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Separate vs. Joint Detection and Info Processing

Classical hypothesis testing: optimal decision — based on the LRT.
In certain applications, signal detection is only the first phase.
Second—phase processing: decoding, estimation, compression, ...

Conventional approach: separate detection & second—phase processing:
# Apply the LRT regardless of the second—phase task.

# Apply the optimal second—phase task regardless of the detection.

Alternative: joint detection and second—phase processing:
# Optimal decision rule: incorporates cost of the second—phase task.

# Optimal second phase—task: uses the fact that a signal was detected.
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Related Work

Moustakides (2011), Moustakides et al. (2012): parameter estimation.
Yilmaz et al. (2013): sequential estimation.

Wang (2010), Wang et al. (2011): slotted asynchronous communication.
Weinberger & Merhav (2014): codeword or noise?

Weinberger & Merhav (2015): channel det. + decoding (Wednesday).

Merhav (2015): data compression.
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Generic Problem Definition

LetY ~ Py/P; be an observable.
Let 7/ : Y — IR be a cost function associated with the second—phase task.

Find a partition the observation space X into 2 and Q°:

minimize E;{{(Y)|Y € O}
subjectto FPp(2) < epp
P(Q2°) < emp

or, alternatively, replace the FA constraint by a constraint on:

Eo{{(Y)[Y € Q} - P ()

Comment: ¢ p and egp cannot be both too small (due to the Neyman—Pearson
lemma). Relaxing the tension between them creates more room for minimizing
the objective.

—n. 4/]



Generic Problem Definition (Cont’d)

More formally, find:

minimize " f(y)

ye

subjectto > g(y) <G
ye

> hly) <H

yese

where the minimization is over all subsets {2} and where G and H are
prescribed numbers.
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A Simple Extension of the Neyman—Pearson Lemma

Let f, g and h be any three functions from X to IR and let

Qe ={y: fly)+a-g(y) <b-h(y)},

where a > 0 and b > 0 are fixed numbers. Let Q2 be any other subset of X. If

gy < D gy

yef ye,
and
> h(y) < D> hly)
yee yee
then

D) <> F).

ye, yed

In other words, no competing partition 2 dominates Q* in all three criteria.
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Comments

Qe ={y: fly)+a-g(y) <b-h(y)}

®  and b — two “Lagrange multipliers” for controlling the two constraints.
® Classic N-P Lemma: special case of a = 0 (drops the g—constraint).

® Letting a,b — oo with fixed a/b:
# Full tension between the constraints.
# Only one 2 satisfies both constraints.
# No room for optimization.

#® Separate detection and second—phase task.
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Application No. 1 — “Codeword or Noise?”

Weinberger & Merhav (2014).
Y = (Y1,...,Yn) Is the output of a channel W (y|x) fed by x = (z1,...,zn).

Ho: Y ~ W(yl0™) no transmission; Y is pure noise.

1 : : :
Hi: Yo~ — Y W(ylz) Y isanoisy version of a message.
TeC

Joint detection and decoding:

Pc

N\
r N\

_ 1
maximize — max W (y|x)
xrel
Yyeq

subjectto ) W(y|0") < epp
YyeQ

> S Wle) < avp

yeQe = xeC
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“Codeword or Noise” (Cont’d)

Here we can apply the extended N-P lemma with the following assignments:

1

fly) = —M°r£ggW(y|w)

gly) = W(yl|0")

hy) = 12> Wyle)
xreC

The resulting detector—decoder:

e = {y ca- )y Wylz) +max W(ylz) < b~W(yO")} -
xec

For y € Q., apply ordinary ML decoding.

® Forq and b to affect error exponents, a = ¢"* and b = ¢™P.

® Application no. 2 — channel det.—dec.: W (y[0") — 17 > pcc V(y|z).
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Application No. 3 — Lossless Compression

A seemingly natural goal would be to solve the problem:

minimize E{{L(Y)|Y € Q}
subjectto FPp(2) < ega
P(2°) < emp

However, in this case, it makes sense to impose exponentially decaying MD
and FA probabilities:

emb = exp{—nEyp}
eFA =  expi—nEpa}

In which case, P1(2) = 1, and so, E1{L(Y)|Y € Q} = E;{L(Y)}, and the
problem actually decouples into separate detection and compression.
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Lossless Compression — Exponential Moments

Consider now

minimize E;{exp{0L(Y)}]Y € Q} 6>0
subjectto Py(Q2) < epa
P1(Q°) < emp

For a given 2,

[Py (y))"/(+0)

L (y) = —log Zy/EQ[Pl(y/)]l/(l—i—Q)

], y € ()

1+6
E1{exp[dL*(Y)]|Y € Q} ~ ( S )Y <1+9>> ,

yeyn

thus, we choose

f) = [PV g(y) = Po(w), h(y) = Pi(y).
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Lossless Compression — Exponential Moments (Cont'd

The resulting detector, for a = ™, b = ™7

Q= {y: [P )] 4 " Py(y) < PPy (y)),

or, equivalently,

— P (y) _ __—np —0/(1+0) > n(a—p0)
B=1y: pos (- IPw) )z
N—— ~
\ ordinary LR correction factor )

® Unlike classic LRT, here the test statistics doesn’t depend only on the LR.
® Correction factor: reject y’s with small P; (y) — cost of coding is high.

® Error exponents can easily be analyzed using the method of types.
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Another Variant of the Problem

Consider now the problem:

minimize E;{exp{0L(Y)}|Y € Q}
subjectto Eg{exp{0L(Y)}|Y € Q} - Py(Q) < epp
P1(92°) < emp

Here, we would like to use

0
9(y) = Po(y) exp{0L* (y)} = Po(y)[Pr(y)] "/ ( S [Py <1+9>> .

Y'eQ

Difficulty: The extended N-P lemma cannot be applied since ¢ depends on (.
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A Possible Remedy

Consider the length function of a universal code L(y) ~ nH (y), which is
asymptotically optimal for every memoryless P and for every 6. Now, consider

9(y) = Po(y) - exp{nfH (y)}.

Detection rule:
0, = {y . Py (y) exp{n@H (y)} + "> Py (y) exp{n8H (y)} < "’ Py (y)} .

With this approach in mind, one can also address directly large deviations
constraints:

9(y) = Po(y) - T{y : H(y) > R}
and
fly) = Pi(y) - T{y : H(y) > R}.
® Universal detection rules can also be devised (see paper).

® For wider classes of sources, replace empirical entropy by LZ complexity.
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Summary and Conclusion

® A framework for joint detection and other info processing tasks.
® In general, the main issue is to identify the functions f, g and h.

® Performance analysis — extendable beyond DMS's.
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