

Some New Analytical Tools for Evaluation of Code Ensemble Performance

Neri Merhav

The Viterbi Faculty of Electrical & Computer Engineering
Technion—Israel Institute of Technology
Haifa, Israel

ISITA 2022, Tsukuba, Japan, October 17–19, 2022

A Very Quick Historical Overview

- Shannon ('48): random coding as a simple tool for proving \exists good codes.
- Elias ('55, '56); Fano ('61); Gallager ('65, '68): exponential error bounds.
- Shannon, Gallager, Berlekamp ('67): lower bounds: SP, SLB.
- Csiszár & Körner ('81): the method of types.
- Many: extensions, improvements; ensembles of structured codes.

Random coding – a paradigm on its own right.

Traditional Bounding Techniques

- $P_e(\text{ML decoder}) \leq P_e(\text{another (easier) decoder}).$
- Jensen's inequality: $\mathbf{E}Z^\rho \leq (\mathbf{E}Z)^\rho$, $0 \leq \rho \leq 1$ (Gallager-style bounds).
- $I\{P(\mathbf{y}|\mathbf{x}_j) \geq P(\mathbf{y}|\mathbf{x}_i)\} \leq [P(\mathbf{y}|\mathbf{x}_j)/P(\mathbf{y}|\mathbf{x}_i)]^\lambda$ (Chernoff bound).
- Simple union bound.
- Union bound with truncation: $P[\bigcup_j \mathcal{A}_j] \leq \min\{1, \sum_j P[\mathcal{A}_j]\}.$
- Union bound with a power parameter: $P[\bigcup_j \mathcal{A}_j] \leq (\sum_j P[\mathcal{A}_j])^\rho$, $0 \leq \rho \leq 1$.
- Union bound with intersection: $P[\bigcup_j \mathcal{A}_j] \leq \sum_j P[\mathcal{A}_j \cap \mathcal{G}] + P[\mathcal{G}^c].$
- “Power distribution” inequality: $(\sum_i a_i)^s \leq \sum_i a_i^s$, $0 \leq s \leq 1$ (Forney '68).

All these tools facilitate the analysis a great deal but at the risk of compromising exponential tightness.

Main message of this talk: It is often possible to preserve exponential tightness by bypassing some of the above inequalities.

My Little Toolbox

- *Type class enumeration (on top of the MoT).*
- *Analogue of the MoT for infinite alphabets.*
- *The saddle-point method – assessing probabilities and volumes.*
- *Integral representations of some functions (with I. Sason).*
- *Reverse Jensen inequalities.*

Difficulty: Summations of Exponentially Many Terms

Many derivations are associated with summations of exponentially many terms, e.g.,

$$\overline{P_e} \leq \sum_{\mathbf{y}} \mathbf{E} \left\{ P(\mathbf{y}|\mathbf{X})^{1/(1+\rho)} \right\} \cdot \mathbf{E} \left[\sum_m P(\mathbf{y}|\mathbf{X}_m)^{1/(1+\rho)} \right]^\rho,$$

$$\overline{P_c} = \frac{1}{M} \mathbf{E} \left\{ \sum_{\mathbf{y}} \max_m P(\mathbf{y}|\mathbf{X}_m) \right\} = \frac{1}{M} \lim_{\beta \rightarrow \infty} \sum_{\mathbf{y}} \mathbf{E} \left\{ \left[\sum_m P(\mathbf{y}|\mathbf{X}_m)^\beta \right]^{1/\beta} \right\}.$$

In some situations (e.g., the BC, the IFC, the GPC, the wiretap channel, erasure/list decoding), the **optimal** likelihood function = sum of exponentially many terms,

Broadcast channel: $\text{score}_i = \sum_m P(\mathbf{y}|\mathbf{x}_{m,i})$

Interference channel: $\text{score}_i = \sum_m P(\mathbf{y}|\mathbf{x}_i, \mathbf{x}_m)$

A Natural Remedy: Type Class Enumerators

The idea:

$$\sum_{\textcolor{red}{m}} P(\mathbf{y}|\mathbf{X}_m)^\beta = \sum_Q \textcolor{blue}{N}_{\mathbf{y}}(Q) \cdot P(\mathbf{y}|\mathbf{x}_Q)^\beta = \sum_Q \textcolor{blue}{N}_{\mathbf{y}}(Q) \cdot e^{n\beta f(Q)},$$

where

$$N_{\mathbf{y}}(Q) = \text{number of } \mathbf{X}_m \text{ in a given type } Q \text{ of } \mathbf{x} \text{ given } \mathbf{y}.$$

What have we gained?

- \sum of exponentially many terms $\rightarrow \sum$ of polynomially few terms.
- $N_{\mathbf{y}}(Q) \sim \text{Binomial}(e^{nR}, e^{-nI(Q)})$ – easy to handle.
- Marginals of $\{N_{\mathbf{y}}(Q)\}$ almost always suffice; Pairs are \sim independent.

