
Some New Analytical Tools for
Evaluation of Code Ensemble Performance

Neri Merhav

The Viterbi Faculty of Electrical & Computer Engineering
Technion—Israel Institute of Technology

Haifa, Israel

ISITA 2022, Tsukuba, Japan, October 17–19, 2022

1 / 44



A Very Quick Historical Overview

Shannon (’48): random coding as a simple tool for proving ∃ good codes.

Elias (’55,’56); Fano (’61); Gallager (’65, ’68): exponential error bounds.

Shannon, Gallager, Berlekamp (’67): lower bounds: SP, SLB.

Csiszár & Körner (’81): the method of types.

Many: extensions, improvements; ensembles of structured codes.

Random coding – a paradigm on its own right.
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Traditional Bounding Techniques

Pe(ML decoder) ≤ Pe(another (easier) decoder).

Jensen’s inequality: EZρ ≤ (EZ)ρ, 0 ≤ ρ ≤ 1 (Gallager–style bounds).

I{P (y|xj) ≥ P (y|xi)} ≤ [P (y|xj)/P (y|xi)]λ (Chernoff bound).

Simple union bound.

Union bound with truncation: P [∪jAj ] ≤ min{1,
∑
j P [Aj ]}.

Union bound with a power parameter: P [∪jAj ] ≤ (
∑
j P [Aj ])

ρ, 0 ≤ ρ ≤ 1.

Union bound with intersection: P [∪jAj ] ≤
∑
j P [Aj ∩ G] + P [Gc].

“Power distribution” inequality: (
∑
i ai)

s ≤
∑
i a
s
i , 0 ≤ s ≤ 1 (Forney ’68).
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All these tools facilitate the analysis a great deal but
at the risk of compromising exponential tightness.

Main message of this talk: It is often possible to
preserve exponential tightness by bypassing some of the

above inequalities.
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My Little Toolbox

Type class enumeration (on top of the MoT).

Analogue of the MoT for infinite alphabets.

The saddle-point method – assessing probabilities and volumes.

Integral representations of some functions (with I. Sason).

Reverse Jensen inequalities.
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Difficulty: Summations of Exponentially Many Terms

Many derivations are associated with summations of exponentially many terms,
e.g.,

Pe ≤
∑
y

E
{
P (y|X)1/(1+ρ)

}
·E

[∑
m

P (y|Xm)1/(1+ρ)

]ρ
,

Pc =
1

M
E

∑
y

max
m

P (y|Xm)

 =
1

M
lim
β→∞

∑
y

E


[∑
m

P (y|Xm)β

]1/β.
In some situations (e.g., the BC, the IFC, the GPC, the wiretap channel,
erasure/list decoding), the optimal likelihood function = sum of exponentially
many terms,

Broadcast channel: scorei =
∑

m
P (y|xm,i)

Interference channel: scorei =
∑

m
P (y|xi,xm)
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A Natural Remedy: Type Class Enumerators

The idea:∑
m

P (y|Xm)β =
∑
Q

Ny(Q) · P (y|xQ)β =
∑
Q

Ny(Q) · enβf(Q),

where
Ny(Q) = number ofXm in a given typeQ ofx giveny .

What have we gained?∑
of exponentially many terms →

∑
of polynomially few terms.

Ny(Q) ∼ Binomial (enR, e−nI(Q)) – easy to handle.

Marginals of
{
Ny(Q)

}
almost always suffice; Pairs are ∼ independent.
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Consequence: Avoiding the Use of Jensen’s Inequality

E


[∑
m

P (y|Xm)β

]1/β = E

∑
Q

Ny(Q) · enβf(Q)

1/β

·
= E

[
max
Q

Ny(Q) · enβf(Q)

]1/β
= E

{
max
Q

[Ny(Q)]1/β · enf(Q)

}
·
= E

∑
Q

[Ny(Q)]1/β · enf(Q)


=

∑
Q

E{[Ny(Q)]1/β} · enf(Q).

We just have to know how to assess moments of Ny(Q).

Equivalently, deal with the large deviations behavior.
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Properties of N ∼ Binomial(enA, e−nB)

Drastic difference between A > B and A < B: phase transition at A = B.
Moments:

E{Ns} ·=
{

exp{ns(A−B)} A > B
exp{n(A−B)} A < B

Intuition:

A > B: double–exponential concentration of N around its mean en(A−B).

