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Twisted Modulation

Consider the AWGN channel,

yi = xi + zi, i = 1, 2, . . . , n,

where zi ∼ N(0, σ2) are i.i.d. and

x = (x1, . . . , xn) = fn(θ), ‖x‖2 ≤ nQ

θ ∈ [0, 1] being a parameter to be estimated at the receiver by θ̂ = gn(y).

How well can we estimate θ if we have the freedom to choose both the
modulator fn(·) and the estimator, gn(·)?
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Twisted Modulation (Cont’d)

The “waveform communication” problem (Wozencraft & Jacobs, ‘65).

Source/channel coding: Shannon-Kotel’nikov (‘49; ‘59).

Hekland (‘07); Floor (‘08+); Hekland, Floor & Ramstad (‘09, ‘23).

Estimation theory; Cohn, (‘70), Burnashev (‘84, ‘85).

Linear modulation – Fisher efficient, but limited.

Nonlinear modulation – flexible, but suffers a threshold effect.

Most of the literature: total MSE.

Reasonable to separate Pr{anomaly} and weak-noise errors.

Köken, Günduz & Tuncel (‘17): minMSE s.t. Pr{anomaly} ≤ ǫ.

Merhav (‘19): exponential Pr{anomaly} + matching converse.

Merhav (‘20): extension to parameter vectors.

This work: modulators based on chaotic dynamical systems.
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Motivations for Studying Chaotic Modulators

Sensitivity to initial conditions – good weak-noise estimation.

High degree of flexibility in the design.

∃ mature theoretical understanding about chaos.

Computationally easy to generate the modulated signal.

∃ computationally efficient estimation algorithms (halving method).

Good estimation of initial condition is also good for filtering.
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Related Work

Modulators based on chaotic systems have been investigated extensively
during the last 3 decades from a variety of aspects:

Upper/lower bounds on MSE.

Numerical aspects.

Algorithmic efficiency.

System optimization.

Applications in Turbo coding, hybrid coding, spread spectrum,
MIMO, etc.

Chen (‘96); Chen & Wornell (‘98); Cong et al. (‘99); Drake (‘98);
Eckmann & Ruelle (‘85); Hen & Merhav (‘04); Kay & Nagesha (‘95);
Kennedy & Kolumbán (‘00); Leung et al. (‘06); Pantaleón et al. (‘03);
Papadopoulos & Wornell (‘95); Wallinger (‘13); Wang et al. (‘99); Xie et

al. (‘09); Yu et al. (‘18), .......
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Objectives

The purpose this work is to carry out a systematic study of modulators
that are based on certain class of chaotic systems, from the perspecive of
earlier work on fundamental limits of general modulators:

Given a certain parametric family of modulators, find the one with the
best weak-noise error performance s. t. Pr{anomaly} → 0.

We consider a general error performance criterion,

sup
θ∈[0,1]

E

{

ρ(θ̂ − θ)

∣

∣

∣

∣

no anomaly

}

ρ(·) convex

and avoid the use of the Cramér-Rao lower bound, which is problematic
for systems with discontinuous mappings.
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The Chaotic Dynamical System

st = f(st−1)st−1

s0 = θ

DELAY

r = 3

1

1 s

f(s)

p(0) p(1) p(2)
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Formulation

Select a positive integer r and a probability vector,
P = {p(0), p(1), . . . , p(r − 1)}. Define:

F (x) =
x−1
∑

x′=0

p(x′); F (0) = 0, F (r) = 1.

Given s ∈ [0, 1], let φ(s) be the value of x ∈ {0, 1, . . . , r − 1} such that

F (x) ≤ s < F (x+ 1), φ(1) = 1.

The non-linear dynamical system is defined by the recursion:

xt = φ(st−1), s0 = θ itinerary sequence

st =
st−1 − F (xt)

p(xt)
state sequence

for t = 1, 2, . . .. The channel input is

ut =
√

12Q

(

st −
1

2

)

.
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System Properties

1. Reconstruction of s0 from x1, x2, . . .:

s0 =

∞
∑

t=1

F (xt)

t−1
∏

i=1

p(xi)
△
=

∞
∑

t=1

G(xt)

t
∏

i=1

p(xi)

Example: if P = (1/r, . . . , 1/r),

s0 =

∞
∑

t=1

xtr
−t = 0.x1x2 . . . .