Consequence: Avoiding the Use of Jensen's Inequality

$$\begin{aligned} \mathbf{E} \left\{ \left[\sum_m P(\mathbf{y} | \mathbf{X}_m)^\beta \right]^{1/\beta} \right\} &= \mathbf{E} \left[\sum_Q N_{\mathbf{y}}(Q) \cdot e^{n\beta f(Q)} \right]^{1/\beta} \\ &\stackrel{.}{=} \mathbf{E} \left[\max_Q N_{\mathbf{y}}(Q) \cdot e^{n\beta f(Q)} \right]^{1/\beta} \\ &= \mathbf{E} \left\{ \max_Q [N_{\mathbf{y}}(Q)]^{1/\beta} \cdot e^{n f(Q)} \right\} \\ &= \mathbf{E} \left\{ \sum_Q [N_{\mathbf{y}}(Q)]^{1/\beta} \cdot e^{n f(Q)} \right\} \\ &= \sum_Q \mathbf{E}\{[N_{\mathbf{y}}(Q)]^{1/\beta}\} \cdot e^{n f(Q)}. \end{aligned}$$

- We just have to know how to assess moments of $N_{\mathbf{y}}(Q)$.
- Equivalently, deal with the large deviations behavior.

Properties of $N \sim \text{Binomial}(e^{nA}, e^{-nB})$

Drastic difference between $A > B$ and $A < B$: **phase transition** at $A = B$.

Moments:

$$E\{N^s\} \doteq \begin{cases} \exp\{n\mathbf{s}(A - B)\} & A > B \\ \exp\{n(A - B)\} & A < B \end{cases}$$

Intuition:

- $A > B$: double-exponential concentration of N around its mean $e^{n(A-B)}$.
- $A < B$: $E\{N^s\} = \sum_{n \geq 1} n^s P[N = n] \doteq 1^s P[N = 1] \doteq e^{n(A-B)}$.

Properties of $N \sim \text{Binomial}(e^{nA}, e^{-nB})$ (Cont'd)

Large deviations behavior:

$$\Pr\{N \geq e^{\lambda n}\} \doteq e^{-nE},$$

with

$$E = \begin{cases} [B - A]_+ & [A - B]_+ \geq \lambda \\ \infty & \text{elsewhere} \end{cases}$$

Intuition – “interesting” for $A < B$ and $\lambda \leq 0$: $P[N \geq 1] \doteq e^{-n(B-A)}$.

$$\Pr\{N \leq e^{\lambda n}\} \doteq \begin{cases} 1 & A \leq B + [\lambda]_+ \\ 0 & \text{elsewhere} \end{cases}$$

Example—Exponentially Tight Evaluation of \overline{P}_c

Consider the BSC with crossover probability p . Using the relation

$$\mathbf{E}\{N_y(Q)^{1/\beta}\} \doteq \begin{cases} \exp\{n[R - I_Q(X;Y)]/\beta\} & R > I_Q(X;Y) \\ \exp\{n[R - I_Q(X;Y)]\} & R < I_Q(X;Y) \end{cases}$$

plugging it to the expression of \overline{P}_c , and using the MoT, we get

$$\begin{aligned} \overline{P}_c &\doteq \exp\{-nD(\delta_{\text{GV}}(R)\|p)\} \\ &= \exp\left\{-n\left[\delta_{\text{GV}}(R)\ln\frac{1}{p} + (1 - \delta_{\text{GV}}(R))\ln\frac{1}{1-p} - h_2(\delta_{\text{GV}}(R))\right]\right\} \end{aligned}$$

where $\delta_{\text{GV}}(R)$ is the (smaller) solution to the equation

$$\ln 2 - h_2(\delta) = R.$$

Example (Cont'd)

It is interesting to compare it to the result of using [Jensen's inequality](#):

$$\begin{aligned}\overline{P}_c &= \frac{1}{M} \lim_{\beta \rightarrow \infty} \sum_{\mathbf{y}} \mathbf{E} \left\{ \left[\sum_m P(\mathbf{y} | \mathbf{X}_m)^\beta \right]^{1/\beta} \right\} \\ &\leq \frac{1}{M} \lim_{\beta \rightarrow \infty} \sum_{\mathbf{y}} \left[\mathbf{E} \sum_m P(\mathbf{y} | \mathbf{X}_m)^\beta \right]^{1/\beta} \\ &\doteq \exp \left(-n \left[\min \left\{ \ln \frac{1}{p}, \ln \frac{1}{1-p} \right\} - h_2(\delta_{\text{GV}}(R)) \right] \right)\end{aligned}$$

Reminder: the [red expression](#) should be compared to

$$\delta_{\text{GV}}(R) \ln \frac{1}{p} + (1 - \delta_{\text{GV}}(R)) \ln \frac{1}{1-p}$$

of the exponentially tight evaluation of the previous slide.

Application to Random Binning

Consider the process of **random binning**:

Each $\mathbf{x} \in \mathcal{X}^n$ is randomly assigned to a bin $z = f(\mathbf{x}) \sim \text{Unif}\{1, \dots, e^{nR}\}$.