A < B: E{Ns} =
∑
n≥1 n

sP [N = n]
·
= 1sP [N = 1]

·
= en(A−B).
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Properties of N ∼ Binomial(enA, e−nB) (Cont’d)

Large deviations behavior:

Pr{N ≥ eλn} ·= e−nE ,

with

E =

{
[B −A]+ [A−B]+ ≥ λ
∞ elsewhere

Intuition – “interesting” for A < B and λ ≤ 0: P [N ≥ 1]
·
= e−n(B−A).

Pr{N ≤ eλn} ·=
{

1 A ≤ B + [λ]+
0 elsewhere
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Example—Exponentially Tight Evaluation of P c

Consider the BSC with crossover probability p. Using the relation

E{Ny(Q)1/β} ·=
{

exp{n[R− IQ(X;Y )]/β} R > IQ(X;Y )
exp{n[R− IQ(X;Y )]} R < IQ(X;Y )

plugging it to the expression of Pc, and using the MoT, we get

Pc

·
= exp{−nD(δGV(R)‖p)}

= exp

{
−n
[
δGV(R) ln

1

p
+ (1− δGV(R)) ln

1

1− p
− h2(δGV(R))

]}
where δGV(R) is the (smaller) solution to the equation

ln 2− h2(δ) = R.
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Example (Cont’d)

It is interesting to compare it to the result of using Jensen’s inequality:

Pc =
1

M
lim
β→∞

∑
y

E


[∑
m

P (y|Xm)β

]1/β
≤ 1

M
lim
β→∞

∑
y

[
E
∑
m

P (y|Xm)β

]1/β
·
= exp

(
−n
[
min

{
ln

1

p
, ln

1

1− p

}
− h2(δGV(R))

])
Reminder: the red expression should be compared to

δGV(R) ln
1

p
+ (1− δGV(R)) ln

1

1− p

of the exponentially tight evaluation of the previous slide.
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Application to Random Binning

Consider the process of random binning:
Each x ∈ Xn is randomly assigned to a bin z = f(x) ∼ Unif{1, . . . , enR}.
At the decoder

x̂(y, z) = arg max
x∈f−1(z)

P (x|y)

Then,

Pe = Pr
⋃

x′ 6=x
{f(x′) = f(x), P (x′|y) ≥ P (x|y)}

·
=

∑
xy

P (x,y)
∑

QX′Y ∈E

Pr {N(QX′Y , f(x)) ≥ 1}

where E is the class of all {QX′Y } with EQ′ lnP (X ′|Y ) ≥ EQ lnP (X|Y ) and
where the type class enumerator

N(QX′Y , z) = |T(QX′Y |y) ∩ f−1(z)| ∼ Binomial(|T(QX′Y |y)|, e−nR).
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Avoid Bounding Indicator Functions by Chernoff Bounds

Consider the error+erasure event a la Forney (’68): Instead of

Pr{E1} = Pr

{
P (y|xm)∑

m′ 6=mP (y|Xm′)
< enT

}
≤ ensTE


 ∑
m′ 6=m

P (y|Xm′)

P (y|xm)

s ,

use : Pr{E1} = Pr

 ∑
m′ 6=m

P (y|Xm′) > e−nTP (y|xm)


= Pr

∑
Q

Ny(Q)enf(Q) > e−nT enf(Qm)


·
= Pr

{
max
Q

Ny(Q)enf(Q) > e−nT enf(Qm)

}
·
= Pr

⋃
Q

{
Ny(Q)enf(Q) > en[f(Qm)−T ]

}
·
= max

Q
Pr
{
Ny(Q) > en[f(Qm)−f(Q)−T ]

}
and now the large deviaions properties of a single Ny(Q) are invoked..
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What if Those Sums Appear Also in the Denominator?

Consider the likelihood decoder that randomly selects m̂ under the posterior:

Pe|m=0 = E

{∑M−1
m=1 P (Y |Xm)∑M−1
m=0P (Y |Xm)

}
.

E

{ ∑M−1
m=1 P (y|Xm)

P (y|x0) +
∑M−1
m=1 P (y|Xm)

}

=

∫ 1

0

ds · Pr

{ ∑M−1
m=1 P (y|Xm)

P (y|x0) +
∑M−1
m=1 P (y|Xm)

≥ s

}

= n ·
∫ ∞
0

dθe−nθ Pr

{ ∑M−1
m=1 P (y|Xm)

P (y|x0) +
∑M−1
m=1 P (y|Xm)

≥ e−nθ
}

·
=

∫ ∞
0

dθe−nθ Pr

{
M−1∑
m=1

P (y|Xm) ≥ e−nθP (y|x0)

