

On Context–Tree Prediction of Individual Sequences

Jacob Ziv and Neri Merhav

Department of Electrical Engineering
Technion—Israel Institute of Technology
Haifa 32000, Israel

Mathematical Foundations of Learning Theory – II:
Ecole Normale Supérieure, Paris, May–June, 2006

General Motivation

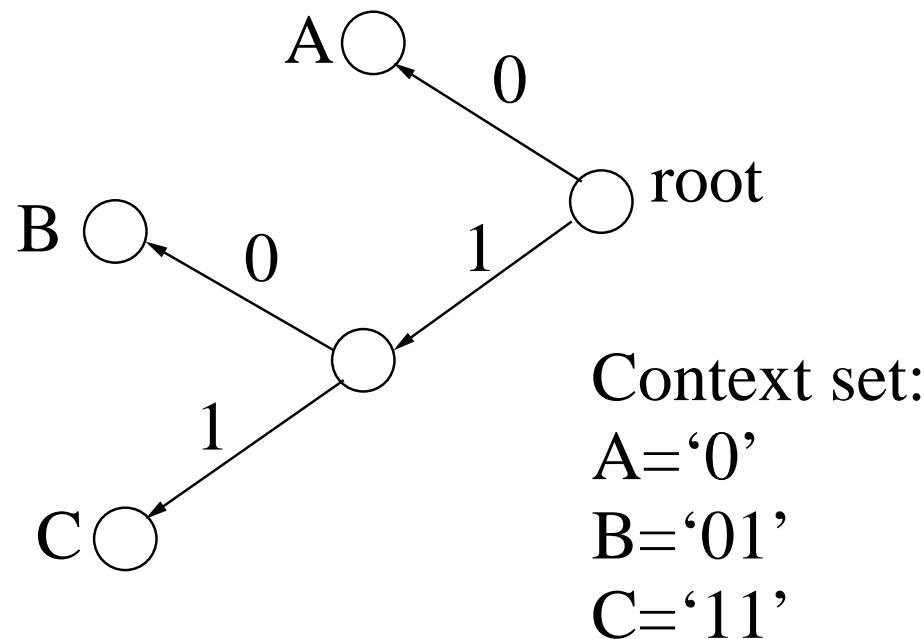
Motivated by the success of **context–tree** methods in compression, we wish to study them in the scenario of prediction of individual sequences.

Letting x_1, x_2, \dots , be a binary individual sequence, a context–tree predictor is one of the form

$$\hat{x}_{t+1} = f(s_t),$$

where the ‘state’ s_t is a suffix of (\dots, x_{t-1}, x_t) derived by some rule, in particular, by a tree.

An Example



0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1
A B C C A B A A A A B A B C A B

Earlier Work

In [FederMerhavGutman92], universal prediction relative to general **finite-state** (FS) predictors, was investigated, where

$$s_{t+1} = g(s_t, x_t) \quad t = 1, 2, \dots$$

for an arbitrary next-state function g :

Given an infinite sequence $x = (x_1, x_2, \dots)$, the **finite-state predictability** was defined as

$$\pi(x) = \lim_{S \rightarrow \infty} \limsup_{N \rightarrow \infty} \pi_S(x_1, \dots, x_N),$$

where $\pi_S(x_1, \dots, x_N)$ is the minimum fraction of errors that is attained by the best FS predictor with $\leq S$ states on (x_1, \dots, x_N) .

It was shown in [FederMerhavGutman92] that $\pi(x)$ is achievable by a universal predictor based on the LZ algorithm, or a **Markov** (finite-memory) predictor of growing order.

The asymptotic regime is such that $N \gg S$.

Earlier Work (Cont'd)

Context-based methods are extensively used in data compression

- Weinberger and Seroussi, 1994
- Weinberger, Seroussi, and Sapiro, 1996
- Shtar'kov, Tjalkens, and Willems, 1997
- Willems, Shtar'kov, and Tjalkens, 1998
- Willems, 2004
- Martin, Seroussi, and Weinberger, 2004.

