

Sequence Complexity and Work Extraction

Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 3200004, Israel

ITA 2016, La Jolla, CA, February 2016

Information Thermodynamics – Some Background

Common theme: the presence of **information** “violates” the second law.

Systems with measurement and feedback control:

Systems controlled by parameters that depend on past (noisy) measurements.

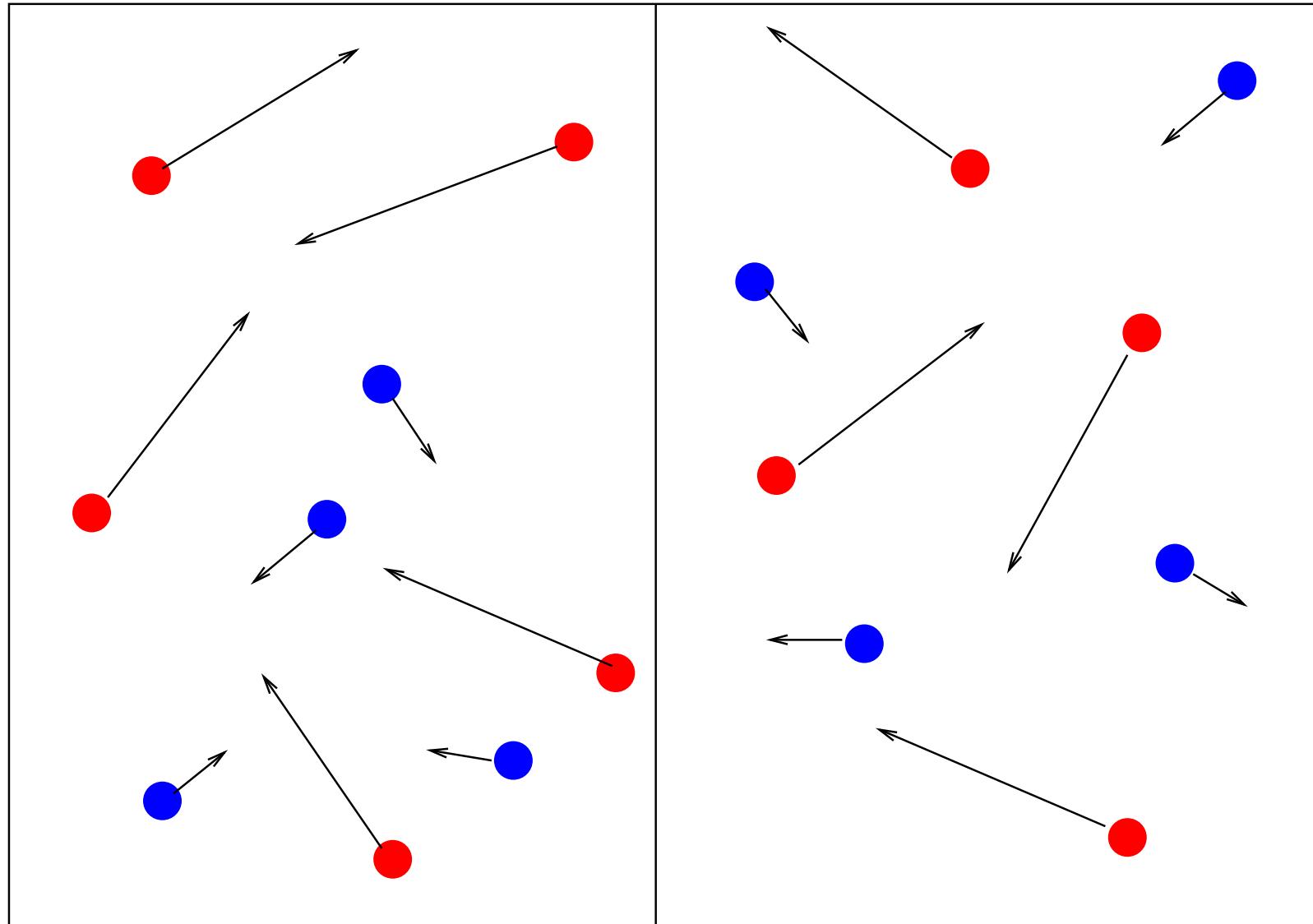
Barato & Seifert (2013, 2014); Deffner (2013); Deffner & Jarzynski (2013);
Hoppenau & Angel (2014); Sagawa & Ueda (2011, 2012, 2013); Parrondo,
Horowitz & Sagawa (2015); ...

