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General Motivation

Motivated by the success of context—tree methods in compression, we wish to

study them in the scenario of prediction of individual sequences.

Letting =1, x2, .. ., be a binary individual sequence, a context—tree predictor is

one of the form

Tey1 = f(st),

where the ‘state’ s; is a suffix of (..., x;_1,z¢) derived by some rule, in

particular, by a tree.
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Earlier Work

In [FederMerhavGutman92], universal prediction relative to general finite—state
(FS) predictors, was investigated, where

st+1 = g(st,xt) t=1,2,...

for an arbitrary next—state function g:

Given an infinite sequence = = (x1, z2,...), the finite—state predictability was
defined as

m(x) = lim limsuprwg(zy,...,zN),
S§—00 N—ooo
where ng(zx1,...,xn) IS the minimum fraction of errors that is attained by the
best FS predictor with < § states on (x1,...,xn).

It was shown in [FederMerhavGutman92] that = (x) is achievable by a universal
predictor based on the LZ algorithm, or a Markov (finite—memory) predictor of
growing order.

The asymptotic regime is such that N >> S.
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Context—based methods are extensively used in data compression
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Earlier Work (Cont’d)
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Willems, 2004

Martin, Seroussi, and Weinberger, 2004.

In predicton, studied by:
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for random processes under certain regularity conditions.

Jacquet, Szpankowski, and Apostol, 2002

Ziv, 2002, 2004
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Objectives

® Study context—tree prediction in the individual sequence regime.
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Objectives

® Study context—tree prediction in the individual sequence regime.
® Study the case where S = S grows concurrently with V.

® Propose a context—based prediction algorithm.
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Motivation

® Context—tree predictors are more powerful than ‘Markov’ predictors. It is
expected that their relative advantage would be emphasized in this
asymptotic regime.
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® We wish to understand fundamental limits of universality: How fast can
S grow without sacrificing universal achievability of optimum
performance?

—n. 7/2



Motivation

® Context—tree predictors are more powerful than ‘Markov’ predictors. It is
expected that their relative advantage would be emphasized in this
asymptotic regime.

® We wish to understand fundamental limits of universality: How fast can
S grow without sacrificing universal achievability of optimum
performance?

® Explore the regime where N is not necessarily very large relative to S.
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Summary of Main Results

® \We show that this critical growth rate of Sy is linear with N: If
Sy /N — const., then the cannot be universally
approached.

—n. 8/7



Summary of Main Results

® \We show that this critical growth rate of Sy is linear with N: If

Sy /N — const., then the cannot be universally
approached.

® For a sublinear growth rate of Sy, we propose a universal predictor that
achieves it uniformly.

—n. 8/7



Summary of Main Results

® \We show that this critical growth rate of Sy is linear with N: If

Sy /N — const., then the cannot be universally
approached.

® For a sublinear growth rate of Sy, we propose a universal predictor that
achieves it uniformly.

® |[tis possible to control the growth rate of the number of contexts
generated by the algorithm. For the best choice, the regret decays like

(Sn/N)'/3 in the horizon—dependent case.
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Summary of Main Results

We show that this critical growth rate of Sy is linear with N: If

Sy /N — const., then the cannot be universally
approached.

For a sublinear growth rate of S, we propose a universal predictor that
achieves it uniformly.

It is possible to control the growth rate of the number of contexts
generated by the algorithm. For the best choice, the regret decays like

(Sn/N)'/3 in the horizon—dependent case.

An horizon—independent algorithm is proposed too.
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Problem Formulation

A context—tree predictor with S contexts is given by

it—l—l — f(St)7

where s; takes values in a finite set S of |S| = S contexts defined by the leaves
of a complete binary tree.

f:S — {0,1} may be randomized.

In the earlier example, S = {0,01, 11}, thus S = 3, and a predictor is defined by
three probability distributions, P(-|0), P(-|01), and P(-|11).
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Problem Forumlation (Cont’'d) — Extension

Given a total budget of S states, let us split it between:
® 3¢ < S context states as before, plus

® 3T < g 5% transient states used to store the first few (training) samples
x1,x9,...,%p, Where £ may be context—dependent.