In prediction, studied by:

- Jacquet, Szpankowski, and Apostol, 2002
- Ziv, 2002, 2004

for random processes under certain regularity conditions.

Objectives

- Study context–tree prediction in the individual sequence regime.

Objectives

- Study context–tree prediction in the individual sequence regime.
- Study the case where $S = S_N$ grows concurrently with N .

Objectives

- Study context–tree prediction in the individual sequence regime.
- Study the case where $S = S_N$ grows concurrently with N .
- Propose a context–based prediction algorithm.

Motivation

- Context-tree predictors are more powerful than ‘Markov’ predictors. It is expected that their relative advantage would be emphasized in this asymptotic regime.

Motivation

- Context-tree predictors are more powerful than ‘Markov’ predictors. It is expected that their relative advantage would be emphasized in this asymptotic regime.
- We wish to understand fundamental limits of universality: How fast can S_N grow without sacrificing universal achievability of optimum performance?

Motivation

- Context-tree predictors are more powerful than ‘Markov’ predictors. It is expected that their relative advantage would be emphasized in this asymptotic regime.
- We wish to understand fundamental limits of universality: How fast can S_N grow without sacrificing universal achievability of optimum performance?
- Explore the regime where N is not necessarily very large relative to S .

Summary of Main Results

- We show that this critical growth rate of S_N is linear with N : If $S_N/N \rightarrow \text{const.}$, then the **context-predictability** cannot be universally approached.

Summary of Main Results

- We show that this critical growth rate of S_N is linear with N : If $S_N/N \rightarrow \text{const.}$, then the **context-predictability** cannot be universally approached.
- For a sublinear growth rate of S_N , we propose a universal predictor that achieves it uniformly.

Summary of Main Results

- We show that this critical growth rate of S_N is linear with N : If $S_N/N \rightarrow \text{const.}$, then the **context-predictability** cannot be universally approached.
- For a sublinear growth rate of S_N , we propose a universal predictor that achieves it uniformly.
- It is possible to control the growth rate of the number of contexts generated by the algorithm. For the best choice, the regret decays like $(S_N/N)^{1/3}$ in the horizon-dependent case.

Summary of Main Results

- We show that this critical growth rate of S_N is linear with N : If $S_N/N \rightarrow \text{const.}$, then the **context-predictability** cannot be universally approached.
- For a sublinear growth rate of S_N , we propose a universal predictor that achieves it uniformly.
- It is possible to control the growth rate of the number of contexts generated by the algorithm. For the best choice, the regret decays like $(S_N/N)^{1/3}$ in the horizon-dependent case.
- An horizon-independent algorithm is proposed too.

Problem Formulation

A context–tree predictor with S contexts is given by

$$\hat{x}_{t+1} = f(s_t),$$

where s_t takes values in a finite set \mathcal{S} of $|\mathcal{S}| = S$ contexts defined by the leaves of a complete binary tree.

$f : \mathcal{S} \rightarrow \{0, 1\}$ may be randomized.

In the earlier example, $\mathcal{S} = \{0, 01, 11\}$, thus $S = 3$, and a predictor is defined by three probability distributions, $P(\cdot|0)$, $P(\cdot|01)$, and $P(\cdot|11)$.

