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The Threshold Effect

Consider the model

r(t) = sm(t) + n(t), − T/2 ≤ t < T/2,

where:

sm(t) = a waveform parameterized by m;

n(t) = AWGN with spectral density N0/2.

Conveying information via a parameter m by modulating it in sm(t):

Shannon–Kotel’nikov mappings (Floor ‘08, Floor & Ramstad ‘09, Hekland ‘07,

Ramstad ‘02 + references).

Nonlinear modulation =⇒ threshold effet:

Below some critical SNR, anomalous errors dominate the MSE.
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The Threshold Effect (Cont’d)

Not an artifact of a particular modulation/estimation scheme:

it cannot be avoided.

In the wideband regime, the threshold effect becomes abrupt:

Pr{anomaly} jumps from ∼ 0 to ∼ 1.

In this talk, we relate the abrupt threshold effect to phase transitions in

statistical physics.

Motivation: the physical perspective gains our insight on the problem.
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Some Background (W & J, ‘65)

In the simple case of a linear model

r(t) = m · s(t) + n(t), − T/2 ≤ t < T/2

the ML estimator always achieves

MSE = CRLB =
N0

2E
,

where E is the energy of {s(t)}: ⇔ No threshold effect.

The only way to improve: non–linear modulation of sm(t).
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Background (Cont’d) – Nonlinear Modulation

Now MSE depends not only on E: Let

sm(t) ≈ sm0
(t) + (m−m0) · ṡm0

(t).

like the linear case with ṡm0
(t) in the role of s(t). Thus, at high SNR,

MSE ≈ CRLB ≈ N0

2Ė
,

where Ė = energy of ṡm0
(t), which depends on more details.

For example, if sm(t) = s(t−m), Ė = W 2E, where

W =

s

1

E

Z ∞

−∞

df · (2πf)2S(f) Gabor bandwidth

Why not increase W without a limit?
– p. 5/19



Background (Cont’d) – Geometry of Anomalous Errors

Let s̄(m) = (s1(m), . . . , sK(m)) = representation of sm(t) by K orthonormal

basis functions and consider the locus of {s̄(m), −M ≤ m ≤M} in IRK .

Assuming that E is independent of m, the locus lies on the hypersurface of the

K–dimensional sphere of radius
√
E.

The length of the curve

L =

Z M

−M
dm

s

X

i

ṡ2i (m) = 2M
p

Ė.

High–SNR MSE ↓ with Ė, we want Ė ↑, thus L ↑.
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m = −M

m = M
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m = −M

m = M
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m = −M

m = M
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Anomalous Errors (Cont’d)

L – limited by the need of safe distances between folds – hot dog packing.
Maximum achieable L ∼ eCT , C = P/N0 (PPM).
For PPM, K ∼ 2WT ,

MSE ≈ N0

2W 2E
| {z }

small error

+4M2 · 2WT · e−E/(2N0)
| {z }

anomalous error

For fixed W , anomalous error term ↑ gracefully as E/N0 ↓.
For a better balance between terms – let W ∼ eRT .

MSE ≈ N0

2E
e−2RT + 4M2 · e−TE(R) R < C

where E(R) = reliability function of AWGN channel.
For W ∼ eRT , anomalous error ↑ abruptly as E/N0 ↓, like a phase transition.

Purpose of this work: study the abrupt threshold effect from the viewpoint of
the physics of phase transitions.
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A Physical Perspective on the Threshold Effect

Consider the PPM model

r(t) = s(t−mT ) + n(t), |t| ≤ T/2, |m| ≤M, M <
1

2
.

