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In memory of Jacob Ziv,
a shining star in the sky of information theory
and a great inspiration to me and to many others,
for years to come.



Classical Information Theory — Shannon Theory

@ Fundamental limits vs. achievable performance of information processing
(compression, error correction coding, encryption, etc.).
@ Based on memoryless (i.i.d.) probabilistic models of sources and channels.




Information Theory and Probabilistic Modeling

Sources: Random variables or random processes

Channels: Stochastic functions of the output, given the input

Qlande Ghicad Shannon 84 The Mathematical Theory of Communication
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Fig. 1. — Schematic diagram of a general communication system.



|
Later Developments - More Realisic Assumptions

@ Sources/channels with memory:
Markov model

hidden Markov model

finite-state source/channel model
general

@ Relaxing the assumption of fully-known probability distributions:
o Robustness to model uncertainty (worst-case approach):
@ robust estimation
@ robust hypothesis testing (and signal detection)
@ robust filtering
e Universal methods:
o data compression
channel coding/decoding
prediction
signal detection.
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entropy = complexity of a random sequence

algorithmic complexity of an individual sequence

finite-state complexity of an individual sequence



-
Individual Sequences & F-S Encoders (Ziv-Lempel ‘78)

T; yi = flzi,7:)

finite—state encoder

ziy1 = (2, T:)

delay

x; = finite-alphabet sequence to be compressed.
z; = encoder state. Total number of states = s
y; = a variable-length binary string (possibly, empty for some 7).



-
Individual Sequences & F-S Encoders (Cont'd)

For a given individual sequence, (x1,...,x,), what is the best compression ratio
that can be achieved by any information-lossless F-S encoder with s states?

length of compressed file

Ps(T1y. . ) = min
{all s-state encoders} n
The choice of the best s-state encoder depends on the given (z1,...,2,).

Nevertheless, Ziv and Lempel developed a universal compression algorithm
(LZ78), that always nearly attains p;s(z1,...,2,) as long as s < n.

9/36



Individual Sequences & F-S Encoders (Cont'd)

How can we quantify ps(x1,...,2,)?

Let us parse (x1,...,2,) sequentially such that each new phrase is the shortest
string that has not been encountered before as a parsed phrase.

Example: n =99 and (z1,...,x99) is given by:
whatdoesitmeanwhatdoesitmeanwhatmeanswhatdoesmeansdoesmeanmeansmean
whatdoesitmeanmeanswhatdoesitmean

which is parsed as:

w,h,a,t,d,o,e,s,i,tm,ea,n,wh,at,do,es,it,m,ean,wha,tme,an,sw,ha,td,oe,
sm,ean,sd,oes,me,anm,eans, mea,nw,hat,doe,si,tmea,nm,eansw,hatd,oesi,tmean

Let ¢ be the number of phrases. In our example, ¢ = 44.

For repetitive/predictable sequences, the phrases grow quickly and then ¢ is small.

For non-repetitive/unpredictable sequences, phrases grow slowly and ¢ is large.



-
Individual Sequences & F-S Encoders (Cont'd)

Ziv and Lempel’s 1978 article contains two main results:

cloge
n !

1. For s < n, ps(x1,...,x,) cannot be much smaller than

2. The LZ78 algorithm achieves compression ratio not much larger than %.

The LZ78 algorithm compresses each phrase of length ¢ as follows:

1. First £ — 1 symbols: send a pointer to its copy in the (already decoded) past.
2. Last symbol: send uncompressed.

There are several versions of the LZ algorithm, which are all based on the idea of
string matching.
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|
The Impact and the Usefulness of LZ Algorithms

The LZ compression methods are among the most popular algorithms for lossless
storage.

DEFLATE is a variation on LZ optimized for decompression speed and
compression ratio.

In the mid-1980s, following work by Terry Welch, the Lempel-Ziv-Welch (LZW)
algorithm rapidly became the method of choice for most general-purpose
compression systems.

LZW is used in GIF images, programs such as PKZIP, and hardware devices such
as modems.

Also harnessed for PDF, TIFF, PNG, ZIP, video formats such as MP3, and in
cellphones.

We all use the LZ algorithm on a daily basis without even being aware.

In 2004, the IEEE proclaimed the Lempel-Ziv algorithm a Milestone in Electrical
Engineering and Computing.
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|
LZ Compressibility in the Role of Thermodynamic Entropy

Mandal & Jarzynski (2012): system converting thermal fluctuations to work

while writing info.