Problem Forumlation (Cont'd) – Extension

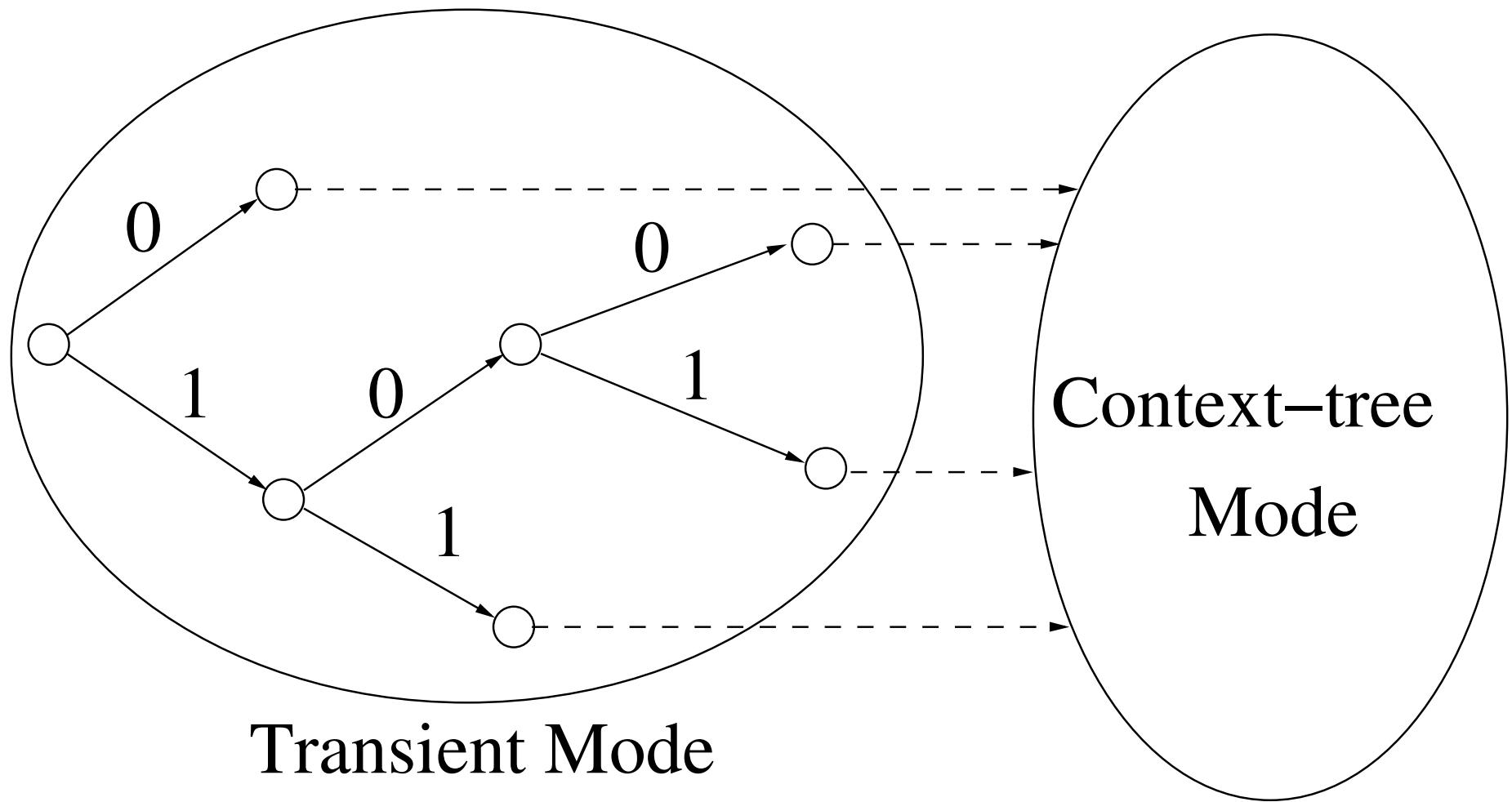
Given a total budget of S states, let us split it between:

- $S^C \leq S$ context states as before, plus
- $S^T \leq S - S^C$ **transient states** used to store the first few (training) samples x_1, x_2, \dots, x_ℓ , where ℓ may be context-dependent.

The set of transient states is defined by the internal nodes of a tree, whose root serves as the initial state.

The system begins at the **transient mode**, but at a certain stage, switches to the **context-tree mode**.

In the transient mode, the transient mode tree is traversed according to the incoming symbols. Once a leaf is reached, the system passes to the context-tree mode.



