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Outline

Background:

Generalized data processing theorems (DPT’s).

“Second law” (H–theorem) of Markov processes + extensions.

Results:

A generalized principle in a unified framework.

New perspectives on generalized DPT’s.

Example.
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Introduction – Generalized DPT’s

Csiszár (1972) defined a generalized divergence (f–divergence):

DQ(P1‖P2) =

Z

dxP1(x)Q

„

P2(x)

P1(x)

«

,

where Q = general convex function. For P1 =joint distribution and

P2 =product-of-marginals,

IQ(X;Y ) =

Z

dxdyP (x, y)Q

„

P (x)P (y)

P (x, y)

«

this yields a generalized mutual information, which satisfies a DPT.

Ziv & Zakai (1973) – same idea independently with emphasis on improved

lower bounds on distortion

RQ(d) ≤ CQ ⇐⇒ d ≥ R−1
Q (CQ).
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Introduction – Generalized DPT’s (Cont’d)

Zakai & Ziv (1975) have further generalized their mutual information measure

to be

IQ(X;Y ) =

Z

dxdy · P (x, y) · Q
„

µ1(x, y)

P (x, y)
, . . . ,

µk(x, y)

P (x, y)

«

,

where µi are arbitrary measures.

This class of info measures is rich enough to provide tight bounds: ∀ source

and channel, ∃ Q and {µi} such that

[lower bound on d] = [d of optimum communication system].
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H–Theorem & Other Monotonicity Thms

The (microscopic) state of a physical system – normally modeled as a Markov
process, {Xt}. In the discrete–state, continuous–time case define the
state–transition rates according to:

Pr{Xt+δ = x′|Xt = x} = Wxx′δ + o(δ) x′ 6= x

and
Pt(x) = Pr{Xt = x}.

We then have

Pt+dt(x) =
X

x′ 6=x

Pt(x
′)Wx′xdt + Pt(x)

0

@1 −
X

x′ 6=x

Wxx′dt

1

A ,

which yields the Master equations:

dPt(x)

dt
=
X

x′∈X

[Pt(x
′)Wx′x − Pt(x)Wxx′ ] x ∈ X

– p. 5/17



Markov Processes, H–Theorem, ... (Cont’d)

In steady–state, Pt(x) = P (x) are all time–invariant:

X

x′∈X

[P (x′)Wx′x − P (x)Wxx′ ] = 0, ∀ x ∈ X .

The net “probability flux” from/to each state vanishes (incoming flux = outgoing
flux). In steady–state, there can be cyclic currents. For example,

1 → 2 → 3 → 1 → 2 → 3 → · ··

Stronger notion of time–invariance: detailed balance (DB):

P (x′)Wx′x − P (x)Wxx′ = 0, ∀ x, x′ ∈ X .

DB occurs iff {Xt} is time–reversible: L{Xt} = L{X−t}.

In physics, this corresponds to equilibrium (time–reversal symmetry).

In DB, there are no cyclic probability currents. Ex: M/M/1 queue.

In an isolated system, P (x) = 1/|X |, and then DB means Wxx′ = Wx′x.
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The H–Theorem

Defining

H(Xt) = −
X

x∈X

Pt(x) log Pt(x),

the H–theorem asserts that if:

{Xt} obeys DB, and

P (x) = 1/|X | for all x,

then:
dH(Xt)

dt
≥ 0.

Comments:

Discrete–time analogue – holds too, and even without DB.

Similar to the 2nd law of thermo, but not precisely equivalent.

Arrow of time: how does this settle with time–reversal symmetry?
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Extension to Non–Isolated Systems

What if P (x) is not uniform? In [Cover & Thomas ‘06], it is shown that

D(Pt‖P ) =
X

x∈X

Pt(x) log
Pt(x)

P (x)
ց

Indeed, for P uniform

D(Pt‖P ) = log |X | − H(Xt).

Detailed balance is not needed.

Maximum entropy → minimum free energy.

Characterizes monotonic convergence Pt → P in the divergence sense.

More generally, for Pt and P ′
t , two time–varying state distributions pertaining a

given Markov process, D(Pt‖P ′
t) ց [Cover & Thomas ‘06].
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Monotonicity of the f -Divergence

In [Kelly ‘79]: If P is a steady–state distribution

DQ(P‖Pt) =
X

x∈X

P (x)Q

„

Pt(x)

P (x)

«

ց

for whatever Pt that evolves according to the Markov process. This allows a
general Q, and it covers both D(P‖Pt) and D(Pt‖P ), but not D(Pt‖P ′

t). To be
handled soon...