W < ET-AH
ASepv + KT - AH >0

M. (2015):
[ W < KT - F'[LZ complexity|

~[ofo [a] o] il oo ] ] i[o]—
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|
The LZ78 Algorithm as an Engine for Other Tasks

The LZ78 algorithm is harnessed as an engine in universally optimal methods for
tasks other than data compression:

@ hypothesis testing (e.g., testing for independence, testing for randomness)
@ model order estimation (for Markov and hidden Markov models)

@ coding and decoding for unknown channels

@ encryption

@ time-series prediction

o filtering

@ guessing

@ universal ensembles for lossy compression

In addition, the setting of finite-state encoding and decoding of individual
sequences was expanded to more general scenarios, such as: lossy compression,
compression with side information, joint source-channel coding, etc.
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|
Ziv's Inequality (Plotnik, Weinberger and Ziv, '92)

Ziv's inequality is a powerful tool for proving the asymptotic optimality of the LZ
mechanism at the service of some of these tasks.

It states that for every Markov process P:

log[P(z1) - P(xa]xy) - P(as|as) - P(xp|zn—1)] < —clogc+ some small terms

More generally, it remains true for higher order Markov processes, as well as
general finite-state processes, including hidden Markov processes.

A different form of Ziv's inequality is the following:

log[# sequences with the same probability as (z1,...,2,)] > clog c—small terms.
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Using LZ for Hypothesis Testing

We are given a binary sequence, (21,...,2,), and we wish to decide between two
hypotheses:

Ho : - (z1,...,2n) is a sequence of n independent fair coin tosses.

Hy:- (x1,...,2,) is not a sequence of n independent fair coin tosses.

The difficulty is that under 3{;, we don't know how the sequence was generated.

It turns out that the following decision criterion gives the best trade-off between
the two kinds of errors:

Compare the compression ratio, m% to a threshold T': If (l(’% > T, accept Hy,
otherwise, reject it.

The choice of T controls the balance between the two kinds of decision errors.
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Markov Order Estimation (Merhav, Ph.D. thesis, ‘88)

We know that (z1,...,x,) was generated by some Markov process of order k:
P(zy,...,xz,) = P(z1,...,2k) - P(Trt1]21,- . 2k) - P(@n|Tn—t, -, Tn-1),

but we don’'t know the order k and we wish to estimate it.

The following estimator provides the best balance between the overestimation and
the underestimation errors:

clogc
-

Compress (x1,...,x,) using LZ and calculate the compression ratio,
Fori=0,1,2,..., K, compress (x1,...,x,) under the model of an i-th
order Markov process and calculate the compression ratio, p;.

Fori=0,1,2,..., K, calculate the difference, p; — %.

The first ¢ for which p; — % < T is the estimator of k.

The choice of T controls the balance between the overestimation and
underestimation errors.



-
‘Statistical’ Similarity of Sequences (Ziv & Merhav, '93)

Are the following two sequences ‘statistically’ similar?
0000111110000001111100000111 1111100000111100001111100001111
How about the following two?

0000000000000000001000000010 0100011011000001010011101110111

What could be a good measure for ‘statistical’ similarity/dissimiliarity between
two deterministic sequences?
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-
‘Statistical’ Similarity of ... (Cont'd)

Forx = (x1,...,2,) and y = (y1,...,yn), let:

c(x + y)logn — c(x)log c(x)

Alz|y) =

where ¢(x) is ¢ as before and c(x + y) is the number of phrases of x is with
respect to y, created in the following manner:

@ Find the longest prefix string of @ that appears somewhere in y, namely, the
largest ¢ such that (z1,22,...,2;) = (Y5, Yj+1,-- -, Yj+i—1) for some j.
@ Continue from x;41 in the same manner until  is exhausted.

If £ and y are ‘similar’, the phrases of & w.r.t. y are long and then c(x < y) is
small, which implies small A(x||y).

Example: n =11 and = (01111000110) and y = (10010100110). Then parsing
x with respect to y gives: (011,110,00110), and so, ¢(x < y) = 3.



-
‘Statistical’ Similarity of ... (Cont'd)

cloge

° < entropy

A(z||y) < divergence between distributions.
e A(z|y) is used for universal classification using training data.

@ |t discriminates between statistically distinguishable sequences whenever
there is some finite-state classifier that does.

Applications:

@ Text classification

o ECG-based personal identification and authentication
@ Anomaly detection
°

Estimation of divergence - used by statistical physicists to assess entropy
production and energy dissipation.
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Information Theoretic Text Classification
Using the Ziv-Merhav Method

David Pereira Coutinho! and Mério A.T. Figueiredo?