Problem formulation (Cont'd)

\mathcal{P}_S – the class of all predictors with $S^T + S^C \leq S$ states.

The **S th order context–predictability**, $\kappa(x^N, S)$, is the minimum fraction of prediction errors attained over x^N by the best member of \mathcal{P}_S .

Given $\{S_N\}_{N \geq 1}$, the **context predictability is universally achievable w.r.t. $\{S_N\}_{N \geq 1}$** , if \exists predictor such that for every $x = (x_1, x_2, \dots)$:

$$\limsup_{N \rightarrow \infty} \left[\frac{1}{N} \sum_{t=1}^N \Pr\{\hat{X}_t \neq x_t\} - \kappa(x^N, S_N) \right] \leq 0.$$

A predictor is said to achieve the context predictability w.r.t. $\{S_N\}_{N \geq 1}$ **uniformly** if

$$\limsup_{N \rightarrow \infty} \max_{x^N} \left[\frac{1}{N} \sum_{t=1}^N \Pr\{\hat{X}_t \neq x_t\} - \kappa(x^N, S_N) \right] \leq 0.$$

Main Result

Theorem: The context predictability w.r.t. $\{S_N\}_{N \geq 1}$ is uniformly universally achievable iff $\lim_{N \rightarrow \infty} S_N/N = 0$.

Sufficiency: We propose a universal (context-based) prediction algorithm which achieves the context predictability whenever $\lim_{N \rightarrow \infty} S_N/N = 0$.

Necessity: We show that for $a \in (0, 1]$, there is a set \mathcal{B} of sequences for each of which $\kappa(x^N, aN + 1) = 0$, but \forall predictor $\exists x^N \in \mathcal{B}$ such that

$$\frac{1}{N} \sum_{t=1}^N \Pr\{\hat{X}_t \neq x_t\} - \kappa(x^N, aN + 1) \geq \frac{a}{2}.$$

The question of universal achievability which is not uniforml, in this case, remains open.

The Algorithm

Horizon-dependent version

For a given N , choose a positive integer M_N . Let $k_0 = k_0(x_1, \dots, x_t)$ denote the largest positive integer k such that the following two conditions hold at the same time:

- (x_{t-k+1}, \dots, x_t) appears at least M_N times along (x_1, \dots, x_t) , and
- (x_{t-k+2}, \dots, x_t) has already served as **prediction context** $\geq M_N$ times previously.

If no such k exists, set $k_0 = 0$. $(x_{t-k_0+1}, \dots, x_t)$ is the **prediction context** at time t . For $k_0 = 0$, the context s_t is “null.”

Having selected $s_t = (x_{t-k_0+1}, \dots, x_t)$ according to these rules, randomly draw \hat{x}_{t+1} according to $\Pr\{\hat{x}_{t+1} = 1|s_t\} = \phi(\hat{p}_t(1|s_t), N(s_t))$, where ϕ is defined as follows:

$$\phi(\alpha, n) = \begin{cases} 0 & \alpha < \frac{1}{2} - \epsilon_n \\ \frac{1}{2\epsilon_n}(\alpha - \frac{1}{2}) + \frac{1}{2} & \frac{1}{2} - \epsilon_n \leq \alpha \leq \frac{1}{2} + \epsilon_n \\ 1 & \alpha > \frac{1}{2} + \epsilon_n \end{cases}$$

Performance

We next show that the excess fraction of prediction errors, beyond $\kappa(x^N, S_N)$, is upper bounded by

$$\left(2\sqrt{\frac{2}{M_N} + \frac{1}{M_N^2}} + \frac{1}{M_N}\right) \cdot \left(1 + \frac{M_N}{2N}\right) + \frac{(2M_N + 1)S_N}{N},$$

which $\rightarrow 0$ iff $M_N \rightarrow \infty$ and $M_N S_N / N \rightarrow 0$.