Systems with information reservoirs:

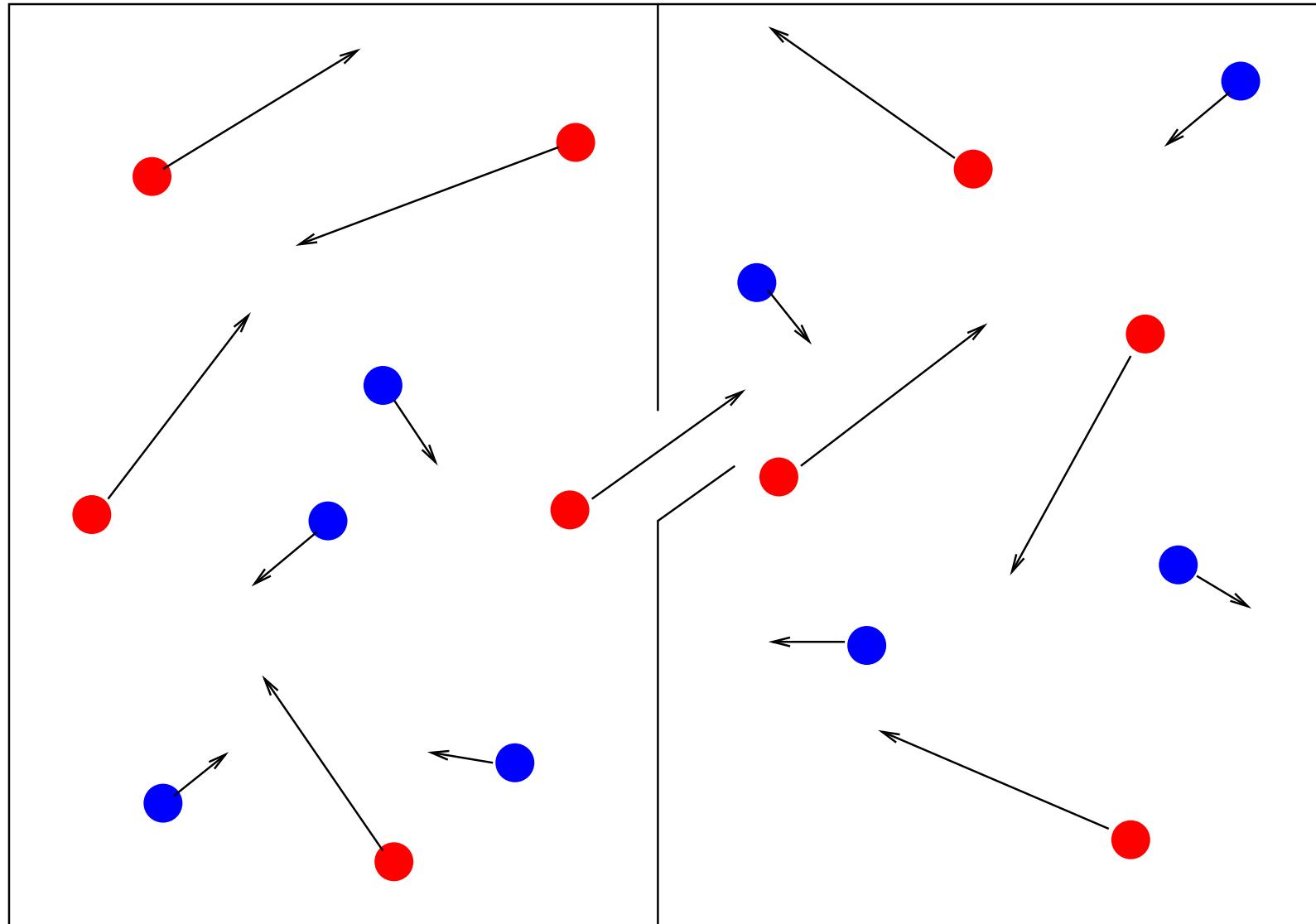
Systems that interact with an informational device (memory, digital tape, etc.).

Barato & Seifert (2014); Mandal & Jarzynski (2012, 2014); Boyd, Mandal &
Crutchfield (2015); Mandal, Quan & Jarzynski (2013); Horowitz & Esposito
(2014); ...

