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Outline

Background:

® Generalized data processing theorems (DPT’s).

® “Second law” (H-theorem) of Markov processes + extensions.
Results:

® A generalized principle in a unified framework.

® New perspectives on generalized DPT's.

$ Example.
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Introduction — Generalized DPT's

Csiszar (1972) defined a generalized divergence (f—divergence):

Dq(Py||P2) :/dxpl(x)Q (ii@)

where Q = general convex function. For P; =joint distribution and

P> =product-of-marginals,

P(x)P (y)>

lo(x:Y) = [ dedyp(a.)Q (2500

this yields a generalized mutual information, which satisfies a DPT.
Ziv & Zakai (1973) — same idea independently with emphasis on improved
lower bounds on distortion

Ro(d)<Cq <= d> Ry (Co).
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Introduction — Generalized DPT’s (Cont'd)

Zakai & Ziv (1975) have further generalized their mutual information measure

to be

where p; are arbitrary measures.

This class of info measures is rich enough to provide tight bounds: V source

and channel, 3 @ and {u;} such that

lower bound on d] = [d of optimum communication system|.
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H-Theorem & Other Monotonicity Thms

The (microscopic) state of a physical system — normally modeled as a Markov
process, {X:}. In the discrete—state, continuous—time case define the
state—transition rates according to:

PH{X15 =a'|Xt =a} = Wopbd+o0(6) o' #a

and
Pt(x) = Pr{Xt = :C}

We then have
Pt+dt Z Pt Wm xdt —|— Pt (1 — Z Wxx/dt)
’;éa: ’;éa:
which yields the Master equations:

dPy(x)
d¢

— Z [Pe(z ) Werg — Pi(2)Wee]  z€X
x'eX
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Markov Processes, H-Theorem, ... (Cont'd)

In steady—state, P;(z) = P(x) are all time—invariant:

> [P )Wy — P(2)Wye] =0, VzeX.
r'eXx

The net “probability flux” from/to each state vanishes (incoming flux = outgoing
flux). In steady—state, there can be cyclic currents. For example,

1—-2—-3—-1—-22—-3—
Stronger notion of time—invariance: detailed balance (DB):
P(c' YWy — P(2)Wyy =0, Va,z’ €X.

DB occurs iff { X} Is time—reversible: £{X:} = L{X_+}.
In physics, this corresponds to equilibrium (time—reversal symmetry).

In DB, there are no cyclic probability currents. Ex: M/M/1 queue.

e o0 @

In an isolated system, P(x) = 1/|X|, and then DB means W, = W/.
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The H-Theorem

Defining
Z Pt lOg Pt )7
reX
the H-theorem asserts that if:
®» {X,}obeys DB, and
® P(x)=1/|x]forall z,
then:
dH (X¢) >0
dt -
Comments:

® Discrete—time analogue — holds too, and even without DB.
® Similar to the 2nd law of thermo, but not precisely equivalent.

® Arrow of time: how does this settle with time—reversal symmetry?
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Extension to Non—Isolated Systems

What if P(x) is not uniform? In [Cover & Thomas ‘06], it is shown that

D(BIP) = 3 Pi(a)log T N

reX (CIZ)
Indeed, for P uniform
D(Ft||P) = log |X| — H(X%).

® Detailed balance is not needed.
$ Maximum entropy — minimum free energy.
® Characterizes monotonic convergence P, — P in the divergence sense.

More generally, for P, and P/, two time—varying state distributions pertaining a
given Markov process, D(P:||P;) \, [Cover & Thomas ‘06].
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Monotonicity of the f-Divergence

In [Kelly “79]. If P is a steady—state distribution

= X roa ()

reEX

for whatever P, that evolves according to the Markov process. This allows a
general Q, and it covers both D(P||P;) and D(P||P), but not D(P;||P;). To be
handled soon...

Define Pi(z,2') = P(Xg =z, Xt =2') and P/(z,2') = P(Xo = 2)P(X: = 2')
then

because here Dq (P:||P/) = Io(Xo; X¢), and the above is the
Ziv—Zakai—Csiszar DPT for the Markov chain Xg — X; — X1,
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A Unified Framework

This monotonicity thm does not cover the entire picture. Can we put everything
under one umbrella?

Yes, we can! including the 1975 Ziv—Zakal information measure.
Two observations:

1. The above thm extends trivially to

e faz
U= P)Q (‘]L;((x)),..., *;3&;)

reX

where {1 (z)} all obey the Markov recursion pf, ,(x) = 3", pi(z")P(z|2") and
Q Is jointly convex.

2. 1f Q(u1,...,ux) IS convex, then so is its perspective

Q(v,ul,...,uk):v-Q(%,...,Z—k) v > 0.
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A Unified Framework (Cont’d)

Thm: Let u?, i, ..., uF be arbitrary measures that obey the Markov recursion
and assume P >> p? for all t. Then,

1 k
Vi 2 Y @) (Zé(x) . “"’) \

x

Proof:

The assumption P >> 19 can be relaxed.

The 1975 ZZ DPT for the Markov chain Xy — X; — X4 Is obtained for
w(z, ') = P(Xog =x, Xy = ).
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A New Perspective on the 1973 Ziv—Zakai DPT

While the 1973 ZZ info measure is
P(x)P(y)>
— P :C, Y
;; (9@ ( P(z,y)
one can use any ug and uq (satisfying the Markov relations) and define

=Lt (GE35)

Y)

because
_ oy M@ y) o (i (zy)/ P, y)
o(Y) = Py Brne (1)

—p. 12/



A New Perspective ... (Cont'd)

Both u’s can be of the form

p(z,y) = soP(z,y) + Y  siP(z)Pyle = z;)
T, €EX

with arbitrary positive coefficients so and {s;}.

For example,

. — €T SI(x . P(x)P(y)
IQ(X,Y)—;;[P( 1Y) + sP(z) P(y)] Q(p(x,stP(x)P(y))

satisfies a DPT for every s > 0.
s=0 — 1973 ZZ information measure.

Even for 1973 ZZ DPT (univariate Q), we have added a degree of freedom.

Important since only few functions @, are easy to work with.
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Example

Source U and the reconstuction V' are uniform over {0,1,..., K — 1}.

4
0 V=1Uu

dlu,v) =< 1 v=(u+1)mod K
oo elsewhere

\
Channel: clean L—-ary channel.

For Q(z) = —+/z, we obtain

IQ(U;V):—ZP(u)P(v)\/s—I— Plo)
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Example (Cont’d)

Applying the DPT R (d) < Cq (for a given s), we obtain the lower bound

d>ds
For s = 0 (ZZ ‘73), we have:
w-t L@
where 9 2 K/L.
For s — oo,
doo = 2= /20— 02,

which is larger than dy forall 1 < 6 < 2.

The Shannon bound: dgj,annon = b~ (log 0) is in between.
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Conclusion

® Unified framework relating monotonicity theorems and generalized DPT's.
® The H-theorem was substantially generalized.

® A new perspective on the ZZ DPT that gives useful bounds.
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