Some New Analytical Tools for
Evaluation of Code Ensemble Performance

Neri Merhav
The Viterbi Faculty of Electrical & Computer Engineering
Technion—Israel Institute of Technology

Haifa, Israel

ISITA 2022, Tsukuba, Japan, October 17-19, 2022



|
A Very Quick Historical Overview

@ Shannon ('48): random coding as a simple tool for proving 3 good codes.
Elias ('55,'56); Fano ('61); Gallager ('65, '68): exponential error bounds.
Shannon, Gallager, Berlekamp ('67): lower bounds: SP, SLB.

Csiszér & Korner ('81): the method of types.

Many: extensions, improvements; ensembles of structured codes.

Random coding — a paradigm on its own right.
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Traditional Bounding Techniques

P.(ML decoder) < P.(another (easier) decoder).

Jensen's inequality: EZP < (EZ)?, 0 < p < 1 (Gallager—style bounds).
H{P(ylz,) > Plyle)} < [Plyle,)/Plyle:)]* (Chemoff bound).
Simple union bound.

Union bound with truncation: P[U;A;] < min{1,} , P[A;]}.

Union bound with intersection: P[U;A;] <37, P[A; N S|+ P[S].

Union bound with a power parameter: P[U;A;] < (32, P[A;])?, 0 < p < 1.

“Power distribution” inequality: (>, a;)* <) .a;, 0 < s <1 (Forney '68).



All these tools facilitate the analysis a great deal but
at the risk of compromising exponential tightness.

Main message of this talk: It is often possible to
preserve exponential tightness by bypassing some of the
above inequalities.
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My Little Toolbox

Type class enumeration (on top of the MoT).

Analogue of the MoT for infinite alphabets.

The saddle-point method — assessing probabilities and volumes.

Integral representations of some functions (with I. Sason).

e Reverse Jensen inequalities.
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Difficulty: Summations of Exponentially Many Terms

Many derivations are associated with summations of exponentially many terms,

€.g.,
p
P < ZE{ y|X 1/(1+p)} Zp(me)l/(l-&-p)} 7
1 1/8

In some situations (e.g., the BC, the IFC, the GPC, the wiretap channel,
erasure/list decoding), the optimal likelihood function = sum of exponentially
many terms,

Broadcast channel: score; = ZmP(ykcm,i)

Interference channel:  score; = E Py|lz;, )
m
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A Natural Remedy: Type Class Enumerators

The idea:
S PIX)P =S Ny(@Q) - Plylog)’ = 3 Ny(Q) - (@,
m Q Q

where
Ny(Q) = number of X, in a given type Q of x giveny .

What have we gained?

@ > of exponentially many terms —3_ of polynomially few terms.
o Ny(Q) ~ Binomial (e"F,e~"1(@)) — easy to handle.

e Marginals of {Ny(Q)} almost always suffice; Pairs are ~ independent.
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Consequence: Avoiding the Use of Jensen's Inequality

E

m

1/8 1/8
ZP(lem)‘*] = E [ Ny(Q) - e#1(@
Q

1/8
= E [max Ny(Q) - enﬂf(Q)}

max[Ny(Q)]l/ﬂ . enf(Q)}

® We just have to know how to assess moments of Ny (Q).
o Equivalently, deal with the large deviations behavior.



Properties of N ~ Binomial(e™4, e"5)

Drastic difference between A > B and A < B: phase transition at A = B.
Moments:

s - | exp{ns(A—B)} A>B
EAN }:{ exg{n(A—B)}?} WoB

Intuition:

e A > B: double—exponential concentration of N around its mean e™A—5).
© A<B: E{N*} =3 . n*P[N =n] = 1°P[N = 1] = ¢"(4=5),
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Properties of N ~ Binomial(e", e~"5) (Cont'd)

Large deviations behavior:

Pr{N > e} = ¢ F

)

with

p_l B=A4 [A=-Bl >
%) elsewhere

Intuition — “interesting” for A < B and A < 0: P[N > 1] = ¢ "(B-4),

1 A< B+ [N+

Any
Pr{N <e™} = { 0 elsewhere
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Example—Exponentially Tight Evaluation of Pc

Consider the BSC with crossover probability p. Using the relation

(X5Y)]/BY R > Ig( ;?