! Depart. de Engenharia de Electrénica e Telecomunicagoes e de Computadores
Instituto Superior de Engenharia de Lisboa
1959-007 Lisboa, Portugal
davidpc@isel .pt
? Instituto de Telecomunicagdes
Instituto Superior Técnico
1049-001 Lisboa, Portugal
mtf@lx.it.pt

Abstract. Most approaches to text classification rely on some measure
of (dis)similarity between sequences of symbols. Information theoretic
measures have the advantage of making very few assumptions on the
models which are considered to have generated the sequences, and have
been the focus of recent interest. This paper addresses the use of the
Ziv-Merhav method (ZMM) for the estimation of relative entropy (or
Kullback-Leibler divergence) from sequences of symbols as a tool for
text classification. We describe an implementation of the ZMM based
on a modified version of the Lempel-Ziv algorithm (LZ77). Assessing the
accuracy of the ZMM on synthetic Markov sequences shows that it yields
good estimates of the Kullback-Leibler divergence. Finally, we apply the
method in a text classification problem (more specifically, authorship
attribution) outperforming a previously proposed (also information the-
oretic) method.



2010 International Conference on Pattern Recognition

One-Lead ECG-Based Personal Identification
Using Ziv-Merhav Cross Parsing

David Pereira Coutinho,
Instituto Superior de Engenharia de Lisboa,
Instituto de Telecomunicagées,
and Instituto Superior Técnico,
Lisboa, Portugal
Email: davidpe@cc.isel pt

Abstract—The advance of falsification technology increases
security concerns and gives biometrics an important role in
security solutions. The electrocardiogram (ECG) is an emerg-
ing biometric that does not need liveliness verification. There
is strong evidence that ECG signals contain sufficient diserim-
inative information to allow the identification of individuals
from a large population. Most approaches rely on ECG data
and the fiducia of different parts of the heartheat waveform.
However non-fiducial approaches have proved recently to be
also effective, and have the advantage of not relying critically
on the accurate extraction of fiducia data. In this paper,
we propose a new non-fiducial ECG biometric identification
method based on data compression techniques, namely the Ziv-
Merhav cross parsing algorithm for symbol sequences (strings).
Our method relies on a string similarity measure which can be
seen as a ion-based i ion of the i i
cross complexity.We present results on real data, one-lead
ECG, acquired during a concentration task, from 19 healthy
Our approach achieves 100% subject recognition
the existence of differentiated stress states.

L. INTRODUCTION
Biometrics deals with identification of individuals based
on their physiological or behavioral characteristics [1] and

Ana L. N. Fred, and Mirio A. T. Figueiredo
Instituto de Telecomunicagies
and Instituto Superior Técnico,
Lisboa, Portugal
Email: afred@Ix.it.pt, mario.figueiredo @Ix.it.pt

Figure 1. Example of four latency times (features) measured from the
P. QRS and T complexes of an ECG heartbeat for fiducial-based feature
extraction.

A typical ECG signal of a normal heartbeat can be
divided into 3 parts, as depicted in Figure 1: the P wave



Fluctuation Theorems (FT)

\’I;[',z,',,\- = i‘i" —AF = T‘S\,: = t]lni ¥D {p ({.T(T)}i’_=0>|

P ({J’(f — 7)}ir=0):|

b

Physics Time series
(Average) (single trajectory)
Even ignoring some physical details of the system we can estimate its dissipation !
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Universal Channel Coding with Feedback

By using the posterior matching scheme with randomization, for binary modulo

additive channel with arbitrary noise sequence:
Shayevitz and Feder (2009) *

€ {0,1}

N ) wi € {01} i

U

1 Channel

Receiver

Feedback

R=1-H(z)

[])mn]) ~1-— /‘(Z)

p (Z) compressibility of Z
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-
Universal Decoding for Finite-State Channels (Ziv ‘85)

T Yi ~ P(yh'u ‘-N'i-)

finite—state channel

2

Zipt = (2, Ti, Ui)

delay

Optimal decoding requires knowledge of the channel statistics (P and g).
What if it is not known?

26
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Universal Decoding (Cont'd)

Ziv ('85) proposed a universal decoding criterion.