}

and the rest is as before.
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What if . . . in the Denominator? (Cont’d)

Sometimes random denominators can be handled using transform methods.
For example, let Xi ∼ N(0, σ2), i = 1, . . . , n, be independent. Then,

E

{
1∑n

i=1X
2
i

}
= ???
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What if . . . in the Denominator? (Cont’d)

Sometimes random denominators can be handled using transform methods.
For example, let Xi ∼ N(0, σ2), i = 1, . . . , n, be independent. Then,

E

{
1∑n

i=1X
2
i

}
= E

{∫ ∞
0

dt · exp

[
−t

n∑
i=1

X2
i

]}

=

∫ ∞
0

dt ·E

{
exp

[
−t

n∑
i=1

X2
i

]}

=

∫ ∞
0

dt

(1 + 2σ2t)n/2

=

{
∞ n ≤ 2

1
(n−2)σ2 n > 2
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Analogue of the MoT for Infinite Alphabets

In the memoryless finite–alphabet (FA) case, we usually think of the type class of
a given x as the set of all x′

with the same empirical distribution as x,

that are permutations of x.

These definitions are specific to the FA memoryless case.

An alternative definition that lends itself to extensions:

T(x) = {x′ : P (x′) = P (x) for every memoryless source P} .

For a general parametric family of sources {Pθ, θ ∈ Θ}:

T(x) = {x′ : Pθ(x
′) = Pθ(x) for every θ ∈ Θ} .
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Analogue of the MoT for Infinite Alphabets (Cont’d)

If {Pθ, θ ∈ Θ} is an exponential family:

Pθ(x) =
exp

{
−
∑k
i=1 θiφi(x)

}
Z(θ)

,

then
T(x) = {x′ : φi(x

′) = φi(x), i = 1, 2, . . . , k} .

FA memoryless: φi(x) =

n∑
t=1

I{xt = i}

FA Markov: φij(x) =

n∑
t=1

I{xt = i, xt+1 = j}

Gaussian memoryless: φ1(x) =

n∑
t=1

xt; φ2(x) =

n∑
t=1

x2t .

Zero–mean, Gaussian AR(p): φi(x) =

n∑
t=1

xtxt+i, i = 0, 1, . . . , k
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Analogue of the MoT for Infinite Alphabets (Cont’d)

The main building blocks (just like in the ordinary MoT):

A computable expression for |T(x)|, or Vol{T(x)}.
Make sure that number of different types is not too large.

If X = IR (say, the Gaussian case), we have two problems:

Vol{T(x)} = 0.

The space is unbounded → infinitely many types.

First problem – allow some tolerance ε:

Tε(x) = {x′ : |φi(x′)− φi(x)| ≤ ε, i = 1, 2, . . . , k} .

But this still does not resolve the second problem.

Second problem—confine attention to a bounded region in IRn (say, a sphere),
outside of which the probability decays with a large enough exponent.
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Analogue of the MoT for Infinite Alphabets (Cont’d)

To assess the exponent of Vol{T(x)}:

1 ≥
∫
Tε(x)

dx′ · Pθ(x′)
·
= Vol{Tε(x)} · Pθ(x),

leading to Vol{Tε(x)}
·
≤ 1

Pθ(x)
= exp

{
lnZ(θ) +

k∑
i=1

θiφi(x)

}

and since this is ∀θ : Vol{Tε(x)} ≤ min
θ

exp

{
lnZ(θ) +

k∑
i=1

θiφi(x)

}
.

Exponentially tight as the minimizer θ∗ assigns Pθ∗{Tε(x)} ≈ 1 (WLLN).
The same idea applies to assess volumes to conditional types:

Tε(x|y) = {x′ : |φi(x′,y)− φi(x,y)| ≤ ε, i = 1, 2, . . . , k} .

Here one defines an exponential family of channels.
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Analogue of the MoT for Infinite Alphabets (Cont’d)

A challenge (relevant to ISI channels) is to assess the volume of a conditional type
defined by both

∑
t xtyt and

∑n
t=1 xtxt−j , j = 0, 1, . . . , k. For example, the

volume of

T(φ, ψ, µ|y) =

{
x :

n∑
t=1

x2t = nφ,

n∑
t=1

xtxt−1 = nψ,

n∑
t=1

xtyt = nµ

}

is

∫
IRn

dxδ

(
n∑
t=1

x2t − nφ

)
δ

(
n∑
t=1

xtxt−1 − nψ

)
δ

(
n∑
t=1

xtyt − nµ

)
.

