Data Processing Theorems and the Second Law of Thermodynamics

Neri Merhav
Department of Electrical Engineering
Technion – Israel Institute of Technology
Technion City, Haifa, Israel

ITA Workshop, San Diego, CA, USA, February 6–11, 2011
Outline

Background:

- Generalized data processing theorems (DPT’s).
- “Second law” (H–theorem) of Markov processes + extensions.

Results:

- A generalized principle in a unified framework.
- New perspectives on generalized DPT’s.
- Example.
Csiszár (1972) defined a generalized divergence (f–divergence):

$$D_Q(P_1 \parallel P_2) = \int d x P_1(x) Q \left(\frac{P_2(x)}{P_1(x)} \right),$$

where $Q = \text{general convex function}$. For $P_1 = \text{joint distribution}$ and $P_2 = \text{product-of-marginals}$,

$$I_Q(X;Y) = \int d x d y P(x,y) Q \left(\frac{P(x)P(y)}{P(x,y)} \right)$$

this yields a \text{generalized mutual information}, which satisfies a DPT.

Ziv & Zakai (1973) – same idea independently with emphasis on improved lower bounds on distortion

$$R_Q(d) \leq C_Q \iff d \geq R_Q^{-1}(C_Q).$$
Zakai & Ziv (1975) have further generalized their mutual information measure to be

\[I^Q(X; Y) = \int dxdy \cdot P(x, y) \cdot Q \left(\frac{\mu_1(x, y)}{P(x, y)}, \ldots, \frac{\mu_k(x, y)}{P(x, y)} \right), \]

where \(\mu_i \) are arbitrary measures.

This class of info measures is rich enough to provide **tight bounds**: \(\forall \) source and channel, \(\exists Q \) and \(\{ \mu_i \} \) such that

\[\text{[lower bound on } d\text{]} = [d \text{ of optimum communication system}]. \]
The (microscopic) state of a physical system – normally modeled as a Markov process, \(\{X_t\} \). In the discrete–state, continuous–time case define the state–transition rates according to:

\[
\Pr\{X_{t+\delta} = x' | X_t = x\} = W_{xx'} \delta + o(\delta) \quad x' \neq x
\]

and

\[
P_t(x) = \Pr\{X_t = x\}.
\]

We then have

\[
P_{t+dt}(x) = \sum_{x' \neq x} P_t(x') W_{x'x} dt + P_t(x) \left(1 - \sum_{x' \neq x} W_{xx'} dt \right)
\]

which yields the Master equations:

\[
\frac{dP_t(x)}{dt} = \sum_{x' \in \mathcal{X}} \left[P_t(x') W_{x'x} - P_t(x) W_{xx'} \right] \quad x \in \mathcal{X}
\]
Markov Processes, H–Theorem, ... (Cont’d)

In steady–state, \(P_t(x) = P(x)\) are all time–invariant:

\[
\sum_{x' \in \mathcal{X}} [P(x')W_{x'x} - P(x)W_{xx'}] = 0, \quad \forall x \in \mathcal{X}.
\]

The net “probability flux” from/to each state vanishes (incoming flux = outgoing flux). In steady–state, there can be cyclic currents. For example,

\[
1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \cdots
\]

Stronger notion of time–invariance: detailed balance (DB):

\[
P(x')W_{x'x} - P(x)W_{xx'} = 0, \quad \forall x, x' \in \mathcal{X}.
\]

- DB occurs iff \(\{X_t\}\) is time–reversible: \(\mathcal{L}\{X_t\} = \mathcal{L}\{X_{-t}\}\).
- In physics, this corresponds to equilibrium (time–reversal symmetry).
- In DB, there are no cyclic probability currents. Ex: M/M/1 queue.
- In an isolated system, \(P(x) = 1/|\mathcal{X}|\), and then DB means \(W_{xx'} = W_{x'x}\).
The H–Theorem