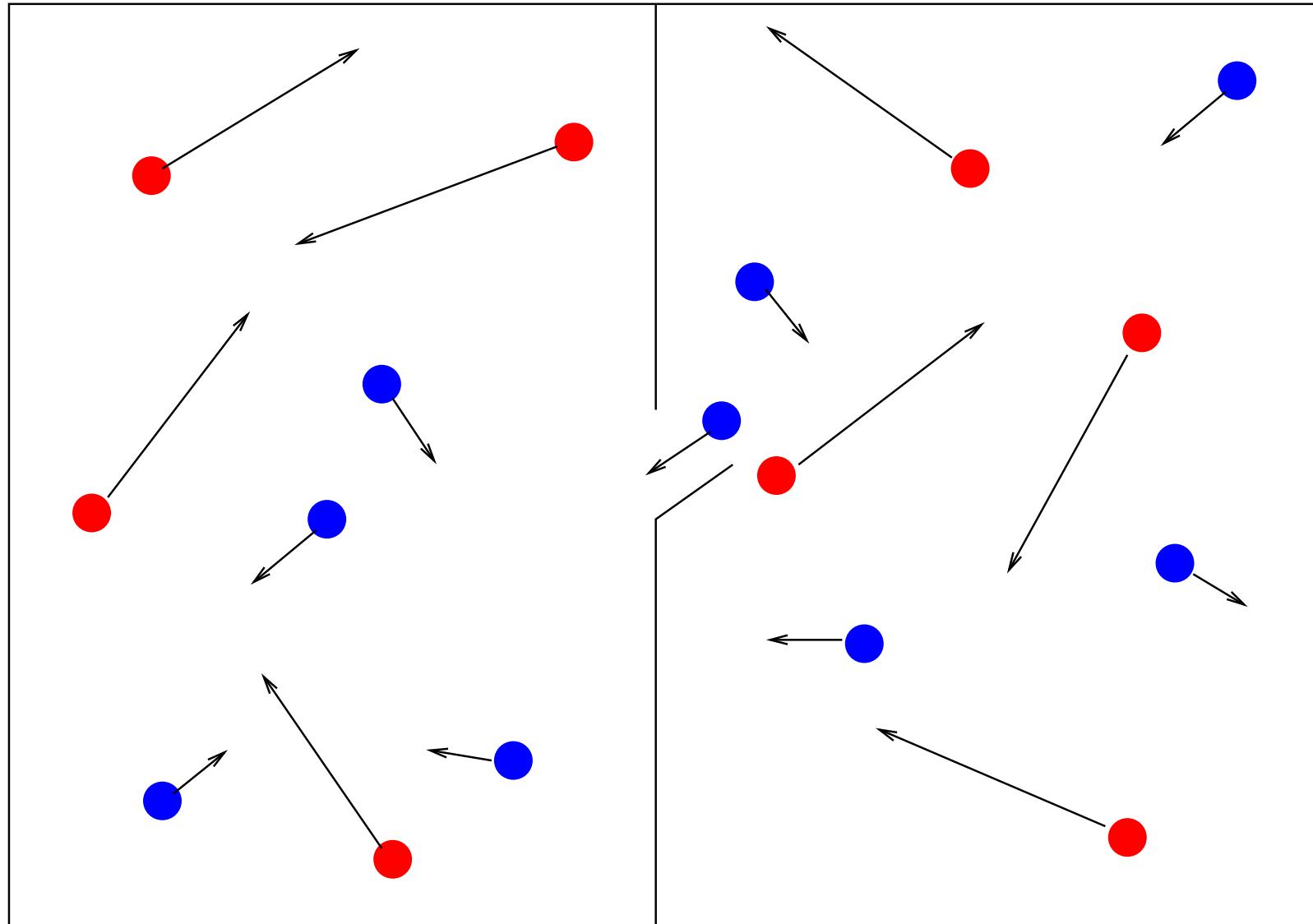
The Maxwell Demon (1867)



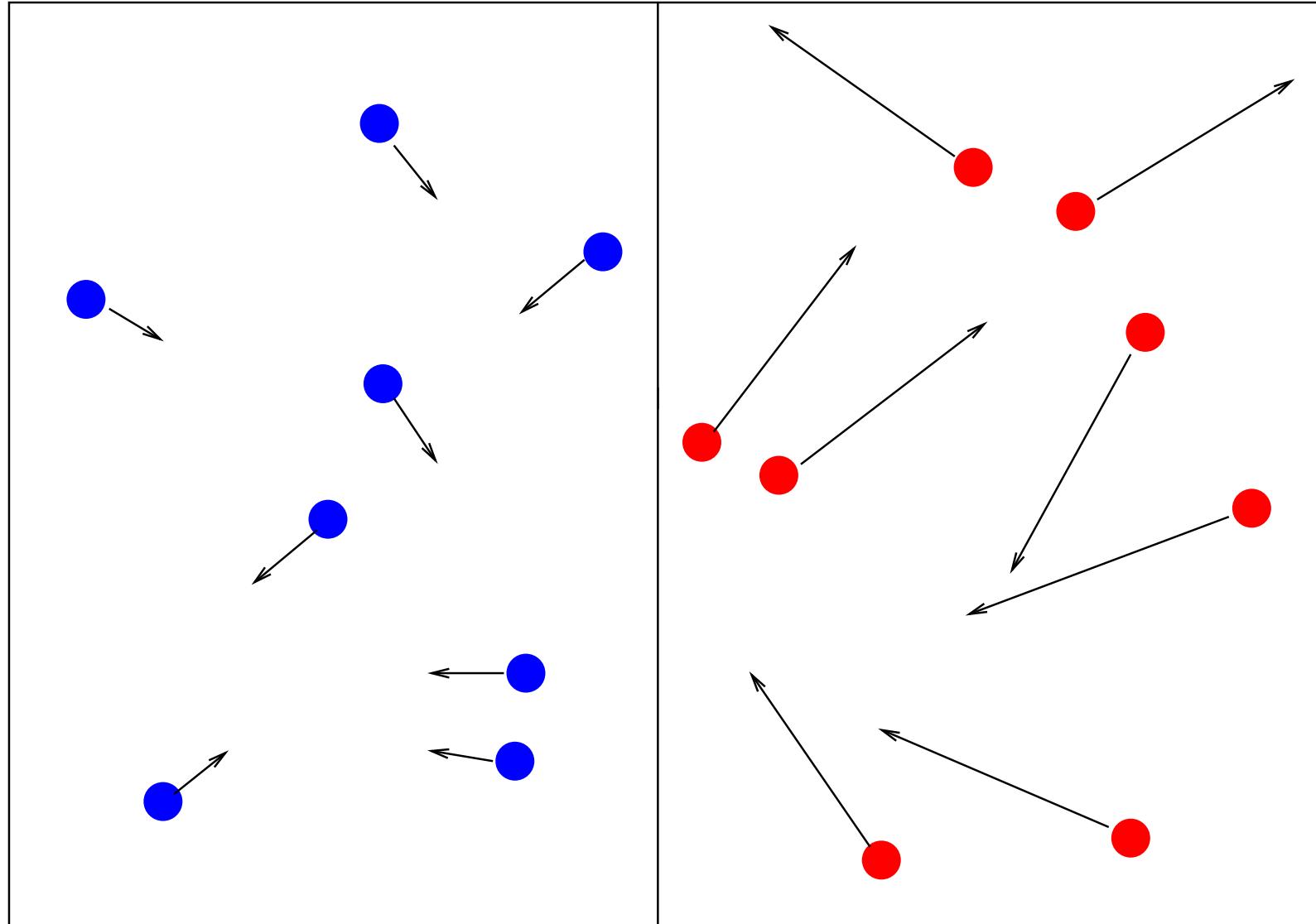
The Maxwell Demon (1867)



