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A Very Quick Overview

Universal lossless coding:

Davisson (’73): maximin+minimax universality; mixtures.

Rissanen (’84): a converse for ‘most’ parameter values.

Weinberger, Merhav & Feder (’94): ‘semi-deterministic’ analogue.

Merhav & Feder (’95): parametric class → general class.

Many: extensions, improvements, relations to prediction, etc.
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A Very Quick Overview (Cont’d)

Universal lossy d-semifaithful coding:

Zhang, Yang & Wei (’97): non-universal redundancy ≥ logn
2n

;

achievable ≤ logn
n

; universality - larger constant.

Yu & Speed (’93): weak universality.

Ornstein & Shields (’90): stat. erg. sources, Hamming distortion.

Kontoyiannis (’00): a.s. results – CLT, LIL, no-cost universality.

Kontoyiannis & Zhang (’02): − logPr{D-ball}.
Mahmood & Wagner (’22): minimax distortion-universality.
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In This Work ...

We adopt the semi-deterministic paradigm of Weinberger, Merhav & Feder (’94)
for lossy compression:

Redundancy rates relative to the ‘memoryless’ empirical RDF

Random coding using a mixture (Kontoyiannis & Zhang - ’02).

Asympt. accurate evaluation of Pr{D-ball}.
Universality w.r.t. the distortion measure.

Converse.

Sequences “with memory”

Optimal length = − logPLZ{D-ball}
The main contribution is in the converse.

Discussion
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Notation & Definitions

Source sequence: x = (x1, . . . , xn) ∈ Xn, |X| = J .

Reproduction sequence: x̂ = (x̂1, . . . , x̂n) ∈ X̂n, |X̂| = K.

Distortion measure: d : X× X̂→ IR+; d(x, x̂) =
∑
i d(xi, x̂i).

Encoder: φn : Xn → Gn ⊂ {0, 1}∗.
Decoder: ψn : Gn → Cn ⊆ X̂n.

D-semifaithful code: ∀x ∈ Xn, d(x, ψn(φn(x))) ≤ nD.

Code ensemble: independent random selection under

W (x̂) = (K − 1)! ·
∫
Q

dQ
n∏
i=1

Q(x̂i).

D-sphere: S(x, D) = {x̂ : d(x, x̂) ≤ nD}.
Tn(P ) = {all x ∈ Xn with empirical distribution P}.
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A Key Lemma - Assessing W [S(x, D)]

Let x ∈ Tn(P ) and define

F (s,Q)
4
= −

∑
x

P (x) ln

[∑
x̂

Q(x̂)e−sd(x,x̂)

]
− sD.

Then, it is well known that

Rd(D,P ) = sup
s≥0

min
Q

F (s,Q) = min
Q

sup
s≥0

F (s,Q).

Let (s∗, Q∗) be the saddle-point that achieves Rd(D,P ) and define

V (P, d) =

∣∣∣∣det

{
HessF (s∗ + jω,Q)

∣∣∣∣
(0,Q∗)

}∣∣∣∣, j =
√
−1.
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A Key Lemma - Assessing W [S(x, D)] (Cont’d)

Suppose that {d(j, k), 1 ≤ j ≤ J, 1 ≤ k ≤ K} are commensurable and let ∆ be
their largest common divisor, and define

Tn(P, d) = (K − 1)! · (2π)K/2−1 · ∆ exp{−s∗[(nD)mod∆]}
(1− e−s∗∆)

√
V (P, d)

,

If {d(j, k), 1 ≤ j ≤ J, 1 ≤ k ≤ K} are incommensurable, take ∆→ 0:

Tn(P, d) =
(K − 1)! · (2π)K/2−1

s∗
√
V (P, d)

.

Lemma:

W [S(x, D)] =
Tn(P, d)

nK/2
· exp{−nRd(D,P )} · [1− εP,d(n)].

The exact pre-exponent is essential for an exact characterization of the
code-length redundancy in the sequel.
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Main Analysis Tool - the Saddlepoint Method

Representing the unit step function U(t) as the inverse Laplace transform of 1/z:

U(t) =
1

2πj

∫ c+j∞

c−j∞

ezt

z
dz, c > 0,

we have:

W [S(x, D)] = (K − 1)!
∑

{x̂: d(x,x̂)≤nD}

∫
Q

Q(x̂)dQ

= (K − 1)!
∑
x̂∈X̂n

U

(
nD −

n∑
i=1

d(xi, x̂i)

)∫
Q

Q(x̂)dQ

=
(K − 1)!

2πj

∫ c+j∞

c−j∞

∫
Q

e−nF (z,Q)

z
· dQdz,

and we select c = s∗ to pass thru all saddle-points.
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A Universal Coding Scheme

Generate Cn with An independent random codewords (A > K), X̂i ∼W ,
i = 1, 2, . . . , An.

Reveal the codebook to both parties.

Given x and d, find Id(x) = min{i : X̂i ∈ S(x, D)}.
Encode Id(x) using a Shannon code w.r.t. the distribution u[i] ∝ 1/i,
i = 1, 2, . . . , An.

The decoder decodes Id(x) and outputs the Id(x)-th reproduction vector
from Cn.