The set of transient states is defined by the internal nodes of a tree, whose
root serves as the initial state.

The system begins at the transient mode, but at a certain stage, switches to
the context—tree mode.

In the transient mode, the transient mode tree is traversed according to the
iIncoming symbols. Once a leaf is reached, the system passes to the
context—tree mode.
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Problem formulation (Cont’d)

P — the class of all predictors with ST 4+ §¢ < § states.
The Sth order context—predictability, x(z, S), is the minimum fraction of
prediction errors attained over 2V by the best member of Pg.

Given {Sn}n>1, the context predictability is universally achievable w.r.t.
{SN}n>1, If 3 predictor such that for every © = (x1,z2,...):

N —o0

N
lim sup [% Z Pr{X; # z¢} — (=", SN)] < 0.
t=1

A predictor is said to achieve the context predictability w.r.t. {Sx } n>1 uniformly
If

N—oco <«

N

: 1 A

lim sup max [N E 1 Pr{X: # x¢} — /i(xN, SN)] < 0.
t—
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Main Result
Theorem: The context predictability w.r.t. {Sx}n>1 Is uniformly universally
achievable iff limy_. o, Sy /N = 0.

We propose a universal (context—based) prediction algorithm
which achieves the context predictability whenever limpy_. o, Sy /N = 0.

Necessity: We show that for a € (0, 1], there is a set 5 of sequences for each of
which x(z,aN + 1) = 0, but v predictor 3 ¥ € B such that

N
1 - N a
N t_El Pr{)it # xt} — Ii(x ,CLN + 1) Z 5

The question of universal achievability which is not uniforml, in this case,
remains open.
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The Algorithm

Horizon—dependent version

For a given N, choose a positive integer My . Let kg = ko(z1,...,x:) denote
the largest positive integer k£ such that the following two conditions hold at the
same time:

® (x4 gi11,...,x¢) appears at least My times along (z1,...,z:), and

® (z;_p.9,...,x¢) has already served as prediction context > My times
previously.

If no such k exists, set kg = 0. (z;—g,+1,---,2t) IS the prediction context at

time t. For kg = 0, the context s; is “null.”

Having selected s = (z¢_k,+1,- .., x¢) according to these rules, randomly
draw 21 according to Pr{z;+1 = 1|s¢} = ¢(pe(1]s¢), N(st)), where ¢ is defined
as follows:

f

O Oé<%_€n
pla,n) =4 (a—2)+3 Lo <a<lite,

2e., 2 2 2 2

1 Oé>%+€n

\
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Performance

We next show that the excess fraction of prediction errors, beyond x(z% , Sy),
IS upper bounded by

2 1 1 M 2Mpyn +1)S
2 |2 v Ly (1 My, @My + 1Sy
My « MZ ' My IN N

which — 0 iff My — oo and My Sy /N — 0.

These two conditions can be met at the same time whenever Sy /N — 0.

Comments:
® Optimum My is prop. to (N/Sy)%/? yielding redundancy prop. to
(Sn /N3,

® Horizon—-independent version of the algorithm: can be obtained by
defining M as function of £ (length of examined context) rather than
function of V.
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Analysis

An upper bound on the redundancy,
1 N
5 D IPr{de # a1} —w(a”, Sn)]

t=1

will be obtained by bounding (1/N) fo:l Pr{z: # xz¢} from above, and
bounding x(z, Sx) from below.

As for the latter, we have:

w(zV . Sy) > % S min{N(s,0), N(s,1)} — S%
| s€S$ i
> % > min{N(s,0),N(s,1)} — Sn | .

| seSY i

where N (s, z) IS the count of (s; = s, 411 = x).
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Analysis (Cont’d)

As was shown in [FederMerhavGutman92], when the proposed predictor is
applied, the contribtution of each state s to the expected number of prediction
errors,

ENe(S) = Z Pr{:?;t 7é xt},

t:st=s

IS upper bounded by

ENc(s) <min{N(s,0),N(s,1)} + /N(s) + 1+ %, (1)

where N(s) = N(s,0) + N(s, 1) is the number of occurrences of s.

