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Information Thermodynamics — Some Background

Common theme: the presence of information “violates” the second law.
Systems with measurement and feedback control:

Systems controlled by parameters that depend on past (noisy) measurements.

Barato & Seifert (2013, 2014); Deffner (2013); Deffner & Jarzynski (2013);
Hoppenau & Angel (2014); Sagawa & Ueda (2011, 2012, 2013); Parrondo,
Horowitz & Sagawa (2015); ...

Systems with information reservoirs:

Systems that interact with an informational device (memory, digital tape, etc.).

Barato & Seifert (2014); Mandal & Jarzynski (2012, 2014); Boyd, Mandal &
Crutchfield (2015); Mandal, Quan & Jarzynski (2013); Horowitz & Esposito
(2014); ...
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The Maxwell Demon (1867)
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Generalized Szilard Engine (Sagawa & Ueda, 2011)
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Vinkler, Permuter and Merhav (2014): relation to gambling. Y



System with Measurement and Feedback Control

Controller <

Sagawa and Ueda (2008-2011) :  Extracted work < —AF+kT -nlI(X;Y)

More generally, nI(X;Y) — I(X"™ — Y™) = capacity of channel w. feedback. __ .



Physical Systems with an Informational Device:
Mandal & Jarzynski (2012): system converting thermal fluctuations to work
while writing info.
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More generally, Deffner and Jarzynski (2013):

® A system (device) + a heat bath (heat reservoir),

® An information reservoir, e.g., a memory device with N bits (2% states).

An extended 2nd law: ASgey + ASheat-res + A Sinfo-res = 0.
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More Details on the Simplified MJ Model
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{X;} binary, i.i.d. Each bit interacts for  seconds.
state =binary Markov jump process s(it) = X;; s((i + 1)7—) = Y;.
0 —-1<+= CCW,;1—0<+= CW. AW, = mgAh-(Y; — X;).

Main result in M&J (2012): AW, < kT - [H(Y;) — H(X;)].
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This Work is About Several Extensions

Non—binary sequences.
Correlated input bits.
Bounding AW in terms of generalized entropies.

Individual (deterministic) input sequences.
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Non-Binary Seguences

® In each interaction interval 7. Markov jump process with K states.
® Each state s is associated with energy E(s) = mgA(s) relative to some sy.

® Transition s — s': AW = mgA(s’) — mgA(s).

Using the inequality
D(Pr||Peq) < D(Po||Peq),

and

1 mgA(s)
<InZ
Peq (S) Sz kT

log

we readily obtain

(AW;) < kT[H(Y;) — H(X;)].
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Correlated Inputs

Mandal & Jarzynski (2012): In a single cycle
(AW;) < KT - [H(Y;) — H(X;)].
In n cycles,

(Wn) =

Necessary (and sufficient) condition for work extraction is entropy increase.

When the inputs (and hence also the outputs) are correlated:
(Wn) < ET-[H(Y1,...,Yn) — H(X1,...,Xn)].

® Extended second law: ASigiq =k - [H(Y") — H(X")] — (Wn) /T > 0.

® Entropy production is minimized if the inputs { X} are independent.
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Individual Input Sequences

How would the “new” 2nd law look like if z1, 2, ... IS deterministic?
What would replace the entropies H(X™) and H(Y"™)?

In information theory, H(X") measures complexity (data compressibility).

Analogue for indiv. sequences: Ziv & Lempel (‘78)— LZ compressibility.

We show that LZ compressibility plays a role in the 2nd law.
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The LZ Compressibility

For a sequence of bits 2™ = (1,22, ...,2zn), let

c(z") = # phrases obtained by incremental parsing

Incremental parsing: parse z" sequentialy into distinct phrases, s.t. each
phrase = shortest string not seen earlier as a phrase.

Example: 10001101110100010 is parsed as 1,0,00,11,01,110,10,001,0.

The LZ complexity is defined as

ny _ c(z")log (")
plz”) = - -
Ziv & Lempel (‘78): p(x™) = best compression with finite memory.

Compressing a phrase: pointer to previous phrase + new symbol uncoded.
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The MJ Model for Individual Input Sequences

Let
P(ylz) = Pr{Y; = y|X; =z}, =,y €{0,1;

and define
U(z) =max{H(Y): H(X) > z}.

U(z) is concave and monotonically deceasing.

Our main result is:

(W) < KT - {U[p(z")] — p(z"™) + o(n)}
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Discussion

(Wa) < kT - {U[p(z")] = p(z") + o(n)}

The function U(z) has a simple closed—form formula.

The more 2™ is LZ—compressible, the more work one can hope for.
The bound is tight in the sense that for some z" it is saturated.

LZ complexity: entropic meaning, not only in IT, but also in physics.
Zurek (late 80s) used the Kolmogorov complexity.

LZ complexity is both more computable and yields a tighter bound.

Other measures of complexity, e.g., finite—memory predictability.
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