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Information Thermodynamics — Some Background

Common theme: the presence of information “violates” the second law.
Systems with measurement and feedback control:

Systems controlled by parameters that depend on past (noisy) measurements.

Barato & Seifert (2013, 2014); Deffner (2013); Deffner & Jarzynski (2013);
Hoppenau & Angel (2014); Sagawa & Ueda (2011, 2012, 2013); Parrondo,
Horowitz & Sagawa (2015); ...

Systems with information reservoirs:

Systems that interact with an informational device (memory, digital tape, etc.).

Barato & Seifert (2014); Mandal & Jarzynski (2012, 2014); Boyd, Mandal &
Crutchfield (2015); Mandal, Quan & Jarzynski (2013); Horowitz & Esposito
(2014); ...
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The Maxwell Demon (1867)
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Generalized Szilard Engine (Sagawa & Ueda, 2011)
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Vinkler, Permuter and Merhav (2014): relation to gambling.
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System with Measurement and Feedback Control

Controller <

Sagawa and Ueda (2008-2011) :  Extracted work < —AF+kT -nlI(X;Y)

More generally, nI(X;Y) — I(X™ — Y"™) = capacity of channel w. feedback.
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Physical Systems with an Informational Device:
Mandal & Jarzynski (2012): system converting thermal fluctuations to work
while writing info.

N

ASenv + kT - AH >0

M. (2015):

k ‘ - W < KT - F|[LZ complexity]
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More generally, Deffner and Jarzynski (2013):

® A system (device) + a heat bath (heat reservoir),

® An information reservoir, e.g., a memory device with N bits (2% states).
An extended 2nd law: ASgey + ASheat-res + A Sinfo-res = 0.
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More General System Model
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{xn} — finite-alphabet input process. Each symbol interacts for + seconds.

In the n-th cycle: {(&,0¢), nT <t < (n+ 1)} = Markov jump process.

(fﬂﬂ'a O'nr) — (CUn, Sn); (yn, Sn—i—l) — (£(n+1)7—7 U(n—l—l)7’—)'

Energy E(z,s) = mgAh(z, s); stat. dist. o« e F(@)/FT" (detailed balance).
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Recent Related Work + This Work

$® Boyd, Mandal and Crutchfield (2015, 2016):

lim Wy <kT[H(Y) - H(X)].

N —oo

® Several open issues (if not gaps..) in the proof:
# 2nd law using Shannon entropy (true only under some conditions).
# Confusing Shannon entropy with thermodynamic entropy.
# Assuming independence between different parts of the system.
® In this work:
# Simple (and rigorous) approach; mild asssumptions.
# Exact results for every number of cycles, N.

# Bounds - simple to calculate and potentially tight.

# The state plays a role.
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The Basic Idea

Using the inequality [Cover & Thomas, 2006]:
D(Pr||Peq) < D(Po|| Peq),

with
e—E(w,s)/kT

Peq(z,s) = Z ,

we readily obtain

E{AW,} = E{E(Yn, Snt1) — E(Xn, S)|} < kT[H(Yn, Snt1) — H(Xn, Sn)].
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The Basic Idea (Cont’d)

Therefore,

N
Wy < KkT- Z[H(Ynysn—l—l)_H(X’rL?Sn)]

n=1

N N
= kT - Z[H(Yn‘sn—{—l) — H(Xn|Sn)] + KT - Z[H(Sn—i—l) — H(Sn)]

n=1 n=1

N

n=1

First term = input/output entropy production given the past (via the state);

Second term = entropy production of the state.
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Tightness

If Py is very close to Peq in the sense that

Py(€,0) = Peq(&,0)[1 +€(&,0)], €= max|e(&,0)| < 1

Ne)

and if P; is similarly within 1 + ¢ away from Peq, then the bound is tight in the

sense that

E{AW,}

KT[H(Yn, Snt1) — H(Xn, Sn) 1= 0(e).

If Py and Peq are far apart, one can make many intermediate steps,
Py — P — ... — P, — Peq

In between and still saturate the bound up to a term of O(1/L). This requires a

cascade of L systems.
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Memoryless/Markov Inputs

For a memoryless input, H(X,|Sn) = H(X,), and

Wy & S
A < S UH(Yn) = H(Xn)] + H(Sn11) - 2_: Sn+1; Yn)

n=1

Conclusion: memoryless inputs are best processed by memorlyess machines.

For a Markov input:
® {(Xn,Sn)}I1s Markov as well.

® |[f it has a stationary distribution P (x, s), then
P(z,s,y,8) = Poo(x,s)P(y, s'|z, s)

completely dictates the steady—state work and the entropy production.
® Easier to calculate than kT[H(Y) — H(X)], as {Y,} is an HMM.
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Conditional Entropy Bounds

For a given n, let V,, = f, (X" 1, Y"1 S"), then
N
Wy < kT [H(Yn, Snt1|Va) — H(Xn, Sn|Va)l,
n=1

with the freedom of choosing f,,, but the best choice is V,, = 0......

However, for V —n = (X1, y"~1), we can obtain a lower bound on the
output entropy:

HYN)> H(XN) + % — NIn|S|.
If {X}} is memoryless/Markov, then {Y;,} is an HMM, but the lower bound is

easy to calculate.
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Summary

Simple relations between work and A-entropy (generalized 2nd law).
The bounds are (potentially) tight.

Memory of the past — via the state; a state entropy—production term.
Relatively easy to calculate (examples in the paper).

Lower bound on the entropy of HMM.

Generalization — monotonicity of the f—divergence, D ;(P-||Peq).
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