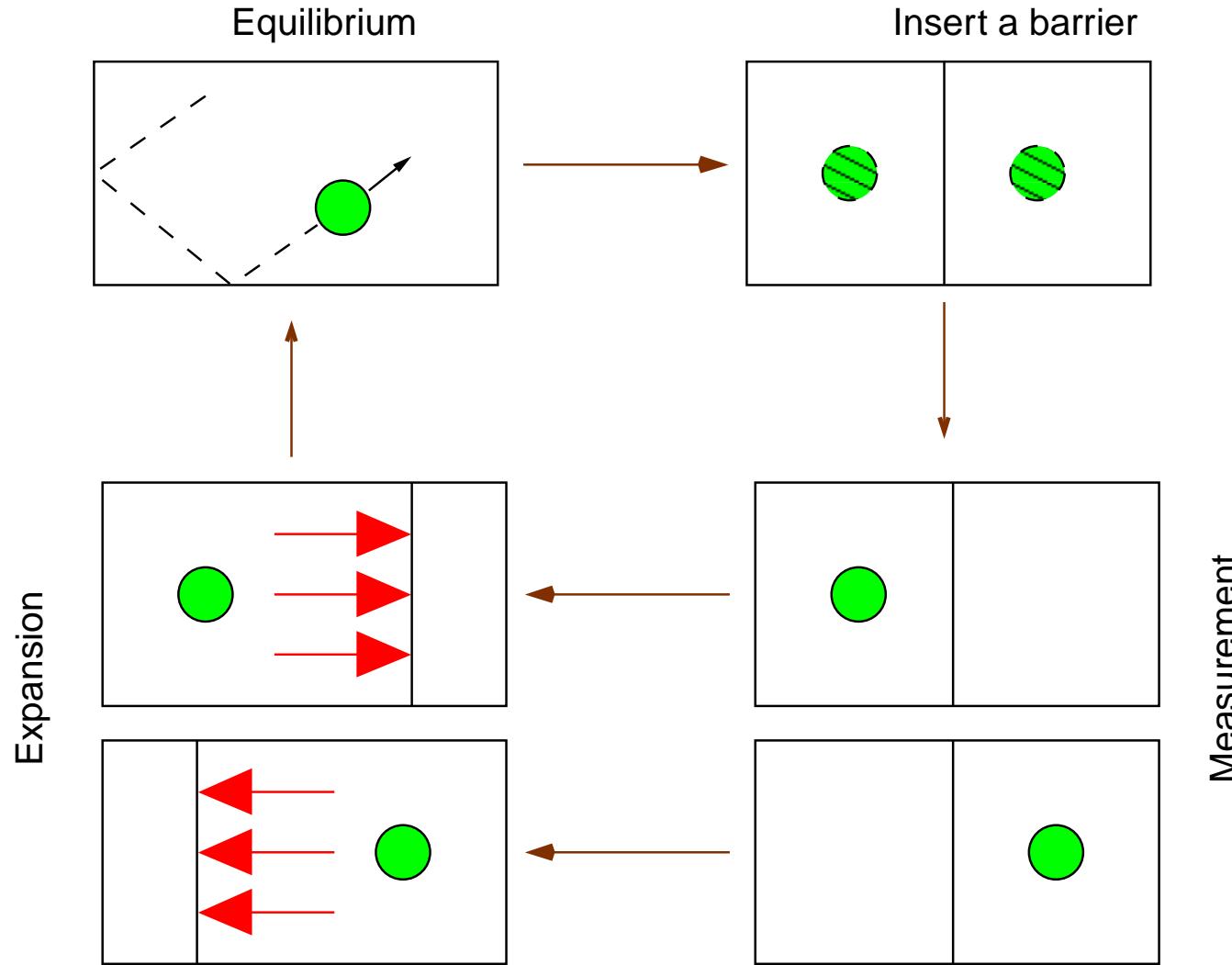
The Maxwell Demon (1867)