At the decoder

$$\hat{\mathbf{x}}(\mathbf{y}, z) = \arg \max_{\mathbf{x} \in f^{-1}(z)} P(\mathbf{x}|\mathbf{y})$$

Then,

$$\begin{aligned}\overline{P_e} &= \Pr \bigcup_{\mathbf{x}' \neq \mathbf{x}} \{f(\mathbf{x}') = f(\mathbf{x}), P(\mathbf{x}'|\mathbf{y}) \geq P(\mathbf{x}|\mathbf{y})\} \\ &\stackrel{.}{=} \sum_{\mathbf{x}\mathbf{y}} P(\mathbf{x}, \mathbf{y}) \sum_{Q_{X'Y} \in \mathcal{E}} \Pr \{N(Q_{X'Y}, f(\mathbf{x})) \geq 1\}\end{aligned}$$

where \mathcal{E} is the class of all $\{Q_{X'Y}\}$ with $\mathbf{E}_{Q'} \ln P(X'|Y) \geq \mathbf{E}_Q \ln P(X|Y)$ and where the type class enumerator

$$N(Q_{X'Y}, z) = |\mathcal{T}(Q_{X'Y}|\mathbf{y}) \cap f^{-1}(z)| \sim \text{Binomial}(|\mathcal{T}(Q_{X'Y}|\mathbf{y})|, e^{-nR}).$$

Avoid Bounding Indicator Functions by Chernoff Bounds

Consider the error+erasure event a la Forney ('68): Instead of

$$\Pr\{\mathcal{E}_1\} = \Pr\left\{\frac{P(\mathbf{y}|\mathbf{x}_m)}{\sum_{m' \neq m} P(\mathbf{y}|\mathbf{X}_{m'})} < e^{nT}\right\} \leq e^{nsT} \mathbf{E}\left\{\left(\sum_{m' \neq m} \frac{P(\mathbf{y}|\mathbf{X}_{m'})}{P(\mathbf{y}|\mathbf{x}_m)}\right)^s\right\},$$

$$\begin{aligned}\text{use : } \Pr\{\mathcal{E}_1\} &= \Pr\left\{\sum_{m' \neq m} P(\mathbf{y}|\mathbf{X}_{m'}) > e^{-nT} P(\mathbf{y}|\mathbf{x}_m)\right\} \\ &= \Pr\left\{\sum_Q N_{\mathbf{y}}(Q) e^{nf(Q)} > e^{-nT} e^{nf(Q_m)}\right\} \\ &\doteq \Pr\left\{\max_Q N_{\mathbf{y}}(Q) e^{nf(Q)} > e^{-nT} e^{nf(Q_m)}\right\} \\ &\doteq \Pr\bigcup_Q \left\{N_{\mathbf{y}}(Q) e^{nf(Q)} > e^{n[f(Q_m)-T]}\right\} \\ &\doteq \max_Q \Pr\left\{N_{\mathbf{y}}(Q) > e^{n[f(Q_m)-f(Q)-T]}\right\}\end{aligned}$$

and now the large deviations properties of a **single** $N_{\mathbf{y}}(Q)$ are invoked..

What if Those Sums Appear Also in the Denominator?

Consider the likelihood decoder that randomly selects \hat{m} under the posterior:

$$\overline{P_{\epsilon|m=0}} = \mathbf{E} \left\{ \frac{\sum_{m=1}^{M-1} P(\mathbf{Y}|\mathbf{X}_m)}{\sum_{m=0}^{M-1} P(\mathbf{Y}|\mathbf{X}_m)} \right\}.$$

$$\begin{aligned} & \mathbf{E} \left\{ \frac{\sum_{m=1}^{M-1} P(\mathbf{y}|\mathbf{X}_m)}{P(\mathbf{y}|\mathbf{x}_0) + \sum_{m=1}^{M-1} P(\mathbf{y}|\mathbf{X}_m)} \right\} \\ = & \int_0^1 ds \cdot \Pr \left\{ \frac{\sum_{m=1}^{M-1} P(\mathbf{y}|\mathbf{X}_m)}{P(\mathbf{y}|\mathbf{x}_0) + \sum_{m=1}^{M-1} P(\mathbf{y}|\mathbf{X}_m)} \geq s \right\} \\ = & n \cdot \int_0^\infty d\theta e^{-n\theta} \Pr \left\{ \frac{\sum_{m=1}^{M-1} P(\mathbf{y}|\mathbf{X}_m)}{P(\mathbf{y}|\mathbf{x}_0) + \sum_{m=1}^{M-1} P(\mathbf{y}|\mathbf{X}_m)} \geq e^{-n\theta} \right\} \\ \doteq & \int_0^\infty d\theta e^{-n\theta} \Pr \left\{ \sum_{m=1}^{M-1} P(\mathbf{y}|\mathbf{X}_m) \geq e^{-n\theta} P(\mathbf{y}|\mathbf{x}_0) \right\} \end{aligned}$$

and the rest is as before.

