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Jensen’s Inequality

Extremely useful fundamental and important in many scientific fields,
including IT.

Includes as special cases many famous inequalities in general:

the Shwartz-Cauchy inequality, which in turn supports uncertainty relations,
including the CRB)
the Lyapunov inequality
the Hölder inequality
the harmonic-geometric-arithmetic means inequalities.

In information theory, it is stands at the basis of:

The information inequality, D(P‖Q) ≥ 0
The data processing inequality and Fano’s inequality
Conditioning reduces entropy
Derivation of single-letter expressions
Maximum entropy under moment constraints
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Refinemens, Improvements, Variations and Extensions

Refinements: Xiao & Lu (2020); Deng et al. (2021); Wu et al. (2022);
Sayyari et al. (2023).

Improvements: Seuret et al. (2012); Walker (2014); Liao & Berg (2019).

Variations: Jaafari et al. (2020); Matković et al. (2007); Bakula et al.
(2008).

Extensions: Simić (2021).

There have also been research efforts to derive “reversed” Jensen inequalities:

Mixtures of exponential families: Jebara & Pentland (2000).

Global bounds: Budimir et al. (2001); Simić (2009); Dragomir (2013).

Functions of self-adjoint operators: Dragomir (2010).

Bounds via Green functions: Khan et al. (2020).

Bounds via Chebychev and Chernoff bounds: Wunder et al. (2021); Merhav
(2022).

Other: Ali et al. (2022); Budak & Ali (2020).
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Our Approach to Jensen-Type Inequalities

In the proof of Jensen’s inequality,

E{f(X)} ≥ sup
a

E{f(a) + f ′(a)(X − a)} = f(E{X}) attained by a∗ = E{X}

But what if f is just part of a more complicated expression, e.g., E{f(X)g(X)},
E{g[f(X)]}, E{h[f(X)] · g(X)}, etc.?

The optimal value of a is generally different.
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Just A Few Examples of Jensen-Like Inequalities

E{−X lnX} ≥ −E{X} · ln(E{X})−E{X} · ln
(
1 +

Var{X}
E2{X}

)

E{Xs} ≥ Es{X} ·
(
1 +

Var{X}
E2{X}

)s−1
s /∈ (1, 2)

E{ln2(1 +X)} ≤ ln(1 +E{X}) · ln
(
1 +

E{X} ln(1 +E{X2}/E{X})
ln(1 +E{X})

)
.

Bounds in terms of: (i) first two moments, and (ii) MGF and its derivative.

In many cases, easy to optimize in closed-form.

Reverse Jensen inequalities.

Bounds for functions that are neither convex nor concave.

Extend easily to multivariate convex functions.

Applicable to many information-theoretic analyses.
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Bounds on E{convex function · non-negative function}

Let f be convex and g be non-negative:

E{f(X)g(Y )} ≥ E{[f(a) + f ′(a)(X − a)]g(Y )}
= [f(a)− af ′(a)]E{g(Y )}+ f ′(a)E{Xg(Y )}.

The tightest (maximum) bound is obtained for

a = a∗
4
=

E{Xg(Y )}
E{g(Y )}

,

which yields

E{f(X)g(Y )} ≥ f
(
E{Xg(Y )}
E{g(Y )}

)
·E{g(Y )}.
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E{convex function · non-negative function} (Cont’d)

Example 1 Let f(x) = − lnx and g(x) = x, x > 0:

E{−X lnX} ≥ −E{X} · ln E{X2}
E{X}

= −E{X} · ln(E{X})−E{X} · ln
(
1 +

Var{X}
[E{X}]2

)
.

Applicable to E{empirical entropy} of a sequence drawn by a memoryless source:
Let X = N(u)/N , with N(u) =number of occurrences of a letter u in a randomly
drawn N -tuple from a DMS P .
N(u) = binomial RV with N trials and probability of success, P (u):

E{X} = P (u); Var{X} = P (u)[1− P (u)]
N

.

H ≥ E{Ĥ} ≥ H − |U| − 1

N
.
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E{convex function · non-negative function} (Cont’d)

Example 2 Let s, t ∈ IR with s− t either negative or larger than unity. Let
g(x) = xt, and f(x) = xs−t. Then,

E{Xs} = E{XtXs−t}

≥
(
E{Xt+1}
E{Xt}

)s−t
·E{Xt}

=
(E{Xt+1})s−t

(E{Xt})s−t−1
.

In particular, for t = 1 and s /∈ (1, 2), this becomes

E{Xs} ≥ (E{X2})s−1

(E{X})s−2
= [E{X}]s ·

(
1 +

Var{X}
[E{X}]2

)s−1
.