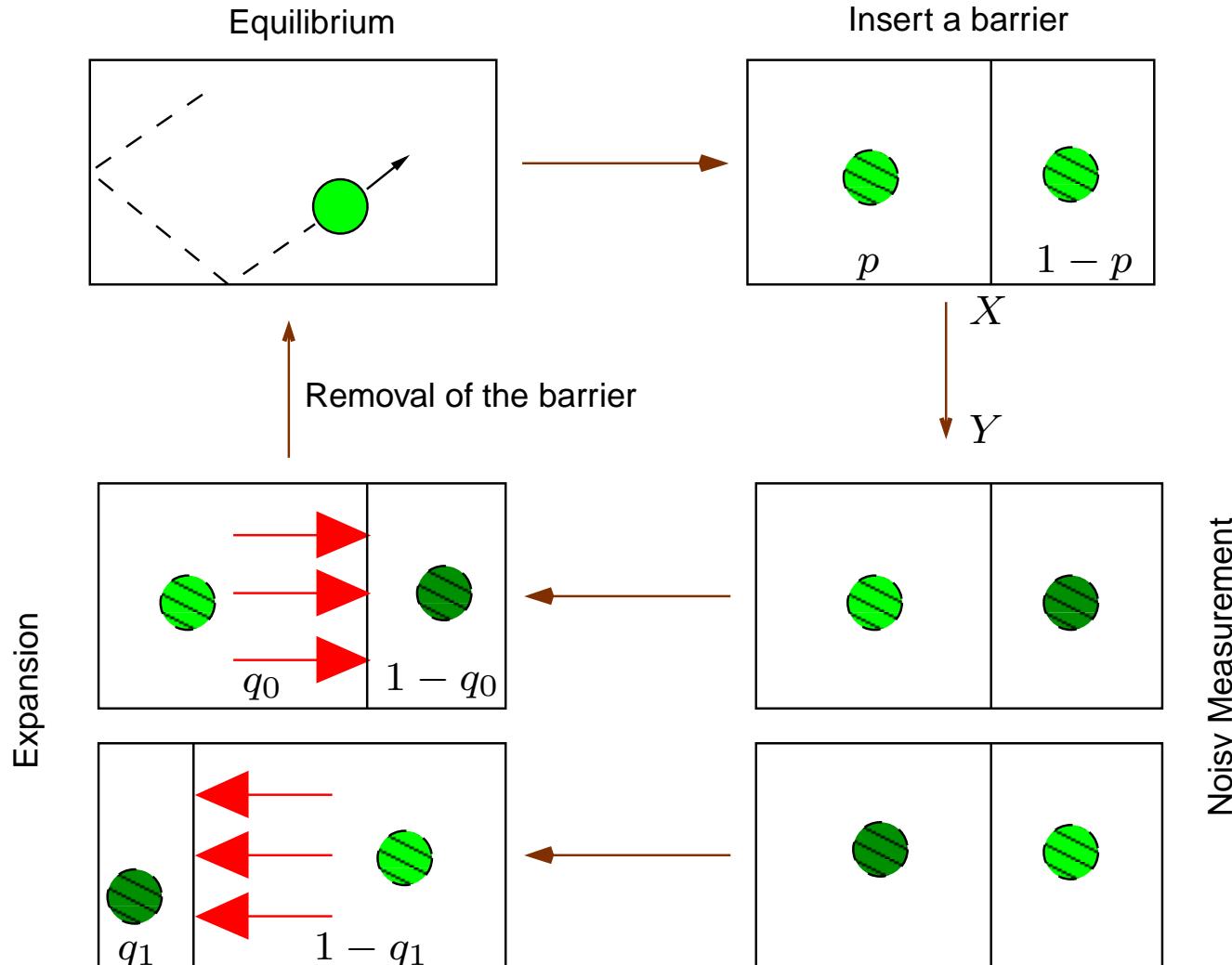
The Maxwell Demon (1867)



The Szilard Engine (1929)