Next, represent δ(A) =
1

2π

∫ ∞
−∞

exp{iωA}dω, i =
√
−1

then interchange the integrations, and finally, use the saddle–point method.
Such a derivation is doable since this is a Gaussian integral (Huleihel, Salamatian,
Merhav & Médard, 2017).
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Integral Representations (Merhav & Sason, 2019, 2020)

The logarithmic function
Consider the identity,

lnx =

∫ ∞
0

e−u − e−ux

u
du, x > 0

which implies

E{lnX} =

∫ ∞
0

e−u −E{e−uX}
u

du.

A frequently encountered situation is when X =
∑
i Yi, for i.i.d. {Yi}:

E{ln(Y1 + . . .+ Yn)} =

∫ ∞
0

e−u − [E{e−uY1}]n

u
du.

Application examples include the calculations of the:

differential entropy of a generalized multivariate Cauchy distribution;

ergodic capacity of the Rayleigh SIMO channel;

redundancy of universal source codes;

moments of the empirical entropy.
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Integral Representations (Cont’d)

The power function
Consider the identity,

xρ = 1 +
ρ

Γ(1− ρ)

∫ ∞
0

e−u − e−ux

u1+ρ
du, x ≥ 0, 0 ≤ ρ ≤ 1

which implies

E{Xρ} = 1 +
ρ

Γ(1− ρ)

∫ ∞
0

e−u −E{e−uX}
u1+ρ

du.

Application examples include the calculations of:

moments of guesswork;

moments of parameter estimation error;

Rényi entropy of the generalized multivariate Cauchy density;

mutual information for channels with jammers.
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Some Results . . .
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Example 1: List Decoding (IT, Nov. 2014)

A code C = {x0,x1, . . . ,xM−1}, M = enR, is selected at random.

The marginal of each codeword xi ∈ Xn is Unif{T(Q)}.

The channel P (y|x) is a DMC.

The index I of the transmitted message xI is Unif{0, 1, . . . ,M − 1}.

The decoder outputs the indices of the L most likely messages.

Error event: I is not on the list.

Regimes: fixed list size (FLS) and exponential list size (ELS).
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Example 1: List Decoding (Cont’d)

A general, non–asymptotic bound:
Theorem: The average probability of list error, Pe, associated with the optimal list
decoder, is upper bounded by

Pe ≤
∑
x,y

P (x)P (y|x) exp

{
−nL

[
Îxy(X;Y ) +

lnL

n
−R−O

(
log n

n

)]
+

}
,

where P (x) is the uniform distribution over T(Q) and Îxy(X;Y ) is the empirical
mutual information induced by (x,y).

The proof is by a large deviations analysis of the binomial RV

N(x,y) =

M−1∑
m=1

I{P (y|Xm) ≥ P (y|x)}.
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Example 1: List Decoding (Cont’d)

The dependence on L appears twice:

Pe ≤
∑
x,y

P (x)P (y|x) exp

− nL︸︷︷︸
FLS

Îxy(X;Y ) +

ELS︷︸︸︷
lnL

n
−R−O

(
log n

n

)
+

 ,

In the FLS regime, lnL
n → 0, and averaging exp{−nL[Îxy(X;Y )−R]+} yields

Pe
·
≤ e−nE(R,L,Q), where

E(R,L,Q)
4
= min
P̃Y |X

{D(P̃Y |X‖PY |X |Q) + L · [Ĩ(X;Y )−R]+},

The best exponent is obtained by maximizing over Q to yield

E(R,L) = max
Q

E(R,L,Q).
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Example 1: List Decoding (Cont’d)

Pe ≤
∑
x,y

P (x)P (y|x) exp

{
−nL

[
Îxy(X;Y ) +

lnL

n
−R−O

(
log n

n

)]
+

}
,

In the ELS regime, lnL
n = λ. By defining

E =
{

(x,y) : Îxy(X;Y ) + λ−R ≥ ε
}
,

we see that the conribution of E is ≤ exp(−nεeλn)
·
= e−n∞, and so,

Pe
·
≤ Pr{Ec} ·

= exp

{
−n min
{P̃Y |X : Ĩ(X;Y )≤R−λ}

D(P̃Y |X‖PY |X |Q)

}
4
= exp{−nEsp(R− λ,Q)}

which, for the optimum Q, becomes exp{−nEsp(R− λ)} — meeting the converse
bound of Shannon–Gallager–Berlekamp (’67).
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Example 2: Erasure/List S–W Decoding (2014)

Let (X,Y ) ∼
∏n
i=1 P (xi, yi).

x – source to be encoded.

y – side info @ decoder.