Consider the above prediction scheme applied to z*¥, and denote sequence of
contexts, generated by this algorithm, as 5" = ($1,..-,8N).
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Analysis (Cont’d)

By the construction of the algorithm, every one of S](\j, — 1 internal nodes of the
reference predictor in Pg,, IS used as a prediction context < 2M  times.

The reason is that in the (2M + 1)—st time, it was either preceded by ‘O’ or by
‘1’at least M times, and so, the conditions for extending the context are met.

Thus, except for 2Mn (S$ — 1) < 2M xSy time instants, § is a refinement of the
reference state, s.

Let 75 denote the sub—tree of prediction contexts rooted at s. Then,

N
1 N . A~ ~
LS P A ) < 2Masy+ BT minlNG0), NG D)+
t=1 SGS% s€7;
— 1
+ 2 {\/N(8)+1+ 5]
<Y

11>

2MynSN + A+ B.
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Analysis (Cont’d)

Now,

A = > > min{N(50),N(51)}

868]% s€7s

< Z min ZN(§,O),ZN(§,1)
seS$ S€T, S€T,

< Z min{N(s,0), N(s,1)}
sESﬁ

< N-. m(xN,SN) + Sn.
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Analysis (Cont’d)

As for

B= Y > [\/N +1+2]

SESC s€7;

we again use the fact that N(5) < 2M;, and so,

B < > Z<\/2MN+1+%>

sESf, s€e7s

- (\/QMN—|—1—|—%>' > T

sESﬁ

and Zsesg 75| IS in turn upper bounded by the total number of contexts

generated by the algorithm, which is < (2N/My + 1) because each context

pertaining to an internal node is used as a prediction context at least My
times.
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Horizon—Independent Algorithm

Defining the H-I algorithm in terms of a sequence {M (k) }x>1, let

ok 1 ]
__'_—,

YIN) = 2min | 5+

then the redundancy is upper bounded by

2SN (M (S
N

WAD L mmi e + Y8,

The choice of M (k) controls the trade—off between the allowed growth rate of
S and the redundancy rate.

Faster convergence than the LZ—based algorithm in [FederMerhavGutman92].
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Necessity

For each one of the 2¢% sequences
T1,22,...,TaN,0,...,0
there exists a member in P, n. 1 Which gives error—free prediction, thus
FL(Q?N,CLN +1)=0.

This is easily seen by using aN transient states and only one context—tree
state.

On the other hand, V predictor

N alN
1 1 a
max — E Pr{:?;t 7é xt} > — E EPF{ZEt 7é Xt} > —,
0) N t=1 N t=1 2

(xzoN 0,...,
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Conclusion

® Context—tree predictability of individual sequences was investigated.
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Conclusion

Context—tree predictability of individual sequences was investigated.
Asymptotic regime allows S = Sy;.
The critical growth rate is linear.

A context—based algorithm.
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Conclusion

Context—tree predictability of individual sequences was investigated.
Asymptotic regime allows S = Sy;.

The critical growth rate is linear.

A context—based algorithm.

Open question no. 1: what about non—uniform achievability?
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Conclusion

Context—tree predictability of individual sequences was investigated.
Asymptotic regime allows S = Sy;.

The critical growth rate is linear.

A context—based algorithm.

Open question no. 1: what about non—uniform achievability?

Open question no. 2: can we get rid of the transient states?
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Conclusion

Context—tree predictability of individual sequences was investigated.
Asymptotic regime allows S = Sy;.

The critical growth rate is linear.

A context—based algorithm.

Open question no. 1: what about non—uniform achievability?

Open question no. 2: can we get rid of the transient states?

Open question no. 3: sharper upper and lower bounds on the regret.
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