What if . . . in the Denominator? (Cont'd)

Sometimes random denominators can be handled using [transform methods](#).
For example, let $X_i \sim \mathcal{N}(0, \sigma^2)$, $i = 1, \dots, n$, be independent. Then,

$$\mathbf{E} \left\{ \frac{1}{\sum_{i=1}^n X_i^2} \right\} = \text{???}$$

What if . . . in the Denominator? (Cont'd)

Sometimes random denominators can be handled using [transform methods](#). For example, let $X_i \sim \mathcal{N}(0, \sigma^2)$, $i = 1, \dots, n$, be independent. Then,

$$\begin{aligned}\mathbf{E} \left\{ \frac{1}{\sum_{i=1}^n X_i^2} \right\} &= \mathbf{E} \left\{ \int_0^\infty dt \cdot \exp \left[-t \sum_{i=1}^n X_i^2 \right] \right\} \\ &= \int_0^\infty dt \cdot \mathbf{E} \left\{ \exp \left[-t \sum_{i=1}^n X_i^2 \right] \right\} \\ &= \int_0^\infty \frac{dt}{(1 + 2\sigma^2 t)^{n/2}} \\ &= \begin{cases} \infty & n \leq 2 \\ \frac{1}{(n-2)\sigma^2} & n > 2 \end{cases}\end{aligned}$$

Analogue of the MoT for Infinite Alphabets

In the memoryless finite-alphabet (FA) case, we usually think of the type class of a given \mathbf{x} as the set of all \mathbf{x}'

- with the same empirical distribution as \mathbf{x} ,
- that are permutations of \mathbf{x} .

These definitions are specific to the FA memoryless case.

An alternative definition that lends itself to extensions:

$$\mathcal{T}(\mathbf{x}) = \{\mathbf{x}' : P(\mathbf{x}') = P(\mathbf{x}) \text{ for every memoryless source } P\}.$$

For a general parametric family of sources $\{P_\theta, \theta \in \Theta\}$:

$$\mathcal{T}(\mathbf{x}) = \{\mathbf{x}' : P_\theta(\mathbf{x}') = P_\theta(\mathbf{x}) \text{ for every } \theta \in \Theta\}.$$

Analogue of the MoT for Infinite Alphabets (Cont'd)

If $\{P_\theta, \theta \in \Theta\}$ is an **exponential family**:

$$P_\theta(\mathbf{x}) = \frac{\exp \left\{ -\sum_{i=1}^k \theta_i \phi_i(\mathbf{x}) \right\}}{Z(\theta)},$$

then

$$\mathcal{T}(\mathbf{x}) = \{\mathbf{x}' : \phi_i(\mathbf{x}') = \phi_i(\mathbf{x}), i = 1, 2, \dots, k\}.$$

FA memoryless: $\phi_i(\mathbf{x}) = \sum_{t=1}^n \mathbb{I}\{x_t = i\}$

FA Markov: $\phi_{ij}(\mathbf{x}) = \sum_{t=1}^n \mathbb{I}\{x_t = i, x_{t+1} = j\}$

Gaussian memoryless: $\phi_1(\mathbf{x}) = \sum_{t=1}^n x_t; \quad \phi_2(\mathbf{x}) = \sum_{t=1}^n x_t^2.$

Zero-mean, Gaussian AR(p): $\phi_i(\mathbf{x}) = \sum_{t=1}^n x_t x_{t+i}, \quad i = 0, 1, \dots, k$

Analogue of the MoT for Infinite Alphabets (Cont'd)

The main building blocks (just like in the ordinary MoT):

- A **computable expression** for $|\mathcal{T}(\mathbf{x})|$, or $\text{Vol}\{\mathcal{T}(\mathbf{x})\}$.
- Make sure that **number of different types is not too large**.

If $\mathcal{X} = \mathbb{R}$ (say, the Gaussian case), we have two problems:

- $\text{Vol}\{\mathcal{T}(\mathbf{x})\} = 0$.
- The space is unbounded \rightarrow **infinitely** many types.

First problem – allow some tolerance ϵ :

$$\mathcal{T}_\epsilon(\mathbf{x}) = \{\mathbf{x}' : |\phi_i(\mathbf{x}') - \phi_i(\mathbf{x})| \leq \epsilon, \quad i = 1, 2, \dots, k\}.$$

But this still does not resolve the second problem.

Second problem—**confine attention to a bounded region** in \mathbb{R}^n (say, a sphere), outside of which the probability decays with a large enough exponent.

Analogue of the MoT for Infinite Alphabets (Cont'd)

To assess the exponent of $\text{Vol}\{\mathcal{T}(\mathbf{x})\}$:

$$1 \geq \int_{\mathcal{T}_\epsilon(\mathbf{x})} d\mathbf{x}' \cdot P_\theta(\mathbf{x}') \doteq \text{Vol}\{\mathcal{T}_\epsilon(\mathbf{x})\} \cdot P_\theta(\mathbf{x}),$$

leading to $\text{Vol}\{\mathcal{T}_\epsilon(\mathbf{x})\} \leq \frac{1}{P_\theta(\mathbf{x})} = \exp \left\{ \ln Z(\theta) + \sum_{i=1}^k \theta_i \phi_i(\mathbf{x}) \right\}$

and since this is $\forall \theta : \text{Vol}\{\mathcal{T}_\epsilon(\mathbf{x})\} \leq \min_\theta \exp \left\{ \ln Z(\theta) + \sum_{i=1}^k \theta_i \phi_i(\mathbf{x}) \right\}$.

Exponentially tight as the minimizer θ^* assigns $P_{\theta^*}\{\mathcal{T}_\epsilon(\mathbf{x})\} \approx 1$ (WLLN).
The same idea applies to assess volumes to **conditional types**:

$$\mathcal{T}_\epsilon(\mathbf{x}|\mathbf{y}) = \{\mathbf{x}' : |\phi_i(\mathbf{x}', \mathbf{y}) - \phi_i(\mathbf{x}, \mathbf{y})| \leq \epsilon, \quad i = 1, 2, \dots, k\}.$$

Here one defines an **exponential family of channels**.