For s ∈ (0, 1), xs is concave, and so, this is a reversed version of Jensen inequality.
For s ≤ 0 and s ≥ 2, xs is convex, so this is an improved Jensen inequality:
While [E{X}]s corresponds to the ordinary Jensen inequality, the second factor
expresses the improvement, which depends on Var{X}/[E{X}]2.
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E{convex function ·monotone[convex function]}

E{h[f(X)]g(X)} ≥ sup
a,b

E{h[f(a) + f ′(a)(X − a)] · [g(b) + g′(b)(X − b)]},

where f and g are convex; h is monotonically non-decreasing and non-negative.
For h(x) = ex, we get a bound that depends on the CGF of X and its derivative:

E{ef(X)g(X)} ≥ E
{
ef(a)+f

′(a)(X−a)[g(b) + g′(b)(X − b)]
}

= ef(a)−af
′(a)E

{
eXf

′(a)[g(b)− bg′(b) + g′(b)X]
}

= exp{f(a)− af ′(a) + ψ[f ′(a)]}{g(b) + g′(b)(ψ′[f ′(a)]− b)}.

with ψ(s) = lnE{esX}.
Maximizing w.r.t. b for a given a gives:

E{ef(X)g(X)} ≥ sup
a

exp{f(a)− af ′(a) + ψ[f ′(a)]} · g(ψ′[f ′(a)]).
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E{convex function ·monotone[convex function]} (Cont’d)

Example 3 For f(x) = − lnx and g(x) = x lnx, we obtain a reversed Jensen-like
inequality:

E{lnX} = E
{
e− lnX ·X lnX

}
≥ sup

a≥0
exp{− ln a+ 1 + ψ(−1/a)} · ψ′(−1/a) lnψ′(−1/a)

= sup
α≥0

exp{lnα+ 1 + ψ(−α)}ψ′(−α) lnψ′(−α)

= e · sup
α≥0

αeψ(−α)ψ′(−α) lnψ′(−α)

= e · sup
α≥0

αE{Xe−αX} ln E{Xe−αX}
E{e−αX}

.

Defining φ(s) = E{esX} = eψ(s), we have:

E{lnX} ≥ e · sup
α≥0

αφ′(−α) lnψ′(−α)

= e · sup
α≥0

αφ′(−α) ln φ
′(−α)
φ(−α)

.
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E{convex function ·monotone convex function} (Cont’d)

Particularizing further, let X = 1 +
∑k
i=1 Y

2
i , with Yi ∼ N(0, σ2), i = 1, . . . , k,

being independent RVs, with application to bounding the ergodic capacity of the
SIMO channel. Here,

E

{
ln

(
1 +

k∑
i=1

Y 2
i

)}

≥ e · sup
α≥0

{
αe−α

(1 + 2ασ2)k/2

(
1 +

kσ2

1 + 2ασ2

)
ln

(
1 +

kσ2

1 + 2ασ2

)}
.
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Figure: Bounds on E
{
ln
(
1 +

∑k
i=1 Y

2
i

)}
, where Yi ∼ N(0, 1) and k = 1, 2, . . . , 100.

Red curve = upper bound, ln(1 + kσ2) - the ordinary Jensen inequality. Blue curve =
lower bound. 12 / 17
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Figure: Upper and lower bounds on E {ln(1 + gZ)}, where Z ∼ θe−θzu(z) and g = 5.
Upper bound = ln(1 + 5/θ) (ordinary Jensen), lower bound = reverse Jensen-like
inequality, lower bound = reverse Jensen inequality (Merhav 2022). 13 / 17
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Figure: Upper and lower bounds on E{
√∑n

i=1 Yi}, where Yi ∼ Bernoulli(0.2). Upper

bound =
√
0.2n (ordinary Jensen), lower bound = reverse Jensen-like inequality.
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E{Product of Two Non-negative Convex Functions}

E{f(X)g(X)} ≥ E{[f(a) + f ′(a)(X − a)] · g(X)}
= [f(a)− af ′(a)]E{g(X)}+ f ′(a)E{Xg(X))}
≥ [f(a)− af ′(a)]E{[g(b) + g′(b)(X − b)]}+

f ′(a)E{X[g(c) + g′(c)(X − c)]} f(a) ≥ af ′(a) ≥ 0

= [f(a)− af ′(a)] · [g(b)− bg′(b) + g′(b)E{X}] +
f ′(a)[(g(c)− cg′(c))E{X}+ g′(c)E{X2}}].

After optimizing a, b and c, we get:

E{f(X)g(X)} ≥ f
(
E{X} · g(E{X2}/E{X})

g(E{X})

)
· g(E{X}).

More generally,

E{f(X)g(Y )} ≥ f
(
E{X} · g(E{XY }/E{X})

g(E{Y })

)
· g(E{Y }).

15 / 17



Example 4. The capacity of the AWGN with a random SNR, c(Z) = ln(1 + gZ).
We wish to bound Var{c(Z)}.

Var{c(Z)} = E{c2(Z)} − [E{c(Z)}]2 = E{ln2(1 + gZ)} − [E{ln(1 + gZ)}]2.

To upper bound Var{c(Z)}, we may derive an upper bound to E{ln2(1 + gZ)}
and a lower bound to E{ln(1 + gZ)}.
For the latter we can use earlier results.
For the former, let f(z) = g(z) = ln(1 + gz).

E{ln2(1 + gZ)} ≤ ln(1 + gE{Z}) · ln
(
1 +

gE{Z} ln(1 + gE{Z2}/E{Z})
ln(1 + gE{Z})

)
.

The function ln2(1 + gx) is neither convex nor concave, yet our approach offers
an upper bound, which is fairly easy to calculate provided that one can compute
the first two moments of Z.
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Summary and Conclusion

Often, the optimal value of the parameter(s) can be found in closed form.

Two types of bounds: (i) bounds that depend on the first two moments, and
(ii) bounds that depend on CGF and its derivative.

Most of our derivations extend to multivariate functions.

Allowing flexibility to obtain bounds on functions that are not necessarily
convex and reverse Jensen inequalities.

We demonstrate the utility in examples of information-theoretic relevance.

The bounds become tighter as X becomes concentrated around its mean.
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