B(Vy(@Q*) = { SRR |

I X
exp{n[R — Io(X;Y)]} R <Io(X;

)

plugging it to the expression of P., and using the MoT, we get

exp{—nD(de (R)p)}
1 1
= exp {—n [5GV(R) ln;9 + (1 =6(R))In T hg((?cv(R))] }

F,

where ¢, (R) is the (smaller) solution to the equation

In2 — hy(5) = R.
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Example (Cont'd)

It is interesting to compare it to the result of using Jensen's inequality:

1/p
_ 1 8
P = BlgrolozE ;P(y\Xm) ]
. 1/p
Loy 5
< Mﬁlglgozy: E;P(y\Xm) ]

e R e )

Reminder: the red expression should be compared to

1 1
()0 4+ (1= 3oy (R)) In 7—

of the exponentially tight evaluation of the previous slide.
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Application to Random Binning

Consider the process of random binning:
Each & € X™ is randomly assigned to a bin z = f(x) ~ Unif{1,...,e"}.
At the decoder

z(y,z) =arg max P(x
(y,2) g panax (zly)

Then,

Jav]
I

Pr | {f(@) = f(z), P(&'|ly) > P(x|y)}

XT'£T

= ZP(m,y) Z Pr{N(Qx, f(z)) > 1}
Ty

Qx/y€E

where € is the class of all {Qx/yv} with Eg:In P(X'|Y) > Egln P(X|Y') and
where the type class enumerator

N(Qxrvs2) = [T(Qxryly) N £ (2)] ~ Binomial (| T(Qx v ly)l e ™).
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Avoid Bounding Indicator Functions by Chernoff Bounds

Consider the error+erasure event a la Forney ('68): Instead of
S

P(y|mm) T T y|Xm/
Pr{&;} =Pr <e™ Hp <" E ,
{Z’rn’;&nLP(yLXW/) gm P y‘wm

use: Pr{&} = Pr{ Z P(y|X ) > e "TP(ylx,,)

m’#m

= Pr { Ny(Q)@nf(Q) > e_nTenf(Qm)
Q

=~ Pr maxNy(Q)e"f(Q)>e—nT€nf(Qm)}

Q
= prJ {Ny(Q)enf(Q) > en[f(Qm)fT]}
Q

- nlf(Qm)—f(Q)—T]
mgxPr {Ny(Q) >e }

and now the large deviaions properties of a single Ny (Q) are invoked.. s
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What if Those Sums Appear Also in the Denominator?

Consider the likelihood decoder that randomly selects 7 under the posterior:

XN P(Y|X.)
Pem—o—E{ZMl (YXm)}.

m=0

B { ot PIXn) }
P(ylzo) + Y021 P(y|Xm)

[onl, Seiruma )
0 P(ylzo) + XM P(y|X )

)
= n~/md06"9Pr{ ZM 1 (y|X ) >e”9}
P(ylzo) + Yyt PYIXm)

/ dfe="? Pr{ Z Pyl Xm) > €_n9P(y|$o)}

and the rest is as before.
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What if ...in the Denominator? (Cont'd)

Sometimes random denominators can be handled using transform methods.
For example, let X; ~ N(0,0%), i =1,...,n, be independent. Then,

1
E {n} = 77
i X7
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What if ...in the Denominator? (Cont'd)

Sometimes random denominators can be handled using transform methods.
For example, let X; ~ N(0,0%), i =1,...,n, be independent. Then,

E{Z"—llXQ} = E{/Ooodt-exp [—té){f”

ool )

o dt

o (14 202t)/2
n<?2
n>2

Il
S — S
SRS

n—2)o?
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Analogue of the MoT for Infinite Alphabets

In the memoryless finite—alphabet (FA) case, we usually think of the type class of
a given x as the set of all =’

@ with the same empirical distribution as x,
@ that are permutations of x.

These definitions are specific to the FA memoryless case.

An alternative definition that lends itself to extensions:
T(x) ={z': P(z') = P(x) for every memoryless source P}.
For a general parametric family of sources { Py, 0 € O}:

T(x) ={x' : Pyp(x') = Py(x) for every 6 € O} .



Analogue of the MoT for Infinite Alphabets (Cont'd)

If {Py, 6 € ©} is an exponential family:

exp {~ YL, bi6i(@) |

Py(x) = Z(6) )

then

T(@) = {2’ ¢u(a’) = 4u(@), i=1,2,....k}.

FA memoryless: ¢;(x Zj{xt =i}

FA Markov: ¢;;(x Zj{zt =i,y = j}

Gaussian memoryless: ¢ (x E x5 o § ;.