Encoder: f : Xn → {0, 1, . . . ,M − 1}, M = enR.

z = f(x).

Random binning:
For every x ∈ Xn, z is selected independently at random from {0, 1, . . . ,M − 1}.
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Example 2: Erasure/List S–W Decoding (Cont’d)

Erasure/list decoder: Given y ∈ Yn and z, calculate for all x̂ ∈ f−1(z):

P (x̂,y)∑
x′∈f−1(z)\{x̂} P (x′,y)

.

If ≥ enT , x̂ is a candidate.

If there are no candidates – an erasure is declared.

If there is exactly one candidate – ordinary decoding: x̂ =candidate.

If there is more than one candidate – a list is of all candidates is created.

Define E1 as the event where the real x is not a candidate.
Let E1(R, T ) = exponent of Pr{E1}. The other exponent

E2(R, T ) =

{
decoding error exp erasure mode
expected list size exp list mode

= E1(R, T ) + T.
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Example 2: Erasure/List S–W Decoding (Cont’d)

Model: A double–BSS with a BSC(p) in between.

E tce
1 (R, T ) ≥ EForney

1 (R, T ) always.

For some regions in the plane R—T , E tce
1 (R, T ) may be larger than

EForney

1 (R, T ) by an arbitrarily large factor!

1 For R > h(p) and T < ln p
1−p :

EForney

1 (R, T ) ≤ R+ |T |<∞; E tce

1 (R, T )=∞.

2 Consider the case of very weakly correlated sources, i.e., p = 1
2 − ε, |ε| � 1.

For R ∈ [h(p), ln 2] and T = −τε2 with τ > 4:

EForney

1 (R, T ) ≤ (τ + 2)ε2, E tce

1 (R, T ) ≥
[
τ(τ + 8)

16
− 1

]
ε2.
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Example 3: Typical Random Codes (2017)

While traditional random coding error exponents are defined as

Er(R) = lim
n→∞

[
− lnEPe(Cn)

n

]
,

typical–code error exponents are defined as

Etyp(R) = lim
n→∞

[
−ElnPe(Cn)

n

]
.

By Jensen’s inequality, Etyp(R) ≥ Er(R).

Er(R) – dominated by bad codes; Etyp(R) dominated by typical codes.

Let GE = {C : Pe(C)
·
= e−nE}.

Pe(C)
·
=
∑
E

P (GE) · e−nE ·
= P (G∗E) · e−nE

∗
,

whereas Etyp(R) = E0, where P [GE0 ]→ 1.
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Example 3: Typical Random Codes (Cont’d)

We derive the exact typical–code error exponent for a class of stochastic
decoders,

P (m̂ = m|y) ∝ exp{ng(P̂xmy)}.

and show that
Etyp(R) = Eex(2R) +R,

Extending Barg & Forney (2002) in several directions:

General DMC is considered, not merely the BSC.

Covering a wider family of decoders.

Ensemble of constant composition codes – optimal PI distribution.

Relation to expurgated exponent – for all R and a general decoder.

The analysis technique is applicable also to more general scenarios.
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Example 3: Typical Random Codes (Cont’d)

Particularizing to ML decoding, the error exponent formula includes
minimization subject to the constraint,

EQ lnW (Y |X ′) ≥ max{EQ lnW (Y |X), D(R,QY )},

D(R,QY ) = sup{EQ lnW (Y |X ′′) : IQ(X ′′;Y ) ≤ R, (QY ×QX′′|Y )X = QX},

being the typical highest score of an incorrect message.

A technical issue: handling summations of exponentially many fractions with
random denominators — exploit concentration properties.

E

 1

M

∑
m

∑
m′ 6=m

∑
y
P (y|Xm) · P (y|Xm′)

P (y|Xm) +
∑
m̃ 6=m P (y|Xm̃)

ρ .
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Example 4: Broadcast Channels (with R. Averbuch, 2018)

Exact exponents for the weak and strong user with optimal decoders.

Universal decoders for both users, achieving the same error exponents.

Significant improvement and simplification of earlier results.

Gallager–style lower bounds for both users.

Expurgated exponents (joint work also with N. Weinberger, 2019).
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Example 5: Channel Decoding with VQ’ed CodewordsExample 5: Channel Decoding with VQ’ed Codewords

VQ
x

y

P (z|y)

zW (z|x)

G(x)

Rate-Rc “codebook” of y’s, quantized versions of corresponding x’s.