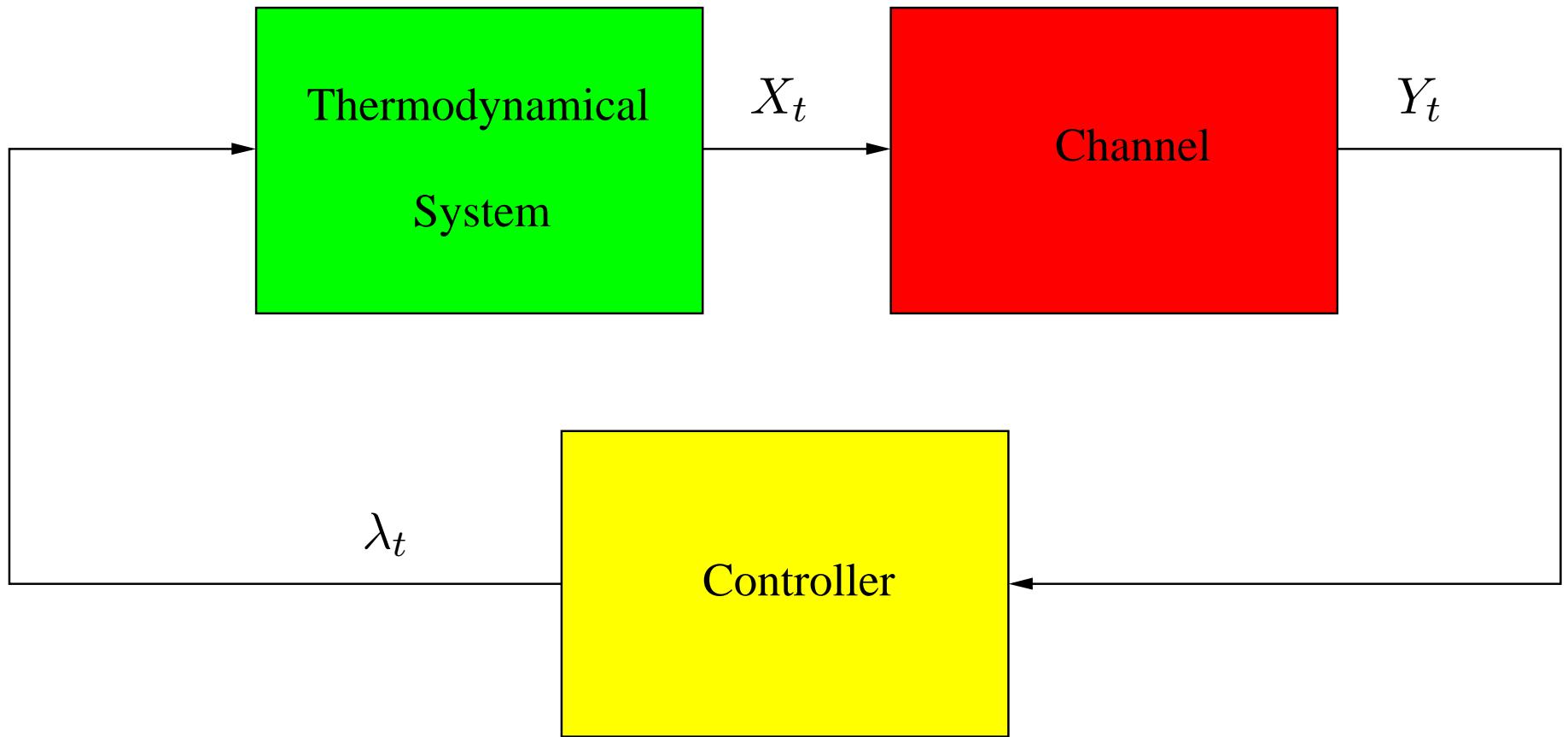
Generalized Szilard Engine (Sagawa & Ueda, 2011)



$$\max_{q_0, q_1} W = kT \cdot I(X; Y)$$

Vinkler, Permuter and Merhav (2014): relation to gambling.