Zero—mean, Gaussian AR(p): ¢;( thxtﬂ, 1=0,1,...
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Analogue of the MoT for Infinite Alphabets (Cont'd)

The main building blocks (just like in the ordinary MoT):

@ A computable expression for |T(x)|, or Vol{T(x)}.
@ Make sure that number of different types is not too large.

If X =R (say, the Gaussian case), we have two problems:
e Vol{T(x)} =0.
@ The space is unbounded — infinitely many types.

First problem — allow some tolerance e:

Te(z) ={a': |pi(z) — di(x)| <€, 1 =1,2,... k}.

But this still does not resolve the second problem.

Second problem—confine attention to a bounded region in IR™ (say, a sphere),

outside of which the probability decays with a large enough exponent.
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Analogue of the MoT for Infinite Alphabets (Cont'd)

To assess the exponent of Vol{T(x)}:

1> / dz’ - Py(z') = Vol{T(x)} - Po(x),
Te(T)

k
leading to Vol{T.(z)} < Pgtw) = exp {lﬂ Z(0) + ;9@1(-’3)}

k
and since this is V0 :  Vol{T.(x)} < mein exp {ln Z(0) + Z@igbi(m)} .
i=1

Exponentially tight as the minimizer 8* assigns Py« {T.(x)} ~ 1 (WLLN).
The same idea applies to assess volumes to conditional types:

Te(m|y) = {m/ : |¢1(€B/,y) - ¢Z(m7y)| < €, 1= 1727 .- 7k} .

Here one defines an exponential family of channels.



Analogue of the MoT for Infinite Alphabets (Cont'd)

A challenge (relevant to ISI channels) is to assess the volume of a conditional type

defined by both >, x4y, and > wxy—j, j =0,1,..
volume of

T(p, ¢, uly) = { th =ng, Z«’ﬂtﬂft 1 =ny, thyt = nﬂ}

is / dxd <z”: xf — mb) 1) (i TiLi_1 — m/)) 1) <z”: Tl — n,u) .
" t=1 t=1 t=1

1 o0
Next, represent 6(A) = 5 / exp{iwA}ldw, i=+v-1
i o0

., k. For example, the

then interchange the integrations, and finally, use the saddle—point method.

Such a derivation is doable since this is a Gaussian integral (Huleihel, Salamatian,
Merhav & Médard, 2017).
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Integral Representations (Merhav & Sason, 2019, 2020)

The logarithmic function
Consider the identity,

[e9) —Uu —uxr

(& — €

lnx:/ €T qu, 23>0
0 u

which implies

E{ln X} — /°° et Bl

u
A frequently encountered situation is when X = . Y], for i.i.d. {Y;}:

B(In(Y, + ...+ Y.)} = / E{e—mﬁ 1"

Application examples include the calculations of the:

o differential entropy of a generalized multivariate Cauchy distribution;
@ ergodic capacity of the Rayleigh SIMO channel;

@ redundancy of universal source codes;

@ moments of the empirical entropy.
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Integral Representations (Cont'd)

The power function
Consider the identity,

which implies

p v — Efe vX})
E{X*l=1 du.
{ } =+ 1—\(1 _ p) A u1+p u

Application examples include the calculations of:

moments of guesswork;
moments of parameter estimation error;
Rényi entropy of the generalized multivariate Cauchy density;

mutual information for channels with jammers.



Some Results ...
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Example 1: List Decoding (IT, Nov. 2014)

A code € = {xy,x1,..., a1}, M = " is selected at random.

The marginal of each codeword x; € X™ is Unif{T(Q)}.
@ The channel P(y|x) is a DMC.

@ The index I of the transmitted message x; is Unif{0,1,..., M — 1}.

The decoder outputs the indices of the L most likely messages.

@ Error event: I is not on the list.

Regimes: fixed list size (FLS) and exponential list size (ELS).
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Example 1: List Decoding (Cont'd)

A general, non—asymptotic bound: o
Theorem: The average probability of list error, P,, associated with the optimal list
decoder, is upper bounded by

P. < ZP P(y|x) exp{—nL [I:cy(X y)+ﬂ_R O(logn)] }’
+

n

where P(x) is the uniform distribution over 7(Q) and fwy(X;Y) is the empirical
mutual information induced by (x,y).
The proof is by a large deviations analysis of the binomial RV

M—-1

z,y) =Y HPY|Xn) = Pylz)}.
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Example 1: List Decoding (Cont'd)

The dependence on L appears twice:

