
Sequence Complexity and Work Extraction

Neri Merhav

Department of Electrical Engineering

Technion—Israel Institute of Technology

Haifa 3200004, Israel

ITA 2016, La Jolla, CA, February 2016

– p. 1/18



Information Thermodynamics – Some Background

Common theme: the presence of information “violates” the second law.

Systems with measurement and feedback control:

Systems controlled by parameters that depend on past (noisy) measurements.

Barato & Seifert (2013, 2014); Deffner (2013); Deffner & Jarzynski (2013);
Hoppenau & Angel (2014); Sagawa & Ueda (2011, 2012, 2013); Parrondo,
Horowitz & Sagawa (2015); ...

Systems with information reservoirs:

Systems that interact with an informational device (memory, digital tape, etc.).

Barato & Seifert (2014); Mandal & Jarzynski (2012, 2014); Boyd, Mandal &
Crutchfield (2015); Mandal, Quan & Jarzynski (2013); Horowitz & Esposito
(2014); ...
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The Maxwell Demon (1867)
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The Maxwell Demon (1867)
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The Maxwell Demon (1867)
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The Maxwell Demon (1867)
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The Szilard Engine (1929)
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Generalized Szilard Engine (Sagawa & Ueda, 2011)
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p 1 − p

q0

q1 1 − q1

Removal of the barrier

1 − q0

maxq0,q1
W = kT · I(X ; Y )

X

Y

Vinkler, Permuter and Merhav (2014): relation to gambling. – p. 8/18



System with Measurement and Feedback Control

Channel

Controller

Thermodynamical

System

Xt Yt

λt

Sagawa and Ueda (2008–2011) : Extracted work ≤ −∆F+kT · nI(X;Y )

More generally, nI(X;Y ) → I(Xn → Y n) = capacity of channel w. feedback. – p. 9/18



Physical Systems with an Informational Device:
Mandal & Jarzynski (2012): system converting thermal fluctuations to work
while writing info.
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∆Senv + kT · ∆H ≥ 0

W ≤ kT · ∆H

λ0→1

λ1→0

= e
−mg∆h/kT

half cycle CW

half cycle CCW

More generally, Deffner and Jarzynski (2013):

A system (device) + a heat bath (heat reservoir),

An information reservoir, e.g., a memory device with N bits (2N states).

An extended 2nd law: ∆Sdev + ∆Sheat-res + ∆Sinfo-res ≥ 0.
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More Details on the Simplified MJ Model
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YiXi

{Xi} binary, i.i.d. Each bit interacts for τ seconds.

state =binary Markov jump process s(iτ) = Xi; s((i + 1)τ−) = Yi.

0 → 1 ⇐⇒ CCW; 1 → 0 ⇐⇒ CW. ∆Wi = mg∆h · (Yi − Xi).

Main result in M&J (2012): ∆Wi ≤ kT · [H(Yi) − H(Xi)].
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This Work is About Several Extensions

Non–binary sequences.

Correlated input bits.

Bounding ∆W in terms of generalized entropies.

Individual (deterministic) input sequences.
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Non–Binary Sequences

In each interaction interval τ : Markov jump process with K states.

Each state s is associated with energy E(s) = mg∆(s) relative to some s0.

Transition s → s′: ∆W = mg∆(s′) − mg∆(s).

Using the inequality

D(Pτ‖Peq) ≤ D(P0‖Peq),

and

log
1

Peq(s)
≤ ln Z +

mg∆(s)

kT
,

we readily obtain

〈∆Wi〉 ≤ kT [H(Yi) − H(Xi)].
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Correlated Inputs

Mandal & Jarzynski (2012): In a single cycle

〈∆Wi〉 ≤ kT · [H(Yi) − H(Xi)].

In n cycles,

〈Wn〉 =

n
X

i=1

〈∆Wi〉 ≤ kT ·

n
X

i=1

[H(Yi) − H(Xi)].

Necessary (and sufficient) condition for work extraction is entropy increase.

When the inputs (and hence also the outputs) are correlated:

〈Wn〉 ≤ kT · [H(Y1, . . . , Yn) − H(X1, . . . , Xn)].

Extended second law: ∆Stotal = k · [H(Y n) − H(Xn)] − 〈Wn〉 /T ≥ 0.

Entropy production is minimized if the inputs {Xi} are independent.
– p. 14/18



Individual Input Sequences

How would the “new” 2nd law look like if x1, x2, . . . is deterministic?

What would replace the entropies H(Xn) and H(Y n)?

In information theory, H(Xn) measures complexity (data compressibility).

Analogue for indiv. sequences: Ziv & Lempel (‘78)– LZ compressibility.

We show that LZ compressibility plays a role in the 2nd law.
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The LZ Compressibility

For a sequence of bits xn = (x1, x2, . . . , xn), let

c(xn) = # phrases obtained by incremental parsing

Incremental parsing: parse xn sequentialy into distinct phrases, s.t. each
phrase = shortest string not seen earlier as a phrase.

Example: 10001101110100010 is parsed as 1,0,00,11,01,110,10,001,0.

The LZ complexity is defined as

ρ(xn) =
c(xn) log c(xn)

n
.

Ziv & Lempel (‘78): ρ(xn) = best compression with finite memory.

Compressing a phrase: pointer to previous phrase + new symbol uncoded.
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The MJ Model for Individual Input Sequences

Let
P (y|x) = Pr{Yi = y|Xi = x}, x, y ∈ {0, 1}

and define
U(z) = max{H(Y ) : H(X) ≥ z}.

U(z) is concave and monotonically deceasing.

Our main result is:

〈Wn〉 ≤ kT · {U [ρ(xn)] − ρ(xn) + o(n)}
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Discussion

〈Wn〉 ≤ kT · {U [ρ(xn)] − ρ(xn) + o(n)}

The function U(z) has a simple closed–form formula.

The more xn is LZ–compressible, the more work one can hope for.

The bound is tight in the sense that for some xn it is saturated.

LZ complexity: entropic meaning, not only in IT, but also in physics.

Zurek (late 80s) used the Kolmogorov complexity.

LZ complexity is both more computable and yields a tighter bound.

Other measures of complexity, e.g., finite–memory predictability.

– p. 18/18


	Information Thermodynamics -- Some Background
	The Maxwell Demon (1867)
	The Maxwell Demon (1867)
	The Maxwell Demon (1867)
	The Maxwell Demon (1867)
	The Szilard Engine (1929)
	Generalized Szilard Engine (Sagawa & Ueda, 2011)
	System with Measurement and Feedback Control
	More Details on the Simplified MJ Model
	This Work is About Several Extensions
	Non--Binary Sequences
	Correlated Inputs
	Individual Input Sequences
	The LZ Compressibility
	The MJ Model for Individual Input Sequences
	Discussion