These two conditions can be met at the same time whenever $S_N / N \rightarrow 0$.

Comments:

- Optimum M_N is prop. to $(N/S_N)^{2/3}$ yielding redundancy prop. to $(S_N/N)^{1/3}$.
- **Horizon-independent** version of the algorithm: can be obtained by defining M as function of k (length of examined context) rather than function of N .

Analysis

An upper bound on the redundancy,

$$\frac{1}{N} \sum_{t=1}^N [\Pr\{\hat{x}_t \neq x_t\} - \kappa(x^N, S_N)]$$

will be obtained by bounding $(1/N) \sum_{t=1}^N \Pr\{\hat{x}_t \neq x_t\}$ from above, and bounding $\kappa(x^N, S_N)$ from below.

As for the latter, we have:

$$\begin{aligned} \kappa(x^N, S_N) &\geq \frac{1}{N} \left[\sum_{s \in \mathcal{S}_N^C} \min\{N(s, 0), N(s, 1)\} - S_N^T \right] \\ &\geq \frac{1}{N} \left[\sum_{s \in \mathcal{S}_N^C} \min\{N(s, 0), N(s, 1)\} - S_N \right], \end{aligned}$$

where $N(s, x)$ is the count of $(s_t = s, x_{t+1} = x)$.

Analysis (Cont'd)

As was shown in [FederMerhavGutman92], when the proposed predictor is applied, the contribution of each state s to the expected number of prediction errors,

$$EN_e(s) = \sum_{t:s_t=s} \Pr\{\hat{x}_t \neq x_t\},$$

is upper bounded by

$$EN_e(s) \leq \min\{N(s, 0), N(s, 1)\} + \sqrt{N(s) + 1} + \frac{1}{2}, \quad (1)$$

where $N(s) = N(s, 0) + N(s, 1)$ is the number of occurrences of s .

Consider the above prediction scheme applied to x^N , and denote sequence of contexts, generated by this algorithm, as $\hat{s}^N = (\hat{s}_1, \dots, \hat{s}_N)$.

Analysis (Cont'd)

By the construction of the algorithm, every one of $S_N^C - 1$ internal nodes of the reference predictor in \mathcal{P}_{S_N} is used as a prediction context $\leq 2M_N$ times.

The reason is that in the $(2M_N + 1)$ -st time, it was either preceded by '0' or by '1' at least M_N times, and so, the conditions for extending the context are met.

Thus, except for $2M_N(S_N^C - 1) < 2M_NS_N$ time instants, \hat{s} is a refinement of the reference state, s .

Let \mathcal{T}_s denote the sub-tree of prediction contexts rooted at s . Then,

$$\begin{aligned}
 \frac{1}{N} \sum_{t=1}^N \Pr\{\hat{x}_t \neq x_t\} &\leq 2M_NS_N + \sum_{s \in \mathcal{S}_N^C} \sum_{\hat{s} \in \mathcal{T}_s} \min\{N(\hat{s}, 0), N(\hat{s}, 1)\} + \\
 &\quad + \sum_{\hat{s} \in \mathcal{T}_s} \left[\sqrt{N(\hat{s}) + 1} + \frac{1}{2} \right] \\
 &\stackrel{\Delta}{=} 2M_NS_N + A + B.
 \end{aligned}$$

Analysis (Cont'd)

Now,

$$\begin{aligned} A &= \sum_{s \in \mathcal{S}_N^C} \sum_{\hat{s} \in \mathcal{T}_s} \min\{N(\hat{s}, 0), N(\hat{s}, 1)\} \\ &\leq \sum_{s \in \mathcal{S}_N^C} \min \left\{ \sum_{\hat{s} \in \mathcal{T}_s} N(\hat{s}, 0), \sum_{\hat{s} \in \mathcal{T}_s} N(\hat{s}, 1) \right\} \\ &\leq \sum_{s \in \mathcal{S}_N^C} \min\{N(s, 0), N(s, 1)\} \\ &\leq N \cdot \kappa(x^N, S_N) + S_N. \end{aligned}$$