2. Xt as a random process (with application to process simulation): If
S0 ∼ Unif[0, 1], then St ∼ Unif[0, 1] and {Xt} is a DMS governed by P .
(Easy extension to arbitrary processes with memory).
3. Lyapunov exponent:

λ
△
= lim

n→∞

1

n
E

{

ln

∣

∣

∣

∣

∂sn
∂s0

∣

∣

∣

∣

}

= H the entropy of P .
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System Properties (Cont’d)

4. Length of signal locus:

Ln =

∫ 1

0

∥

∥

∥

∥

∂

∂θ
u(θ)

∥

∥

∥

∥

· dθ
·
= rn.

Therefore ln r must be < C = 1
2 ln(1 + γ), γ = Q

σ2 to keep Pr{anomaly}
small.
5. Autocorrelation:

RS(k) = E{S0Sk} =
1

4
+

1

12
·

(

r−1
∑

x=0

p2(x)

)|k|

.

RU (k) = E{U0Uk} = Q ·

(

r−1
∑

x=0

p2(x)

)|k|

.
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System Properties (Cont’d)

6. Channel input-output mutual information:

C0 = lim
n→∞

I(Un;Y n)

n
≤

1

2
ln
A

σ2
△
= C1

where
A

σ2
=

1

2

[

1 + γ + q2(1− γ) +
√

(1 + γ2)(1− q2)2 + 2γ(1 − q4)
]

and

q =

r−1
∑

x=0

p2(x).

7. Ergodic property:
The Lebesgue measure of the set:

{

s0 :

∣

∣

∣

∣

1

n

n
∑

t=1

utut+k −RU (k)

∣

∣

∣

∣

≤ ǫ

}

tends to unity as n→ ∞.
11 / 15



General Lower Bound

Suppose that ρ(·) has the following property: ∀ c > 0, ρ(e−nc)
·
= e−nζ(c)

with ζ(c) > 0.

For example, if ρ(ǫ) = |ǫ|a, then ζ(c) = a · c.

Theorem [Merhav 2019]: For any modulator and estimator,

sup
0≤θ≤1

E

{

ρ(θ̂ − θ)

∣

∣

∣

∣

no anomaly

}

·
≥ exp

{

−nζ

(

1

2
ln γ

)}

for γ ≫ 1.

Asymptotically achievable by uniform quantization of θ followed by
capacity-achieving channel coding.
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Lower Bound for the Class of Chaotic Modulators

Theorem: For any chaotic modulator from the class defined and any
estimator,

sup
0≤θ≤1

E

{

ρ(θ̂ − θ)

∣

∣

∣

∣

no anomaly

}

·
≥ exp

(

−nζ

[

min

{

C1,
1

2
ln γ−

1

2
ln

(

2πe

12

)}])

for γ ≫ 1.

The term 1
2 ln

(

2πe
12

)

= shaping loss since {ut} is distributed uniformly
rather than normally.

C1 <
1
2 ln γ = loss associated with the fact that {ut} has memory.

We could have increased C1 up to C by decreasing q =
∑

x p
2(x) ≥ 1

r
,

but recall that r is limited by ln r ≤ C.
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Feeding the Channel by the Itinerary Signal?

At first glance it seems counterintuitive that the itinerary sequence, {xt}
could do a better job than the state sequence, {st} (or {ut}) since {xt} is
a quantized version of {st}:

xt = φ(st−1), F (xt) ≤ st−1 < F (xt + 1).

However, recall that {st} is generated from s0 which in turn can be
expressed in terms of (x1, x2, . . .). Thus, (x1, x2, . . .) and (s1, s2, . . .)
include exactly the same information about s0.

For large n, (x1, x2, . . . , xn) and (s1, s2, . . . , sn) and include almost
the same information about s0.

If S0 ∼ Unif[0, 1], {Xt} is an i.i.d. process governed by P . No loss
due to input memory.

No limitation on r: select P to approximate the capacity-achieving
input distribution, N(0, Q).
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Proposed Modulation Scheme

Given θ ∈ [0, 1], quantize it to θi using a fine grid of M = en(C−ǫ)

points and a random mapping of the grid onto itself, ηi = ψ(θi).

Let s0 = ηi be the initial state of the modulator.

Transmit x over the channel.

Decode η̂i.

θ̂i = ψ−1(η̂i).

If the decoding is correct (which is the case w.h.p.), there is only a
quantization error:

ρ(θi − θ) ≤ ρ

(

1

2M

)

= ρ(e−n(C−ǫ)) = e−nζ(C−ǫ).

Decoding error = anomaly.

15 / 15