Note that the codebook is the same for every (bounded) d –
distortion-universality.
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Coding Theorem

∀ε > 0, ∃ a sequence of codebooks, {Cn}n≥1, and {ψn}, such that
∀d ∈

⋃
k≥1{0, dmax/k, . . . , dmax}JK , ∃ {φn}, such that ∀P ∈

⋃
k≥1 Pk,

n ∈ N
4
= {n̂ : d ∈ Dn̂, P ∈ Pn̂} and x ∈ Tn(P ):

(a)

Ld(x) ≤ nRd(D,P ) +

(
K

2
+ 2 + ε

)
· lnn+

βP,d(n) + log(logA+ 1) +O(Jne−n
1+ε

).

(b) The code is d-semifaithful: d(x, ψn(φn(x))) ≤ nD.

Cn and ψn do not depend on P and d, but φn does.

Mahmood & Wagner (’22): 3 schemes with log n-coefficients: 2JK + J + 3,
J(K + 1) and J2K2 + J − 2.
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Converse Theorem

Let P and d be given. ∀ε > 0 and sufficiently large n, ∀ codebook that covers
Tn(P ) and every one-to-one variable-length code applied to that codebook, the
following lower bound applies to a fraction of at least (1− 2n−ε) of the codewords
that cover Tn(P ):

Ld(x̂) ≥ nRd(D,P ) +

(
1

2
− ε
)

log n+ c− c′ log(log n),

where c and c′ are constants that depend on P .
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Converse Theorem (Cont’d)

The proof is based on a sphere-covering argument:

log |Tn(P )| ≥ nH(P )− J − 1

2
log n+ c(P )

and

ln

∣∣∣∣Tn(P )
⋂
{x : d(x, x̂) ≤ nD}

∣∣∣∣
≤ max

{PX̂|X : E{d(X,X̂)}≤D}
H(X|X̂)− J

2
log n+ c′ log(log n), PX = P

and so,

|Cn| ≥ exp2

{
nRd(D,P ) +

log n

2
+ ...

}
.

Most codewords cannot have code-length much less than log |Cn|.
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Beyond the Memoryless Structure

Consider the universal distribution

U(x̂) =
2−LZ(x̂)∑
x̂′ 2

−LZ(x̂′)

and let
U [S(x, D)] =

∑
x̂∈S(x,D)

U(x̂).

Converse theorem: Let ` divide n and let Tn(P̂ `) be any `-th order type of
source sequences. Let d be a distortion function that depends on (x, x̂) only via
P̂ 1
xx̂. Then, ∀ d-semifaithful variable-length block code, and ∀ε > 0, the following

lower bound applies to a fraction of at least (1− 2n−ε) of the codewords,
{φn(x), x ∈ Tn(P̂ `)}:

L(φn(x)) ≥ − log(U [S(x, D)])− n∆n(`)− ε log n,

where limn→∞∆n(`) = 1/`.
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Main Ideas of the Proof

Relating sphere-covering and U [S(x, D)] in a few steps.
First, observe that

N(D)
4
=

∑
x,x̂

I{x ∈ Tn(P `), x̂ ∈ Tn(Q`), d(x, x̂) ≤ nD}

= |Tn(P `)| ·
∣∣∣∣Tn(Q`)

⋂
S(x, D)

∣∣∣∣
= |Tn(Q`)| ·

∣∣∣∣Tn(P `)
⋂

Ŝ(x̂, D)

∣∣∣∣, Ŝ(x̂, D)
4
= {x : d(x, x̂) ≤ nD}

and so,
|Tn(P `)|∣∣∣∣Tn(P `)
⋂
Ŝ(x̂, D)

∣∣∣∣ =
|Tn(Q`)|∣∣∣∣Tn(Q`)
⋂
S(x, D)

∣∣∣∣
LHS = sphere-covering ratio;

RHS = 1/UQ[S(x, D)]
·
≥ 1/U [S(x, D)] → use U for random coding!
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Direct Theorem

Let d : Xn × X̂n → IR+ be an arbitrary distortion function. Then, ∀ε > 0, ∃
sequence of d-semifaithful, variable-length block codes of block length n, such
that ∀x ∈ Xn, the code length for x is upper bounded by

L(x) ≤ − log(U [S(x, D)]) + (2 + ε) log n+ c+ δn,

where c > 0 is a constant and δn = O(nJne−n
1+ε

).

The proof is very similar to that of the previous direct theorem.
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Discussion

♠ Related to the Kontoyiannis-Zhang converse:
∀x,Cn∃Q : L(x) ≥ − logQ[S(x, D)].

♠ − log(U [S(x, D)]) ∼ minL{L− log |{x̂ : LZ(x̂) = L} ∩ S(x, D)|}, analogous
to minPX̂ [H(X̂)−max{H(X̂|X) : Ed(X, X̂) ≤ D}].

♠ Easy to see that the proposed scheme is better than minx̂∈S(x,D) LZ(x̂).

Complexity of both schemes depend on D.

♠ Universality w.r.t. a wide (continuous, parametric) class of distortion measures
can also be proved. Here, the class distortion measures is quite arbitrary.

16 / 16