Motivation: biometric identification (enrollment vs. authentication).

Objectives: ensemble performance; universal decoding.

Dasarthy & Draper (2011): MMI decoder. Can we improve? Yes!

Difficulty: the effective channel, {P (z|y)}, is complicated:

P (z|ym) =
P (ym, z)

P (ym)
=

∑
xG(x)W (z|x)I{f(x) = ym}∑

xG(x)I{f(x) = ym}
– p. 35/42

Rate-Rc “codebook” of y’s, quantized versions of corresponding x’s.
Motivation: biometric identification (enrollment vs. authentication).
Objectives: ensemble performance; universal decoding.
Dasarthy & Draper (2011): MMI decoder. Can we improve? Yes!
Difficulty: the effective channel, {P (z|y)}, is complicated:

P (z|ym) =
P (ym, z)

P (ym)
=

∑
xG(x)W (z|x)I{f(x) = ym}∑

xG(x)I{f(x) = ym} 37 / 44



Example 5: Decoding with VQ’ed Codewords (Cont’d)

Main contributions:

Exponentially tight bound on the ensemble performance.

Improvement relative to Dasarathy & Draper (2011).

Universal decoder a.g.a. ML decoder (∀ x, z : W (z|x) > 0).

Also a.g.a. any decoder that depends on joint empirical statistics (∀ W ).

A good approximation to the channel {P (z|y)}.
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Example 5: Decoding with VQ’ed Codewords (Cont’d)

Ensemble of VQ’s:

∀ input type, QX , choose QY |X (s.t. compression constraints).

Randomly draw enRQ vectors from T(QY ), with RQ = IQ(X;Y ) + ∆.

Randomly rank all members of every T(QY |X |x).

Let M(x,y) = rank of y ∈ T(QY |X |x).

Code ensemble: random codebook + random rank function.

Quantize x to y ∈ T(QY |X |x) ∩ code with the smallest M(x,y).
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Example 5: Decoding with VQ’ed Codewords (Cont’d)

For most codes in the ensemble, we can approximate

P (ym) =
∑
x
G(x) · I{f(x) = ym}

·
= exp{−nα(P̂ym)},

where α(·) has a certain single–letter formula.

The proposed modified MMI decoder is of the form

m̂ = arg min
m

{
logN(ym|z)− nα(P̂ym)

}
,

where

N(ym|z) =

∣∣∣∣T(ym|z)∩C
∣∣∣∣,

C being the VQ code.
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Some Other Works

Improved bounds for erasure/list decoding (2008).

The interference channel (w. Etkin & Ordentlich, 2010).

The broadcast channel (w. Kaspi, 2011).

Exact bounds for erasure/list decoding (w. Somekh–Baruch, 2011).

Expurgation (w. Scarlett, Peng, Guillén i. Fabregas, Martinéz, 2014).

Erasure/list for S–W decoding (2014).

Codeword or noise? (w. Weinberger, 2014).

Optimal bin index decoding (2014).

Correct wiretapper decoding (2014).

Statistical physics of random binning (2015).

Universal source/channel with SI (2016).

Simplified erasure/list decoding (w. Weinberger, 2017).

Improved exponents for the IFC (w. Huleihel, 2017).
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Some Other Works (Cont’d)

Joint channel detection & coding (w. Weinberger, 2017).

Generalized likelihood decoder (2017).

Exact secrecy exponents (w. Bastani-Parizi & Telatar, 2017).

Universal decoding for VQ’ed codewords (2017).

Exact exponents & universal decoding for the ABC (w. Averbuch, 2017).

Ensemble performance of biometric ident. systems (2017).

Mismatched ISI channels (w. Huleihel, Salamatian & Médard, 2017).

V–L codes with single–bit feedback (w. Ginzach & Sason, 2017).

Typical–code random coding exponents (2017).

Expurgated bounds for the ABC (w. Averbuch & Weinberger, 2017).

2nd order & moderate deviations in error+erasure (Hayashi & Tan, 2015).

Residual uncertainties under Rényi entropies (Hayashi & Tan, 2016).

Mismatched decoding (Scarlett, Ph.D. thesis, 2014).
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Future Challenges and Open Problems

Handling ensembles of linear/lattice/convolutional/LDPC codes, etc.

Further results on typical random codes (multi-user configurations).

Simplify optimization problems (e.g., Gallager–style bounds).

A more solid theory for the extended MoT (for exponential families).
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Thank U 4 Coming & Listening!

44 / 44