Analogue of the MoT for Infinite Alphabets (Cont'd)

A challenge (relevant to ISI channels) is to assess the volume of a conditional type defined by both $\sum_t x_t y_t$ and $\sum_{t=1}^n x_t x_{t-j}$, $j = 0, 1, \dots, k$. For example, the volume of

$$\mathcal{T}(\phi, \psi, \mu | \mathbf{y}) = \left\{ \mathbf{x} : \sum_{t=1}^n x_t^2 = n\phi, \sum_{t=1}^n x_t x_{t-1} = n\psi, \sum_{t=1}^n x_t y_t = n\mu \right\}$$

is $\int_{\mathbb{R}^n} d\mathbf{x} \delta \left(\sum_{t=1}^n x_t^2 - n\phi \right) \delta \left(\sum_{t=1}^n x_t x_{t-1} - n\psi \right) \delta \left(\sum_{t=1}^n x_t y_t - n\mu \right).$

Next, represent $\delta(A) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\{i\omega A\} d\omega$, $i = \sqrt{-1}$

then interchange the integrations, and finally, use the [saddle-point method](#). Such a derivation is doable since this is a Gaussian integral (Huleihel, Salamatian, Merhav & Médard, 2017).

Integral Representations (Merhav & Sason, 2019, 2020)

The logarithmic function

Consider the identity,

$$\ln x = \int_0^\infty \frac{e^{-u} - e^{-ux}}{u} du, \quad x > 0$$

which implies

$$\mathbf{E}\{\ln X\} = \int_0^\infty \frac{e^{-u} - \mathbf{E}\{e^{-uX}\}}{u} du.$$

A frequently encountered situation is when $X = \sum_i Y_i$, for i.i.d. $\{Y_i\}$:

$$\mathbf{E}\{\ln(Y_1 + \dots + Y_n)\} = \int_0^\infty \frac{e^{-u} - [\mathbf{E}\{e^{-uY_1}\}]^n}{u} du.$$

Application examples include the calculations of the:

- differential entropy of a generalized multivariate Cauchy distribution;
- ergodic capacity of the Rayleigh SIMO channel;
- redundancy of universal source codes;
- moments of the empirical entropy.

Integral Representations (Cont'd)

The power function

Consider the identity,

$$x^\rho = 1 + \frac{\rho}{\Gamma(1-\rho)} \int_0^\infty \frac{e^{-u} - e^{-ux}}{u^{1+\rho}} du, \quad x \geq 0, \quad 0 \leq \rho \leq 1$$

which implies

$$\mathbf{E}\{X^\rho\} = 1 + \frac{\rho}{\Gamma(1-\rho)} \int_0^\infty \frac{e^{-u} - \mathbf{E}\{e^{-uX}\}}{u^{1+\rho}} du.$$

Application examples include the calculations of:

- moments of guesswork;
- moments of parameter estimation error;
- Rényi entropy of the generalized multivariate Cauchy density;
- mutual information for channels with jammers.

Some Results . . .

Example 1: List Decoding (IT, Nov. 2014)

- A code $\mathcal{C} = \{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{M-1}\}$, $M = e^{nR}$, is selected at random.
- The marginal of each codeword $\mathbf{x}_i \in \mathcal{X}^n$ is $\text{Unif}\{\mathcal{T}(Q)\}$.
- The channel $P(\mathbf{y}|\mathbf{x})$ is a DMC.
- The index I of the transmitted message \mathbf{x}_I is $\text{Unif}\{0, 1, \dots, M-1\}$.
- The decoder outputs the indices of the L most likely messages.
- Error event: I is not on the list.
- Regimes: **fixed list size** (FLS) and **exponential list size** (ELS).

Example 1: List Decoding (Cont'd)

A general, non-asymptotic bound:

Theorem: The average probability of list error, \overline{P}_e , associated with the optimal list decoder, is upper bounded by

$$\overline{P}_e \leq \sum_{\mathbf{x}, \mathbf{y}} P(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) \exp \left\{ -n \mathbf{L} \left[\hat{I}_{\mathbf{x}\mathbf{y}}(X; Y) + \frac{\ln \mathbf{L}}{n} - R - O\left(\frac{\log n}{n}\right) \right]_+ \right\},$$

where $P(\mathbf{x})$ is the uniform distribution over $\mathcal{T}(Q)$ and $\hat{I}_{\mathbf{x}\mathbf{y}}(X; Y)$ is the empirical mutual information induced by (\mathbf{x}, \mathbf{y}) .