System with Measurement and Feedback Control

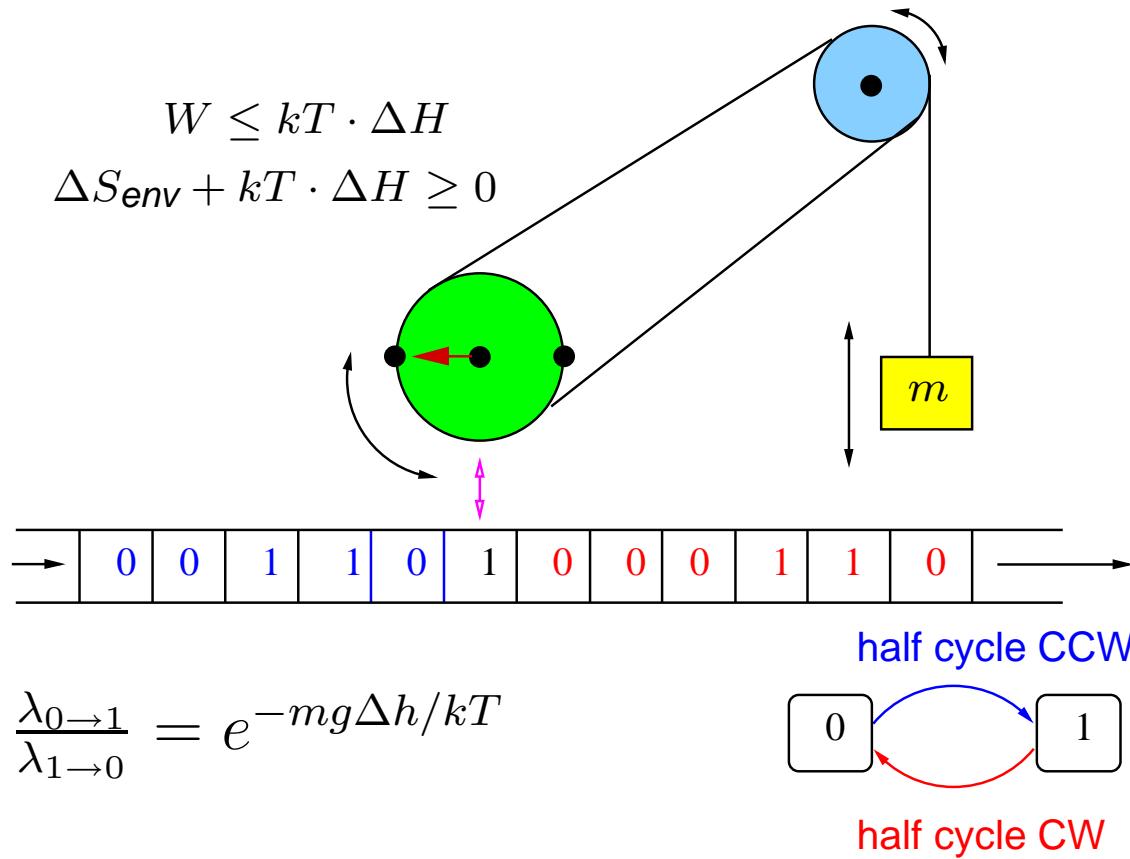


Sagawa and Ueda (2008–2011) : **Extracted work $\leq -\Delta F + kT \cdot nI(X; Y)$**

More generally, $nI(X; Y) \rightarrow I(X^n \rightarrow Y^n) = \text{capacity of channel w. feedback.}$

Physical Systems with an Informational Device:

Mandal & Jarzynski (2012): system converting thermal fluctuations to **work** while **writing info**.

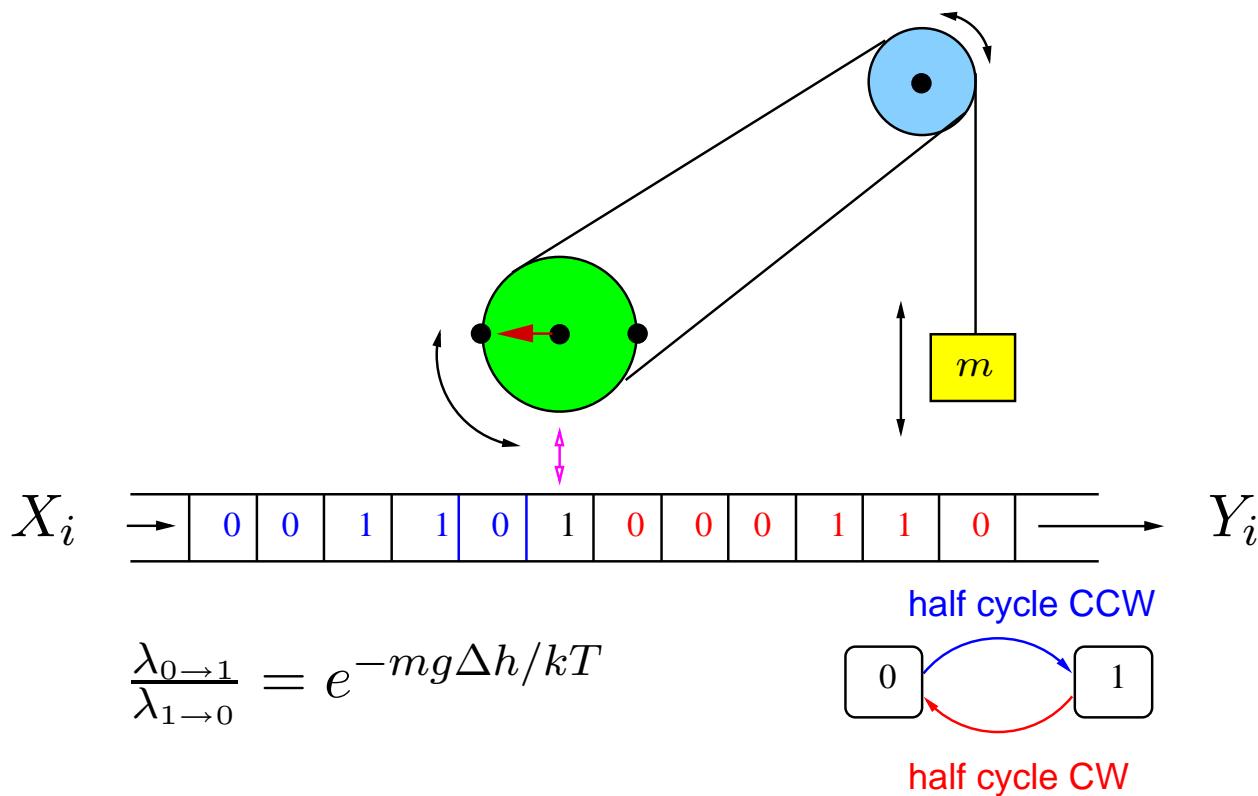


More generally, Deffner and Jarzynski (2013):

- A system (device) + a heat bath (heat reservoir),
- An **information reservoir**, e.g., a memory device with N bits (2^N states).