Imagine that m ∼ U [−M/2,+M/2], then

P (m|R) =
P (m)P (R|m)

R

dm′P (m′)P (R|m′)

=
exp

n

2
N0

R T/2
−T/2

r(t)s(t−mT )dt
o

R M
−M dm′ exp

n

2
N0

R T/2
−T/2

r(t)s(t−m′T )dt
o

where R = {r(t), |t| ≤ T/2}. This can be viewed as the Boltzmann distribution
with inverse temperature β = 2/N0 and Hamiltonian (energy function)

E(m) = −
Z T/2

−T/2
r(t)s(t−mT )dt.
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A Physical Perspective ... (Cont’d)

Borrowing from the concept of finite–temperatue decoding [Ruján ‘93], define

Pβ(m|R) =
exp

n

β
R T/2
−T/2

r(t)s(t−mT )dt
o

R M
−M dm′ exp

n

β
R T/2
−T/2

r(t)s(t−m′T )dt
o .

Motivation: a degree of freedom in case of uncertainty; simulated annealing,
analysis of ML estimation.

Meaningful choices of β:
β = 0 – prior; β = 2/N0 – natural; β → ∞ – ML estimator dominates.

Define a partition function:

ζ(β) =

Z M

−M
dm exp

(

β

Z T/2

−T/2
r(t)s(t−mT )dt

)

.
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A Physical Perspective ... (Cont’d)

Assume s(t−mT ) has duration ∆ and divide [−M,M ] to K = 2MT/∆

subintervals Mi.

ML estimation: find ǫi = maxm∈Mi

R T/2
−T/2

r(t)s(t−mT )dt, then maxi ǫi.

Define another paritition function

Z(β) =
X

i

eβǫi .

The RV’s {ǫi} are alternately independent, with a density known for some
waveforms, e.g., rectangular pulses (Slepian ‘62, Shepp ‘66, Zakai & Ziv ‘69).

For T large, the tail is ≈ Gaussian.

The contribution eβǫ0 of the subinterval that includes the signal should be
handled separately.

– p. 13/19



The Random Energy Model (REM)

The analysis of Z(β) – very similar to that of the random energy model (REM)
in statistical physics (Derrida ‘80,‘81):

Z(β) =

Z

dǫ ·N(ǫ) · eβǫ,

where typically

N(ǫ)dǫ ∼
(

0 f(ǫ)dǫ≪ 1/K

K · f(ǫ)dǫ elsewhere

For W ∼ eRT , we select ∆ ∼ e−RT =⇒ K ∼ eRT .

Accordingly, from now on, we denote the partition function by Z(β,R) and
define

ψ(β,R) = lim
T→∞

lnZ(β,R)

T
.
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R

β

R = P (β − β2N0/4)

C = P/N0

ψ(β,R) = β
√

N0PR

R = C

glassy

ψ(β,R) = R+ β2N0P

4

paramagnetic

ψ
(β
,R

)
=
β
P

2
N0

or
de

re
d

ph
as

e β = βc(R) = 2
N0

q

R
C
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Some Extensions

Mismatched estimation: suppose that r(t) is correlated with s̃(t−mT )

instead of s(t−mT ): Same phase diagram, except that that C is
degraded by a factor of ρ2 and β by a factor of ρ, where ρ is the
correlation between s(·) and s̃(·).
Other pulse shapes: essentially the same results.
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Joint ML Estimation of Amplitude and Delay

Consider now the model

r(t) = α · s(t−mT ) + n(t),

where now both m and α have to be estimated. It is assumed that
α ∈ [αmin, αmax].

The parameter α alone does not contribute any phase transitions.

The parameter m alone generates three phases.

Q: How many phases would there be in the joint estimation of m and α?
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√

N0PR− α2
maxP/2)

β

R

R = α2
maxC
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βα2

min
P

4
(βN0 − 2)

R = C

β = 2
N0

ψ(β,R) = βP

2

R = P
2

[β(1 + α2
min) − β2N0α2

min/2]

β =
βc(R)
αmax
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βα2
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P
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(βN0 − 2)

ψ
(β
,R
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=

β
N

0
R

2
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Discussion and Conclusion

The behavior is much more complicated than when only m should be

estimated.

One ordered phase (non–anomalous errors) and four anomalous phases.

Although α alone does not generate phase transitions, its interaction with

m generates more phases than those of m alone.

Anomalies in α have a different behavior.

The physical point of view helps to gain insight on the behavior.
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