now, consider

g(y) = P0(y) · exp{nθĤ(y)}.

Detection rule:

Ω⋆ =
n

y : P1(y) exp{nθĤ(y)} + enαP0(y) exp{nθĤ(y)} ≤ enβP1(y)
o

.

With this approach in mind, one can also address directly large deviations
constraints:

g(y) = P0(y) · I{y : Ĥ(y) ≥ R}

and
f(y) = P1(y) · I{y : Ĥ(y) ≥ R}.

Universal detection rules can also be devised (see paper).

For wider classes of sources, replace empirical entropy by LZ complexity.
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Summary and Conclusion

A framework for joint detection and other info processing tasks.

In general, the main issue is to identify the functions f , g and h.

Performance analysis – extendable beyond DMS’s.
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