For two sequences, x = (z1,...,2,) and y = (y1,...,Yn), define:

c(x,y) = number of phrases in joint parsing of ((z1,41), (z2,92), ... (Tn,Yn)).
¢(y) = number of distinct phrases of y.

y(¢) = the (-th distinct phrase of y (1 < /¢ < ¢(y)).

ce(x|y) = the number of times that y(¢) appears in y.

Example: Let n = 6 and
0 1 0 0 0 1
(V)-
Y ol 1|01 |01
Then, ¢(y) = 3 and

ci(zly) = erlaly) = i eslaly) = 2.



Universal Decoding (Cont'd)

Now, we define
c(Y)

u(z,y) = ) co(xly)logce(z|y).
(=1

<

The decoder receives y and calculates u(x;,y) for all possible codewords

{z;,i=1,2,...,M}. The one with the smallest u(x;,y) is the decoded message.

This works essentially as well as the optimal decoder that knows the channel for
most codes.

u(x|y) has the meaning of conditional complexity of @ in the presence of y.



|
Encryption (Merhav ‘13)

UL, U2y e s .
key
T1,T2,... cryptogram
plaintext Y1, Y2, - --
Finite-State Encrypter
Zit1
next state
B
state delay
A
ti = ti-1+ A(z,78), to=0
ki = (g, 41,0142, Ut;)
vi = [z 2 ki)
zig1 = gz zi)
n
. 1
0s(X1, o, Tp) = min -y U(k;)

{all s-state encrypters} 1 *—
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-
Encryption (Cont'd)

It is shown that
clogec

0s(X1,ene XTp) > — small terms,
which is achieved by an encrypter that:

(i) applies LZ78 compression;

(i) XORs every bit of the compressed representation with a key bit, u;.

At the decoder:

(i) decrypt by XORing again with the corresponding key bit, wu;;
(i) apply LZ78 decompression.

Analogous to well-known results in the probabilistic setting.



|
Universal Prediction (Feder, Merhav & Gutman, '92)

T

finite—state predictor

delay

The s-state predictability of (z1,...,z,):

ERCITI

= min
{all s-state predictors}

£ = flz,7:)

Ziv1 = g2, Ti)

number of prediction errors

n

There is no explicit expression (or tight bound) of 7, in terms of c.
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-
Universal Prediction (Cont'd)

Prediction Using LZ78

» LZ78 algorithm implies an efficient sequential probability assignment

* Incremental parsing: LZ78 parses the input sequence into phrases,
where each new phrase is the shortest substring that has not
appeared so far in the parsing

* parsing is represented with a parsing tree

* The tree implies a probability assignment



-
Universal Prediction (Cont'd)

After "0" After 01~
1

"o" Initial Dictionary 2/
] o I~ T~
>

L Examgle: Feder-M-Gutman 92
x11=00101010100

=0,01,010,1,0100 / <2\ el ‘

Plxs =0 | xt71) =
12131142121
2'3’274’3’2’573%4’3"2 " 1

Closely related ideas appear already in Feder's 1991 paper on FS gambling. 33/36



-
Lossy Compression (Merhav ‘24)

T Yy = Ty

St+1

delay

finite-state finite-state

lossless encoder

|

|

|

|

|

|

|

|

1

|

1

| delay
|

|

|

|

|

1

|

I .

i reproduction encoder
]
|
|

Reproduction encoder: keeps with the distortion constraint for every k-block.
{y:} - variable-length strings (including §) of length 0) with total length = k.
Reproduction encoder - arbitrarily many states. Lossless encoder - s states. 34/36



-
Lossy Compression (Cont'd)

If log s < log k, the best we can do is to seek the reproduction vector with the
smallest clog ¢ within the ‘sphere’ in each k-block and compressing it by LZ78.

Otherwise, if s is sufficiently large in terms of k&, we can do much better by
generating a codebook at random using the universal probability distribution:

P(&1,...,d&,) o 27¢lose

and compressing the index of the first codeword that meets the distortion
requirement.

The resulting code is universal, not only in terms of the source sequence, but also
in terms of the distortion function.

The universal distribution is useful also in other tasks, such as guessing.
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Summary

We reviewed Jacob Ziv's individual-sequence approach.

The jewel in the crown - the LZ algorithm:
a successful marriage of a beautiful theory and great practicality.

Ziv's inequality and its utility.

Ziv's legacy has influenced my own research journey, as well as those of
colleagues and students:

e LZ at the service of many tasks beyond compression (we have seen just some).
o Extensions to more general settings: lossy compression, side information, etc.

Outlook: extensions to multiuser network configurations.
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