Define Pt(x, x′) = P (X0 = x, Xt = x′) and P ′
t(x, x′) = P (X0 = x)P (Xt = x′)

then

DQ(Pt‖P ′
t) =

X

x,x′

Pt(x, x′)Q

„

P ′
t(x, x′)

Pt(x, x′)

«

ց

because here DQ(Pt‖P ′
t) = IQ(X0; Xt), and the above is the

Ziv–Zakai–Csiszár DPT for the Markov chain X0 → Xt → Xt+1.
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A Unified Framework

This monotonicity thm does not cover the entire picture. Can we put everything
under one umbrella?

Yes, we can! including the 1975 Ziv–Zakai information measure.
Two observations:

1. The above thm extends trivially to

Ut =
X

x∈X

P (x)Q

 

µ1
t (x)

P (x)
, . . . ,

µk
t (x)

P (x)

!

where {µt(x)} all obey the Markov recursion µi
t+1(x) =

P

x′ µi
t(x

′)P (x|x′) and
Q is jointly convex.

2. If Q(u1, . . . , uk) is convex, then so is its perspective

Q̃(v, u1, . . . , uk) = v · Q
“u1

v
, . . . ,

uk

v

”

v > 0.
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A Unified Framework (Cont’d)

Thm: Let µ0
t , µ1

t , . . . , µk
t be arbitrary measures that obey the Markov recursion

and assume P ≫ µ0
t for all t. Then,

Vt
∆
=
X

x

µ0
t (x)Q

 

µ1
t (x)

µ0
t (x)

, . . . ,
µk

t (x)

µ0
t (x)

!

ց

Proof:

Vt =
X

x

P (x) · µ0
t (x)

P (x)
Q

 

µ1
t (x)/P (x)

µ0
t (x)/P (x)

, . . . ,
µk

t (x)/P (x)

µ0
t (x)/P (x)

!

=
X

x

P (x)Q̃

 

µ0
t (x)

P (x)
,
µ1

t (x)

P (x)
, . . . ,

µk
t (x)

P (x)

!

.

The assumption P ≫ µ0
t can be relaxed.

The 1975 ZZ DPT for the Markov chain X0 → Xt → Xt+1 is obtained for
µ0

t (x, x′) = P (X0 = x, Xt = x′).
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A New Perspective on the 1973 Ziv–Zakai DPT

While the 1973 ZZ info measure is

IQ(X; Y ) =
X

x,y

P (x, y)Q

„

P (x)P (y)

P (x, y)

«

,

one can use any µ0 and µ1 (satisfying the Markov relations) and define

IQ(X; Y ) =
X

x,y

µ0(x, y)Q

„

µ1(x, y)

µ0(x, y)

«

,

because

IQ(X;Y ) =
X

x,y

P (x, y) · µ0(x, y)

P (x, y)
Q

„

µ1(x, y)/P (x, y)

µ0(x, y)/P (x, y)

«

=
X

x,y

P (x, y)Q̃

„

µ0(x, y)

P (x, y)
,
µ1(x, y)

P (x, y)

«

= 1975 ZZ info measure
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A New Perspective ... (Cont’d)

Both µ’s can be of the form

µ(x, y) = s0P (x, y) +
X

xi∈X

siP (x)P (y|x = xi)

with arbitrary positive coefficients s0 and {si}.

For example,

IQ(X; Y ) =
X

x,y

[P (x, y) + sP (x)P (y)] · Q
„

P (x)P (y)

P (x, y) + sP (x)P (y)

«

satisfies a DPT for every s ≥ 0.
s = 0 → 1973 ZZ information measure.

Even for 1973 ZZ DPT (univariate Q), we have added a degree of freedom.
Important since only few functions Q, are easy to work with.

– p. 13/17



Example

Source U and the reconstuction V are uniform over {0, 1, . . . ,K − 1}.

d(u, v) =

8

>

>

<

>

>

:

0 v = u

1 v = (u + 1) mod K

∞ elsewhere

Channel: clean L–ary channel.

For Q(z) = −√
z, we obtain

IQ(U ;V ) = −
X

u,v

P (u)P (v)

s

s +
P (v|u)

P (v)
.
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Example (Cont’d)

Applying the DPT RQ(d) ≤ CQ (for a given s), we obtain the lower bound

d ≥ ds.

For s = 0 (ZZ ‘73), we have:

d0 =
1

2
− 1

2

p

2θ − θ2,

where θ
∆
= K/L.

For s → ∞,

d∞ =
1

2
− 1

2θ

p

2θ − θ2,

which is larger than d0 for all 1 < θ < 2.

The Shannon bound: dShannon = h−1(log θ) is in between.
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Figure 1: – green, – blue, Shannon

– p. 16/17



Conclusion

Unified framework relating monotonicity theorems and generalized DPT’s.

The H–theorem was substantially generalized.

A new perspective on the ZZ DPT that gives useful bounds.
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