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A Very Quick Overview

Universal lossless coding:

o Davisson ('73): maximin+minimax universality; mixtures.

o Rissanen ('84): a converse for ‘most’ parameter values.

o Weinberger, Merhav & Feder ('94): ‘semi-deterministic’ analogue.
o Merhav & Feder ('95): parametric class — general class.

e Many: extensions, improvements, relations to prediction, etc.
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A Very Quick Overview (Cont'd)

Universal lossy d-semifaithful coding:

logn .

e Zhang, Yang & Wei ('97): non-universal redundancy > =&%;

achievable < 1"%; universality - larger constant.
o Yu & Speed ('93): weak universality.
o Ornstein & Shields ('90): stat. erg. sources, Hamming distortion.

o Kontoyiannis ('00): a.s. results — CLT, LIL, no-cost universality.
o Kontoyiannis & Zhang ('02): — log Pr{D-ball}.
o Mahmood & Wagner ('22): minimax distortion-universality.
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In This Work ...

We adopt the semi-deterministic paradigm of Weinberger, Merhav & Feder ('94)
for lossy compression:

Redundancy rates relative to the ‘memoryless’ empirical RDF
@ Random coding using a mixture (Kontoyiannis & Zhang - '02).
@ Asympt. accurate evaluation of Pr{D-ball}.
@ Universality w.r.t. the distortion measure.
o Converse.
Sequences “with memory”
e Optimal length = —log P { D-ball}
@ The main contribution is in the converse.

@ Discussion
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Notation & Definitions

@ Source sequence: = (x1,...,2,) € X", [X|=J.

e Reproduction sequence: & = (#1,...,&,) € X", |X| = K.

o Distortion measure: d: X x X — RT; d(z, &) = 3, d(zi, &:).

e Encoder: ¢, : X" — G,, C {0,1}*.

@ Decoder: ¢, : G, — C, C X,

e D-semifaithful code: V& € X", d(x, ¥ (¢n(x))) < nD.
@ Code ensemble: independent random selection under

W) = (=11 [ s e,
i=1

@ D-sphere: 8(x, D) ={&: d(z,&) < nD}.
e J,(P) = {all x € X" with empirical distribution P}.
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A Key Lemma - Assessing W[S(x, D)]

Let € 7,,(P) and define

S rom[asn ] o

Then, it is well known that

R4(D, P) = supmin F(s,Q) = minsup F(s, Q).
s>0 @ Q >0

Let (s*,Q*) be the saddle-point that achieves R;(D, P) and define

V(Pad): }‘a .]:V_l
(0,Q*)

det {HessF(s* + jw, Q)
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A Key Lemma - Assessing W [S(x, D)] (Cont'd)

Suppose that {d(j, k), 1 <j <J, 1 <k < K} are commensurable and let A be
their largest common divisor, and define

_ _ . 7rK/Q_l.Aexp{—s*[(nD)modA]}
To(P.d) = (K — 1)!- (2) e

)

If {d(j,k), 1<j<J, 1<k<K} are incommensurable, take A — 0:

(K —1)!- (2m)K/2—1

s*4/V (P, d)

T.(P,d) =

Lemma:

= % -exp{—nRq(D, P)} - [l — epa(n)].

The exact pre-exponent is essential for an exact characterization of the
code-length redundancy in the sequel.

Wis(z, D)]
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Main Analysis Tool - the Saddlepoint Method

Representing the unit step function U(¢) as the inverse Laplace transform of 1/z:

1 ctjoo 2t
Ut) = —/ 6—dz, ¢ >0,
27T.7 c—joo Z

we have:

wi@D) = k-1t Y [ Q@

{&: d(x,L)<nD}

K—-1)! Y U(nD del, Z)/QQ(:E)dQ

Texn

_ 1 c+joo —nF(z Q)
= / / -dQdz,

and we select ¢ = s* to pass thru all saddle-points.
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A Universal Coding Scheme

~

o Generate C,, with A™ independent random codewords (A > K), X; ~ W,
i=1,2,..., A"

@ Reveal the codebook to both parties.

e Given x and d, find I;(x) = min{i : X; € §(x, D)}.

e Encode I(x) using a Shannon code w.r.t. the distribution u[] o< 1/3,
i=1,2,..., A"

@ The decoder decodes I4(x) and outputs the I;(x)-th reproduction vector
from C,,.