The proof is by a large deviations analysis of the binomial RV

$$N(\mathbf{x}, \mathbf{y}) = \sum_{m=1}^{M-1} \mathbb{I}\{P(\mathbf{y}|\mathbf{X}_m) \geq P(\mathbf{y}|\mathbf{x})\}.$$

Example 1: List Decoding (Cont'd)

The dependence on L appears [twice](#):

$$\overline{P}_e \leq \sum_{\mathbf{x}, \mathbf{y}} P(\mathbf{x})P(\mathbf{y}|\mathbf{x}) \exp \left\{ - \underbrace{nL}_{\text{FLS}} \left[\hat{I}_{\mathbf{x}\mathbf{y}}(X;Y) + \overbrace{\frac{\ln L}{n}}^{\text{ELS}} - R - O\left(\frac{\log n}{n}\right) \right]_+ \right\},$$

In the FLS regime, $\frac{\ln L}{n} \rightarrow 0$, and averaging $\exp\{-nL[\hat{I}_{\mathbf{x}\mathbf{y}}(X;Y) - R]_+\}$ yields

$$\overline{P}_e \stackrel{.}{\leq} e^{-nE(R,L,Q)}, \quad \text{where}$$

$$E(R, L, Q) \stackrel{\triangle}{=} \min_{\tilde{P}_{Y|X}} \{ D(\tilde{P}_{Y|X} \| P_{Y|X}|Q) + L \cdot [\tilde{I}(X;Y) - R]_+ \},$$

The best exponent is obtained by maximizing over Q to yield

$$E(R, L) = \max_Q E(R, L, Q).$$

Example 1: List Decoding (Cont'd)

$$\overline{P_e} \leq \sum_{\mathbf{x}, \mathbf{y}} P(\mathbf{x}) P(\mathbf{y}|\mathbf{x}) \exp \left\{ -nL \left[\hat{I}_{\mathbf{x}\mathbf{y}}(X;Y) + \frac{\ln L}{n} - R - O\left(\frac{\log n}{n}\right) \right]_+ \right\},$$

In the ELS regime, $\frac{\ln L}{n} = \lambda$. By defining

$$\mathcal{E} = \left\{ (\mathbf{x}, \mathbf{y}) : \hat{I}_{\mathbf{x}\mathbf{y}}(X;Y) + \lambda - R \geq \epsilon \right\},$$

we see that the contribution of \mathcal{E} is $\leq \exp(-n\epsilon e^{\lambda n}) = e^{-n\infty}$, and so,

$$\begin{aligned} \overline{P_e} &\stackrel{.}{\leq} \Pr\{\mathcal{E}^c\} \stackrel{.}{=} \exp \left\{ -n \min_{\{\tilde{P}_{Y|X} : \tilde{I}(X;Y) \leq R - \lambda\}} D(\tilde{P}_{Y|X} \| P_{Y|X} | Q) \right\} \\ &\stackrel{\triangle}{=} \exp\{-nE_{\text{sp}}(R - \lambda, Q)\} \end{aligned}$$

which, for the optimum Q , becomes $\exp\{-nE_{\text{sp}}(R - \lambda)\}$ — meeting the converse bound of Shannon–Gallager–Berlekamp ('67).

Example 2: Erasure/List S-W Decoding (2014)

Let $(\mathbf{X}, \mathbf{Y}) \sim \prod_{i=1}^n P(x_i, y_i)$.

- \mathbf{x} – source to be encoded.
- \mathbf{y} – side info @ decoder.

Encoder: $f : \mathcal{X}^n \rightarrow \{0, 1, \dots, M - 1\}$, $M = e^{nR}$.

$$z = f(\mathbf{x}).$$

Random binning:

For every $\mathbf{x} \in \mathcal{X}^n$, z is selected independently at random from $\{0, 1, \dots, M - 1\}$.

Example 2: Erasure/List S-W Decoding (Cont'd)

Erasure/list decoder: Given $\mathbf{y} \in \mathcal{Y}^n$ and z , calculate for all $\hat{\mathbf{x}} \in f^{-1}(z)$:

$$\frac{P(\hat{\mathbf{x}}, \mathbf{y})}{\sum_{\mathbf{x}' \in f^{-1}(z) \setminus \{\hat{\mathbf{x}}\}} P(\mathbf{x}', \mathbf{y})}.$$

If $\geq e^{nT}$, $\hat{\mathbf{x}}$ is a **candidate**.

- If there are no candidates – an **erasure** is declared.
- If there is exactly one candidate – ordinary decoding: $\hat{\mathbf{x}} = \text{candidate}$.
- If there is more than one candidate – a **list** of all candidates is created.

Define \mathcal{E}_1 as the event where the real \mathbf{x} is **not a candidate**.

Let $E_1(R, T) = \text{exponent of } \Pr\{\mathcal{E}_1\}$. The other exponent

$$E_2(R, T) = \begin{cases} \text{decoding error exp} & \text{erasure mode} \\ \text{expected list size exp} & \text{list mode} \end{cases} = E_1(R, T) + T.$$

Example 2: Erasure/List S-W Decoding (Cont'd)

Model: A double-BSS with a $\text{BSC}(p)$ in between.

$$E_1^{\text{tce}}(R, T) \geq E_1^{\text{Forney}}(R, T) \text{ always.}$$

For some regions in the plane $R-T$, $E_1^{\text{tce}}(R, T)$ may be larger than $E_1^{\text{Forney}}(R, T)$ by an **arbitrarily large factor!**

- ① For $R > h(p)$ and $T < \ln \frac{p}{1-p}$:

$$E_1^{\text{Forney}}(R, T) \leq R + |T| < \infty; \quad E_1^{\text{tce}}(R, T) = \infty.$$