An extended 2nd law: $\Delta S_{dev} + \Delta S_{heat-res} + \Delta S_{info-res} \geq 0$.

More Details on the Simplified MJ Model



- $\{X_i\}$ binary, i.i.d. Each bit interacts for τ seconds.
- state =binary Markov jump process $s(i\tau) = X_i$; $s((i + 1)\tau-) = Y_i$.
- $0 \rightarrow 1 \iff \text{CCW}; 1 \rightarrow 0 \iff \text{CW}$. $\Delta W_i = mg\Delta h \cdot (Y_i - X_i)$.
- Main result in M&J (2012): $\Delta W_i \leq kT \cdot [H(Y_i) - H(X_i)]$.

This Work is About Several Extensions

- Non-binary sequences.
- Correlated input bits.
- Bounding ΔW in terms of generalized entropies.
- Individual (deterministic) input sequences.

Non–Binary Sequences

- In each interaction interval τ : Markov jump process with K states.
- Each state s is associated with energy $E(s) = mg\Delta(s)$ relative to some s_0 .
- Transition $s \rightarrow s'$: $\Delta W = mg\Delta(s') - mg\Delta(s)$.

Using the inequality

$$D(P_\tau \| P_{\text{eq}}) \leq D(P_0 \| P_{\text{eq}}),$$

and

$$\log \frac{1}{P_{\text{eq}}(s)} \leq \ln Z + \frac{mg\Delta(s)}{kT},$$

we readily obtain

$$\langle \Delta W_i \rangle \leq kT[H(Y_i) - H(X_i)].$$

Correlated Inputs

Mandal & Jarzynski (2012): In a single cycle

$$\langle \Delta W_i \rangle \leq kT \cdot [H(Y_i) - H(X_i)].$$

In n cycles,

$$\langle W_n \rangle = \sum_{i=1}^n \langle \Delta W_i \rangle \leq kT \cdot \sum_{i=1}^n [H(Y_i) - H(X_i)].$$

Necessary (and sufficient) condition for work extraction is entropy increase.

When the inputs (and hence also the outputs) are **correlated**:

$$\langle W_n \rangle \leq kT \cdot [H(Y_1, \dots, Y_n) - H(X_1, \dots, X_n)].$$

- Extended second law: $\Delta S_{\text{total}} = k \cdot [H(Y^n) - H(X^n)] - \langle W_n \rangle / T \geq 0$.
- Entropy production is minimized if the inputs $\{X_i\}$ are independent.

Individual Input Sequences

- How would the “new” 2nd law look like if x_1, x_2, \dots is deterministic?
- What would replace the entropies $H(X^n)$ and $H(Y^n)$?
- In information theory, $H(X^n)$ measures complexity (data compressibility).
- Analogue for indiv. sequences: Ziv & Lempel ('78)– **LZ compressibility**.
- We show that LZ compressibility plays a role in the 2nd law.

The LZ Compressibility

For a sequence of bits $x^n = (x_1, x_2, \dots, x_n)$, let

$$c(x^n) = \# \text{ phrases obtained by incremental parsing}$$

Incremental parsing: parse x^n sequentially into distinct phrases, s.t. each phrase = shortest string not seen earlier as a phrase.

Example: 10001101110100010 is parsed as 1,0,00,11,01,110,10,001,0.

The LZ complexity is defined as

$$\rho(x^n) = \frac{c(x^n) \log c(x^n)}{n}.$$

Ziv & Lempel ('78): $\rho(x^n)$ = best compression with finite memory.

Compressing a phrase: pointer to previous phrase + new symbol uncoded.

The MJ Model for Individual Input Sequences

Let

$$P(y|x) = \Pr\{Y_i = y | X_i = x\}, \quad x, y \in \{0, 1\}$$

and define

$$U(z) = \max\{H(Y) : H(X) \geq z\}.$$

$U(z)$ is concave and monotonically decreasing.

Our main result is:

$$\langle W_n \rangle \leq kT \cdot \{U[\rho(x^n)] - \rho(x^n) + o(n)\}$$

Discussion

$$\langle W_n \rangle \leq kT \cdot \{U[\rho(x^n)] - \rho(x^n) + o(n)\}$$

- The function $U(z)$ has a simple closed-form formula.
- The more x^n is LZ-compressible, the more work one can hope for.
- The bound is tight in the sense that for some x^n it is saturated.
- LZ complexity: entropic meaning, not only in IT, but also in physics.
- Zurek (late 80s) used the Kolmogorov complexity.
- LZ complexity is both more computable and yields a tighter bound.
- Other measures of complexity, e.g., **finite-memory predictability**.