Defining

\[H(X_t) = - \sum_{x \in \mathcal{X}} P_t(x) \log P_t(x), \]

the H–theorem asserts that if:

- \(\{X_t\} \) obeys DB, and
- \(P(x) = 1/|\mathcal{X}| \) for all \(x \),

then:

\[\frac{dH(X_t)}{dt} \geq 0. \]

Comments:

- Discrete–time analogue – holds too, and even without DB.
- Similar to the 2nd law of thermo, but not precisely equivalent.
- Arrow of time: how does this settle with time–reversal symmetry?
Extension to Non–Isolated Systems

What if $P(x)$ is not uniform? In [Cover & Thomas ‘06], it is shown that

$$D(P_t \parallel P) = \sum_{x \in \mathcal{X}} P_t(x) \log \frac{P_t(x)}{P(x)} \downarrow$$

Indeed, for P uniform

$$D(P_t \parallel P) = \log |\mathcal{X}| - H(X_t).$$

- Detailed balance is not needed.
- Maximum entropy \rightarrow minimum free energy.
- Characterizes monotonic convergence $P_t \rightarrow P$ in the divergence sense.

More generally, for P_t and P'_t, two time–varying state distributions pertaining a given Markov process, $D(P_t \parallel P'_t) \downarrow$ [Cover & Thomas ‘06].
Monotonicity of the f-Divergence

In [Kelly ‘79]: If P is a steady–state distribution

$$D_Q(P\|P_t) = \sum_{x \in \mathcal{X}} P(x) Q\left(\frac{P_t(x)}{P(x)}\right)$$

for whatever P_t that evolves according to the Markov process. This allows a general Q, and it covers both $D(P\|P_t)$ and $D(P_t\|P)$, but not $D(P_t\|P'_t)$. To be handled soon...

Define $P_t(x, x') = P(X_0 = x, X_t = x')$ and $P'_t(x, x') = P(X_0 = x) P(X_t = x')$ then

$$D_Q(P_t\|P'_t) = \sum_{x, x'} P_t(x, x') Q\left(\frac{P'_t(x, x')}{P_t(x, x')}\right)$$

because here $D_Q(P_t\|P'_t) = I_Q(X_0; X_t)$, and the above is the Ziv–Zakai–Csiszár DPT for the Markov chain $X_0 \rightarrow X_t \rightarrow X_{t+1}$.
A Unified Framework

This monotonicity thm does not cover the entire picture. Can we put everything under one umbrella?

Yes, we can! including the 1975 Ziv–Zakai information measure.

Two observations:

1. The above thm extends trivially to

$$U_t = \sum_{x \in \mathcal{X}} P(x) Q \left(\frac{\mu^1_t(x)}{P(x)}, \ldots, \frac{\mu^k_t(x)}{P(x)} \right)$$

where \(\{\mu_t(x)\} \) all obey the Markov recursion \(\mu^{i+1}_t(x) = \sum_{x'} \mu^i_t(x') P(x|x') \) and \(Q \) is jointly convex.

2. If \(Q(u_1, \ldots, u_k) \) is convex, then so is its perspective

$$\tilde{Q}(v, u_1, \ldots, u_k) = v \cdot Q \left(\frac{u_1}{v}, \ldots, \frac{u_k}{v} \right) \quad v > 0.$$
A Unified Framework (Cont’d)

Thm: Let $\mu_0^t, \mu_1^t, \ldots, \mu_k^t$ be arbitrary measures that obey the Markov recursion and assume $P \gg \mu_0^t$ for all t. Then,
\[
V_t \triangleq \sum_x \mu_0^t(x) Q \left(\frac{\mu_1^t(x)}{\mu_0^t(x)}, \ldots, \frac{\mu_k^t(x)}{\mu_0^t(x)} \right)
\]

Proof:
\[
V_t = \sum_x P(x) \cdot \frac{\mu_0^t(x)}{P(x)} Q \left(\frac{\mu_1^t(x)/P(x)}{\mu_0^t(x)/P(x)}, \ldots, \frac{\mu_k^t(x)/P(x)}{\mu_0^t(x)/P(x)} \right)
\]
\[
= \sum_x P(x) \tilde{Q} \left(\frac{\mu_0^t(x)}{P(x)}, \frac{\mu_1^t(x)}{P(x)}, \ldots, \frac{\mu_k^t(x)}{P(x)} \right).
\]

The assumption $P \gg \mu_0^t$ can be relaxed.