Analysis (Cont'd)

As for

$$B = \sum_{s \in \mathcal{S}_N^C} \sum_{\hat{s} \in \mathcal{T}_s} \left[\sqrt{N(\hat{s}) + 1} + \frac{1}{2} \right],$$

we again use the fact that $N(\hat{s}) \leq 2M_N$, and so,

$$\begin{aligned} B &\leq \sum_{s \in \mathcal{S}_N^C} \sum_{\hat{s} \in \mathcal{T}_s} \left(\sqrt{2M_N + 1} + \frac{1}{2} \right) \\ &= \left(\sqrt{2M_N + 1} + \frac{1}{2} \right) \cdot \sum_{s \in \mathcal{S}_N^C} |\mathcal{T}_s| \end{aligned}$$

and $\sum_{s \in \mathcal{S}_N^C} |\mathcal{T}_s|$ is in turn upper bounded by the total number of contexts generated by the algorithm, which is $\leq (2N/M_N + 1)$ because each context pertaining to an internal node is used as a prediction context at least M_N times.

Horizon–Independent Algorithm

Defining the H–I algorithm in terms of a sequence $\{M(k)\}_{k \geq 1}$, let

$$\psi(N) = 2 \min_k \left[\frac{2^k}{N} + \frac{1}{M(k)} \right],$$

then the redundancy is upper bounded by

$$\frac{2S_N(M(S_N) + 1)}{N} + \sqrt{\psi(N)[1 + \psi(N)]} + \frac{\psi(N)}{2}.$$

The choice of $M(k)$ controls the trade–off between the allowed growth rate of S_N and the redundancy rate.

Faster convergence than the LZ–based algorithm in [FederMerhavGutman92].

Necessity

For each one of the 2^{aN} sequences

$$x_1, x_2, \dots, x_{aN}, 0, \dots, 0$$

there exists a member in \mathcal{P}_{aN+1} which gives error-free prediction, thus

$$\kappa(x^N, aN + 1) = 0.$$

This is easily seen by using aN transient states and only one context-tree state.

On the other hand, \forall predictor

$$\max_{(x^{aN}, 0, \dots, 0)} \frac{1}{N} \sum_{t=1}^N \Pr\{\hat{x}_t \neq x_t\} \geq \frac{1}{N} \sum_{t=1}^{aN} E\Pr\{\hat{x}_t \neq X_t\} \geq \frac{a}{2}.$$

Conclusion

- Context-tree predictability of individual sequences was investigated.

Conclusion

- Context-tree predictability of individual sequences was investigated.
- Asymptotic regime allows $S = S_N$.

Conclusion

- Context-tree predictability of individual sequences was investigated.
- Asymptotic regime allows $S = S_N$.
- The critical growth rate is linear.

Conclusion

- Context-tree predictability of individual sequences was investigated.
- Asymptotic regime allows $S = S_N$.
- The critical growth rate is linear.
- A context-based algorithm.

Conclusion

- Context-tree predictability of individual sequences was investigated.
- Asymptotic regime allows $S = S_N$.
- The critical growth rate is linear.
- A context-based algorithm.
- Open question no. 1: what about non-uniform achievability?

Conclusion

- Context-tree predictability of individual sequences was investigated.
- Asymptotic regime allows $S = S_N$.
- The critical growth rate is linear.
- A context-based algorithm.
- Open question no. 1: what about non-uniform achievability?
- Open question no. 2: can we get rid of the transient states?

Conclusion

- Context-tree predictability of individual sequences was investigated.
- Asymptotic regime allows $S = S_N$.
- The critical growth rate is linear.
- A context-based algorithm.
- Open question no. 1: what about non-uniform achievability?
- Open question no. 2: can we get rid of the transient states?
- Open question no. 3: sharper upper and lower bounds on the regret.