ELS
InL 1
_ . n ogn
P2 Y P@Ple)own] - aL | fy(xiv) + 2 - k-0 (<)
.Y FLS

+

In the FLS regime, 2L — 0, and averaging exp{—nL[fg;y(X;Y) — R];} yields

n

P, < e_”E(R’L’Q), where

E(R,L,Q) £ min{D(Py x||Pyx|Q) + L- [[(X;Y) — R],},

Py x

The best exponent is obtained by maximizing over () to yield

B(R, L) = max B(R, L, Q).
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Example 1: List Decoding (Cont'd)

InL logn
P < _ =
7$E P(y|x) exp{ nL [Ig;y(X Y)—|— R— O( . )]Jr},

In

In the ELS regime, TL = \. By defining

8:{(:c,y): f;cy(X;Y)+>\fRZe},

we see that the conribution of € is < exp(—neeA”) = e ™ and so,
P.<Pr{€} = exp{-n _ min D(Py x| Py x|Q)
{Py|x: I(X;Y)<R-\}

2 exp{-nE,(R—)Q)}

which, for the optimum @, becomes exp{—nE,,(R — A)} — meeting the converse
bound of Shannon—Gallager—Berlekamp ('67).
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Example 2: Erasure/List S-W Decoding (2014)

Let (X, Y) ~ H?:l P(l’z,yl>

@ x — source to be encoded.

@ vy —side info @ decoder.
Encoder: f: X" — {0,1,...,M — 1}, M = "%,

z = f(x).

Random binning:
For every x € X", z is selected independently at random from {0,1,..., M —1}.
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Example 2: Erasure/List S-W Decoding (Cont'd)

Erasure/list decoder: Given y € Y™ and z, calculate for all € f~1(2):

P(z,y)
Yxrer-1onay @ y)

If > e"T & is a candidate.
@ If there are no candidates — an erasure is declared.
o If there is exactly one candidate — ordinary decoding: & =candidate.
@ If there is more than one candidate — a list is of all candidates is created.

Define €1 as the event where the real x is not a candidate.
Let E1(R,T) = exponent of Pr{€1}. The other exponent

Ey(R,T) = { decoding error exp erasure mode — Ey(R,T)+T.

expected list size exp list mode
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Example 2: Erasure/List S-W Decoding (Cont'd)

Model: A double-BSS with a BSC(p) in between.
E=(R,T) > E{™ (R, T) always.

For some regions in the plane R—T', E¥*(R,T) may be larger than
EP"™(R,T) by an arbitrarily large factor!

@ For R> h(p) and T' < 1In ;%

E;orney(R’ T) <R+ |T|<OO; Etfe(R7 T):OO

@ Consider the case of very weakly correlated sources, i.e., p= 3 —¢, || < 1.

For R € [h(p),In2] and T = —7¢€% with 7 > 4:

8
ERT) < (40, BrRT) > [T -] e
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Example 3: Typical Random Codes (2017)

While traditional random coding error exponents are defined as

_lnEPe(Gn)] |

E(R) = lim { -

n—oo

typical-code error exponents are defined as

E,(R) = lim {—Elnpe(e")}

n

o By Jensen's inequality, E,,(R) > E,(R).
e FE.(R) — dominated by bad codes; E,,(R) dominated by typical codes.

Let g = {€: P.(C) =enE}

P(€) =) P(Sp)-e " = P(Gp) - e,
E
whereas E,,(R) = Ey, where P[Sg,] — 1.
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Example 3: Typical Random Codes (Cont'd)

We derive the exact typical-code error exponent for a class of stochastic
decoders,

P(riv = mly) < exp{ng(Pr,,y)}-
and show that
E,(R) = E.(2R) + R,

Extending Barg & Forney (2002) in several directions:

General DMC is considered, not merely the BSC.

Covering a wider family of decoders.

Ensemble of constant composition codes — optimal Pl distribution.
Relation to expurgated exponent — for all R and a general decoder.

The analysis technique is applicable also to more general scenarios.
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Example 3: Typical Random Codes (Cont'd)

Particularizing to ML decoding, the error exponent formula includes
minimization subject to the constraint,

EolnW(Y|X') > max{EqInW(Y|X), D(R,Qy)},
D(R,Qy) = sup{EqIn W(Y|X") : Io(X";Y) < R, (Qy x Qxny)x = Qx},

being the typical highest score of an incorrect message.

A technical issue: handling summations of exponentially many fractions with
random denominators — exploit concentration properties.