- ② Consider the case of **very weakly correlated sources**, i.e., $p = \frac{1}{2} - \epsilon$, $|\epsilon| \ll 1$.
For $R \in [h(p), \ln 2]$ and $T = -\tau\epsilon^2$ with $\tau > 4$:

$$E_1^{\text{Forney}}(R, T) \leq (\tau + 2)\epsilon^2, \quad E_1^{\text{tce}}(R, T) \geq \left[\frac{\tau(\tau + 8)}{16} - 1 \right] \epsilon^2.$$

Example 3: Typical Random Codes (2017)

While traditional random coding error exponents are defined as

$$E_r(R) = \lim_{n \rightarrow \infty} \left[-\frac{\ln \mathbf{E} P_e(\mathcal{C}_n)}{n} \right],$$

typical-code error exponents are defined as

$$E_{\text{typ}}(R) = \lim_{n \rightarrow \infty} \left[-\frac{\mathbf{E} \ln P_e(\mathcal{C}_n)}{n} \right].$$

- By Jensen's inequality, $E_{\text{typ}}(R) \geq E_r(R)$.
- $E_r(R)$ – dominated by **bad** codes; $E_{\text{typ}}(R)$ dominated by **typical** codes.

Let $\mathcal{G}_E = \{\mathcal{C} : P_e(\mathcal{C}) \doteq e^{-nE}\}$.

$$\overline{P_e(\mathcal{C})} \doteq \sum_E P(\mathcal{G}_E) \cdot e^{-nE} \doteq P(\mathcal{G}_E^*) \cdot e^{-nE^*},$$

whereas $E_{\text{typ}}(R) = E_0$, where $P[\mathcal{G}_{E_0}] \rightarrow 1$.

Example 3: Typical Random Codes (Cont'd)

We derive the **exact** typical-code error exponent for a class of stochastic decoders,

$$P(\hat{m} = m | \mathbf{y}) \propto \exp\{ng(\hat{P}_{\mathbf{x}_m} \mathbf{y})\}.$$

and show that

$$E_{\text{typ}}(R) = E_{\text{ex}}(2R) + R,$$

Extending Barg & Forney (2002) in several directions:

- General DMC is considered, not merely the BSC.
- Covering a wider family of decoders.
- Ensemble of constant composition codes – optimal PI distribution.
- Relation to expurgated exponent – for all R and a general decoder.
- The analysis technique is applicable also to more general scenarios.

Example 3: Typical Random Codes (Cont'd)

Particularizing to ML decoding, the error exponent formula includes minimization subject to the constraint,

$$\mathbf{E}_Q \ln W(Y|X') \geq \max\{\mathbf{E}_Q \ln W(Y|X), D(R, Q_Y)\},$$

$$D(R, Q_Y) = \sup\{\mathbf{E}_Q \ln W(Y|X'') : I_Q(X''; Y) \leq R, (Q_Y \times Q_{X''|Y})_X = Q_X\},$$

being the **typical highest score of an incorrect message**.

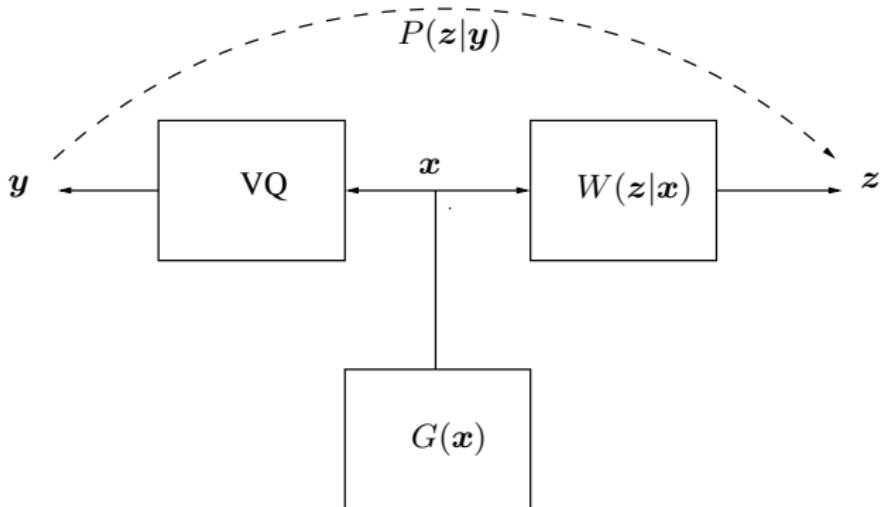
A technical issue: handling **summations of exponentially many fractions with random denominators** — **exploit concentration properties**.

$$\mathbf{E} \left[\frac{1}{M} \sum_m \sum_{m' \neq m} \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{X}_m) \cdot \frac{P(\mathbf{y}|\mathbf{X}_{m'})}{P(\mathbf{y}|\mathbf{X}_m) + \sum_{\tilde{m} \neq m} P(\mathbf{y}|\mathbf{X}_{\tilde{m}})} \right]^\rho.$$

Example 4: Broadcast Channels (with R. Averbuch, 2018)

- Exact exponents for the weak and strong user with [optimal decoders](#).
- Universal decoders for both users, achieving the same error exponents.
- Significant improvement and simplification of earlier results.
- Gallager–style lower bounds for both users.
- Expurgated exponents (joint work also with N. Weinberger, 2019).