Note that the codebook is the same for every (bounded) d —
distortion-universality.
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Coding Theorem

Ve > 0, 3 a sequence of codebooks, {C,,},>1, and {¥,}, such that
Vd € Up>1{0, dmax/k, - - s dimax} ™, 3 {0}, such that VP € U, P,

neNZ2i: de Dy, PePy)and x e Tp(P):
(a)

K
Lg(z) < an(D,P)+<2+2+e>~lnn+

Bpa(n) +log(log A+ 1)+ O(J"e_"pre)'

(b) The code is d-semifaithful: d(x, ¥, (dn(x))) < nD.

Mahmood & Wagner ('22): 3 schemes with log n-coefficients: 2JK + J + 3,
J(K +1)and J2K? +J —2.



Converse Theorem

Let P and d be given. Ve > 0 and sufficiently large n, V codebook that covers
T,.(P) and every one-to-one variable-length code applied to that codebook, the
following lower bound applies to a fraction of at least (1 — 2n~¢) of the codewords
that cover T, (P):

1
Lq4(&) > nRy(D, P) + <2 - e> logn + ¢ — ¢’ log(logn),

where ¢ and ¢’ are constants that depend on P.
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Converse Theorem (Cont'd)

The proof is based on a sphere-covering argument:

-1
log |T,(P)| 2 nH(P) — J logn + ¢(P)

and

In |T,(P)({z : d(=,2) < nD}‘

N J ,
< max H(X|X)— —logn+c'log(logn), Px =P

{Pg x: E{d(X,X)}<D} 2

and so,

I
€| > expy {an(D,P) + Ogn + } .

Most codewords cannot have code-length much less than log |C,,|.



Beyond the Memoryless Structure

Consider the universal distribution
9—LZ(E)
U(#) = ———~
Z:i:’ 9-LZ(I')

and let
UlS(x,D)]= > U®).

Zes(x,D)

Converse theorem: Let / divide n and let ‘.Tn(ﬁe) be any /-th order type of
source sequences. Let d be a distortion function that depends on (z, ) only via
Palgj. Then, V d-semifaithful variable-length block code, and Ve > 0, the following

lower bound applies to a fraction of at least (1 — 2n~¢) of the codewords,
{¢n(@), © € Tu(P)):

L(¢n(w)) > 710g(U[8(wD)]) - nAn(g) - elogn,

where lim,, ., A, (¢) = 1/¢.
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Main ldeas of the Proof

Relating sphere-covering and U[8(x, D)] in a few steps.
First, observe that

ND) £ Y HeeT. (P, 2€T.(Q"), dlz &) <nD)}
.
—T.(PY)- Tn@‘)ﬂsw,m\
— 700 |Tn<P5>ﬂS<5s,D> . §&.D)2 {x: d.2)<nD)
and so,

TP (@)
Tn<Pf>mS<5c,D>\ T,(Q%) NS(x. D)

LHS = sphere-covering ratio;
RHS = 1/Uq[8(x, D)] > 1/U[8(x, D)] — use U for random coding!
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Direct Theorem

Let d: X" x X" — IR* be an arbitrary distortion function. Then, Ve > 0, 3
sequence of d-semifaithful, variable-length block codes of block length n, such
that V& € X, the code length for x is upper bounded by

L(x) < —log(U[S(x, D)]) + (2 +€)logn + ¢ + 0,

where ¢ > 0 is a constant and 4,, = O(nJ”e*”HE).

The proof is very similar to that of the previous direct theorem.

15/16



Discussion

® Related to the Kontoyiannis-Zhang converse:
Va,C,3Q : L(x) > —log Q[S(x, D)].

& —log(U[8(z, D)]) ~ miny {L —log[{& : LZ(%) = L} N8(x,D)|}, analogous
to minp[H(X) — max{H (X|X): Ed(X,X) < D}].

& Easy to see that the proposed scheme is better than min
Complexity of both schemes depend on D.

Zes(x,D) LZ(&).

& Universality w.r.t. a wide (continuous, parametric) class of distortion measures
can also be proved. Here, the class distortion measures is quite arbitrary.
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