P(y|Xm’>
T 3 D PwlXa) PIXom) - > i P01 X )

m'#m Y
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Example 4: Broadcast Channels (with R. Averbuch, 2018)

Exact exponents for the weak and strong user with optimal decoders.
@ Universal decoders for both users, achieving the same error exponents.

@ Significant improvement and simplification of earlier results.

Gallager—style lower bounds for both users.

Expurgated exponents (joint work also with N. Weinberger, 2019).
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Example 5: Channel Decoding with VQ'ed Codewords

-7 P(zly) "< _
// x \\
y vVQ , W (z|z) o
G(x)

Rate-R, “codebook” of y's, quantized versions of corresponding «'s.
Motivation: biometric identification (enrollment vs. authentication).
Objectives: ensemble performance; universal decoding.

Dasarthy & Draper (2011): MMI decoder. Can we improve? Yes!
Difficulty: the effective channel, {P(z|y)}, is complicated:

P(ymz) _ S C@)W (zl2){f(2) = y,0}
P(y,,) > C@I{f (@) =y} -

P(zly,) =
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Example 5: Decoding with VQ'ed Codewords (Cont'd)

Main contributions:

Exponentially tight bound on the ensemble performance.
Improvement relative to Dasarathy & Draper (2011).

Universal decoder a.g.a. ML decoder (V z,z : W(z|z) > 0).

Also a.g.a. any decoder that depends on joint empirical statistics (V W).

A good approximation to the channel {P(z|y)}.
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Example 5: Decoding with VQ'ed Codewords (Cont'd)

Ensemble of VQ's:

e Vinput type, Qx, choose Qy|x (s.t. compression constraints).

Randomly draw e™®e vectors from T(Qy ), with Rg = Io(X;Y) + A.

Randomly rank all members of every T(Qy|x|x).

Let M(x,y) = rank of y € T(Qy|x|x).

@ Code ensemble: random codebook + random rank function.

Quantize z to y € T(Qy |x|x) N code with the smallest M (x,y).
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Example 5: Decoding with VQ'ed Codewords (Cont'd)

@ For most codes in the ensemble, we can approximate
Z G j{f ym} = eXP{_”@(Pym)}a
where «(+) has a certain single—letter formula.
@ The proposed modified MMI decoder is of the form
m = a’rgmin {1ogN(y'rn|z) - na(Pym)} )

where
N(yplz) = \wymzme ,

C being the VQ code.
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Some Other Works

Improved bounds for erasure/list decoding (2008).

The interference channel (w. Etkin & Ordentlich, 2010).

The broadcast channel (w. Kaspi, 2011).

Exact bounds for erasure/list decoding (w. Somekh—Baruch, 2011).

Expurgation (w. Scarlett, Peng, Guillén i. Fabregas, Martinéz, 2014).

Erasure/list for S-W decoding (2014).

Codeword or noise? (w. Weinberger, 2014).

Optimal bin index decoding (2014).

Correct wiretapper decoding (2014).

Statistical physics of random binning (2015).

Universal source/channel with Sl (2016).

Simplified erasure/list decoding (w. Weinberger, 2017).
Improved exponents for the IFC (w. Huleihel, 2017).
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Some Other Works (Cont'd)

Joint channel detection & coding (w. Weinberger, 2017).

Generalized likelihood decoder (2017).

Exact secrecy exponents (w. Bastani-Parizi & Telatar, 2017).

Universal decoding for VQ'ed codewords (2017).

Exact exponents & universal decoding for the ABC (w. Averbuch, 2017).
Ensemble performance of biometric ident. systems (2017).

Mismatched ISI channels (w. Huleihel, Salamatian & Médard, 2017).
V-L codes with single-bit feedback (w. Ginzach & Sason, 2017).
Typical-code random coding exponents (2017).

Expurgated bounds for the ABC (w. Averbuch & Weinberger, 2017).
2nd order & moderate deviations in error+-erasure (Hayashi & Tan, 2015).
Residual uncertainties under Rényi entropies (Hayashi & Tan, 2016).
Mismatched decoding (Scarlett, Ph.D. thesis, 2014).
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Future Challenges and Open Problems

Handling ensembles of linear/lattice/convolutional /LDPC codes, etc.

Further results on typical random codes (multi-user configurations).

Simplify optimization problems (e.g., Gallager—style bounds).

A more solid theory for the extended MoT (for exponential families).
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Thank U 4 Coming & Listening!