Example 5: Channel Decoding with VQ'ed Codewords



- Rate- R_c “codebook” of y ’s, quantized versions of corresponding x ’s.
- Motivation: biometric identification (enrollment vs. authentication).
- Objectives: ensemble performance; universal decoding.
- Dasarthy & Draper (2011): MMI decoder. **Can we improve?** Yes!
- **Difficulty:** the effective channel, $\{P(z|y)\}$, is complicated:

$$P(z|y_m) = \frac{P(y_m, z)}{P(y_m)} = \frac{\sum_x G(x) W(z|x) \mathbb{I}\{f(x) = y_m\}}{\sum_x G(x) \mathbb{I}\{f(x) = y_m\}}$$

Example 5: Decoding with VQ'ed Codewords (Cont'd)

Main contributions:

- Exponentially tight bound on the ensemble performance.
- Improvement relative to Dasarathy & Draper (2011).
- Universal decoder a.g.a. ML decoder ($\forall x, z : W(z|x) > 0$).
- Also a.g.a. any decoder that depends on joint empirical statistics ($\forall W$).
- A good approximation to the channel $\{P(z|y)\}$.

Example 5: Decoding with VQ'ed Codewords (Cont'd)

Ensemble of VQ's:

- \forall input type, Q_X , choose $Q_{Y|X}$ (s.t. compression constraints).
- Randomly draw e^{nR_Q} vectors from $\mathcal{T}(Q_Y)$, with $R_Q = I_Q(X; Y) + \Delta$.
- Randomly rank all members of every $\mathcal{T}(Q_{Y|X}|\mathbf{x})$.
- Let $M(\mathbf{x}, \mathbf{y}) = \text{rank of } \mathbf{y} \in \mathcal{T}(Q_{Y|X}|\mathbf{x})$.
- Code ensemble: random codebook + random rank function.
- Quantize \mathbf{x} to $\mathbf{y} \in \mathcal{T}(Q_{Y|X}|\mathbf{x}) \cap \text{code with the smallest } M(\mathbf{x}, \mathbf{y})$.

Example 5: Decoding with VQ'ed Codewords (Cont'd)

- For most codes in the ensemble, we can approximate

$$P(\mathbf{y}_m) = \sum_{\mathbf{x}} G(\mathbf{x}) \cdot \mathbb{I}\{f(\mathbf{x}) = \mathbf{y}_m\} \doteq \exp\{-n\alpha(\hat{P}_{\mathbf{y}_m})\},$$

where $\alpha(\cdot)$ has a certain single-letter formula.

- The proposed modified MMI decoder is of the form

$$\hat{m} = \arg \min_m \left\{ \log N(\mathbf{y}_m | \mathbf{z}) - n\alpha(\hat{P}_{\mathbf{y}_m}) \right\},$$

where

$$N(\mathbf{y}_m | \mathbf{z}) = \left| \mathcal{T}(\mathbf{y}_m | \mathbf{z}) \cap \mathcal{C} \right|,$$

\mathcal{C} being the VQ code.

Some Other Works

- Improved bounds for erasure/list decoding (2008).
- The interference channel (w. Etkin & Ordentlich, 2010).
- The broadcast channel (w. Kaspi, 2011).
- Exact bounds for erasure/list decoding (w. Somekh-Baruch, 2011).
- Expurgation (w. Scarlett, Peng, Guillén i. Fabregas, Martínez, 2014).
- Erasure/list for S-W decoding (2014).
- Codeword or noise? (w. Weinberger, 2014).
- Optimal bin index decoding (2014).
- Correct wiretapper decoding (2014).
- Statistical physics of random binning (2015).
- Universal source/channel with SI (2016).
- Simplified erasure/list decoding (w. Weinberger, 2017).
- Improved exponents for the IFC (w. Huleihel, 2017).

Some Other Works (Cont'd)

- Joint channel detection & coding (w. Weinberger, 2017).
- Generalized likelihood decoder (2017).
- Exact secrecy exponents (w. Bastani-Parizi & Telatar, 2017).
- Universal decoding for VQ'ed codewords (2017).
- Exact exponents & universal decoding for the ABC (w. Averbuch, 2017).
- Ensemble performance of biometric ident. systems (2017).
- Mismatched ISI channels (w. Huleihel, Salamatian & Médard, 2017).
- V–L codes with single-bit feedback (w. Ginzach & Sason, 2017).
- Typical–code random coding exponents (2017).
- Expurgated bounds for the ABC (w. Averbuch & Weinberger, 2017).
- 2nd order & moderate deviations in error+erasure (Hayashi & Tan, 2015).
- Residual uncertainties under Rényi entropies (Hayashi & Tan, 2016).
- Mismatched decoding (Scarlett, Ph.D. thesis, 2014).

Future Challenges and Open Problems

- Handling ensembles of linear/lattice/convolutional/LDPC codes, etc.
- Further results on typical random codes (multi-user configurations).
- Simplify optimization problems (e.g., Gallager-style bounds).
- A more solid theory for the extended MoT (for exponential families).

Thank U 4 Coming & Listening!