The 1975 ZZ DPT for the Markov chain $X_0 \rightarrow X_t \rightarrow X_{t+1}$ is obtained for
$\mu_0^t(x, x') = P(X_0 = x, X_t = x')$.

A New Perspective on the 1973 Ziv–Zakai DPT

While the 1973 ZZ info measure is

$$I_Q(X; Y) = \sum_{x,y} P(x, y) Q \left(\frac{P(x) P(y)}{P(x, y)} \right),$$

one can use any μ_0 and μ_1 (satisfying the Markov relations) and define

$$I_Q(X; Y) = \sum_{x,y} \mu_0(x, y) Q \left(\frac{\mu_1(x, y)}{\mu_0(x, y)} \right),$$

because

$$I_Q(X; Y) = \sum_{x,y} P(x, y) \cdot \frac{\mu_0(x, y)}{P(x, y)} Q \left(\frac{\mu_1(x, y) / P(x, y)}{\mu_0(x, y) / P(x, y)} \right)$$

$$= \sum_{x,y} P(x, y) \tilde{Q} \left(\frac{\mu_0(x, y)}{P(x, y)}, \frac{\mu_1(x, y)}{P(x, y)} \right) = 1975 \text{ ZZ info measure}$$
Both μ’s can be of the form

$$\mu(x, y) = s_0 P(x, y) + \sum_{x_i \in \mathcal{X}} s_i P(x) P(y | x = x_i)$$

with arbitrary positive coefficients s_0 and $\{s_i\}$.

For example,

$$I_Q(X; Y) = \sum_{x, y} [P(x, y) + sP(x)P(y)] \cdot Q \left(\frac{P(x)P(y)}{P(x, y) + sP(x)P(y)} \right)$$

satisfies a DPT for every $s \geq 0$.

$s = 0 \rightarrow 1973$ ZZ information measure.

Even for 1973 ZZ DPT (univariate Q), we have added a degree of freedom. Important since only few functions Q, are easy to work with.
Example

Source U and the reconstruction V are uniform over $\{0, 1, \ldots, K - 1\}$.

$$d(u, v) = \begin{cases}
0 & v = u \\
1 & v = (u + 1) \mod K \\
\infty & \text{elsewhere}
\end{cases}$$

Channel: clean L–ary channel.

For $Q(z) = -\sqrt{z}$, we obtain

$$I_Q(U; V) = -\sum_{u,v} P(u) P(v) \sqrt{s + \frac{P(v|u)}{P(v)}}.$$
Example (Cont’d)

Applying the DPT $R_Q(d) \leq C_Q$ (for a given s), we obtain the lower bound

\[d \geq d_s. \]

For $s = 0$ (ZZ ‘73), we have:

\[d_0 = \frac{1}{2} - \frac{1}{2} \sqrt{2\theta - \theta^2}, \]

where $\theta \overset{\Delta}{=} K/L$.

For $s \to \infty$,

\[d_\infty = \frac{1}{2} - \frac{1}{2\theta} \sqrt{2\theta - \theta^2}, \]

which is larger than d_0 for all $1 < \theta < 2$.

The Shannon bound: $d_{\text{Shannon}} = h^{-1}(\log \theta)$ is in between.
Figure 1: – green, – blue, Shannon – p. 16/17
Conclusion

- Unified framework relating monotonicity theorems and generalized DPT's.
- The H–theorem was substantially generalized.
- A new perspective on the ZZ DPT that gives useful bounds.