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General Motivation

Motivated by the success of context–tree methods in compression, we wish to

study them in the scenario of prediction of individual sequences.

Letting x1, x2, . . ., be a binary individual sequence, a context–tree predictor is

one of the form

x̂t+1 = f(st),

where the ‘state’ st is a suffix of (. . . , xt−1, xt) derived by some rule, in

particular, by a tree.
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Earlier Work

In [FederMerhavGutman92], universal prediction relative to general finite–state
(FS) predictors, was investigated, where

st+1 = g(st, xt) t = 1, 2, . . .

for an arbitrary next–state function g:

Given an infinite sequence x = (x1, x2, . . .), the finite–state predictability was
defined as

π(x) = lim
S→∞

lim sup
N→∞

πS(x1, . . . , xN ),

where πS(x1, . . . , xN ) is the minimum fraction of errors that is attained by the
best FS predictor with ≤ S states on (x1, . . . , xN ).

It was shown in [FederMerhavGutman92] that π(x) is achievable by a universal
predictor based on the LZ algorithm, or a Markov (finite–memory) predictor of
growing order.

The asymptotic regime is such that N >> S.

– p. 4/23



Earlier Work (Cont’d)

Context–based methods are extensively used in data compression

Weinberger and Seroussi, 1994

Weinberger, Seroussi, and Sapiro, 1996

Shtar’kov, Tjalkens, and Willems, 1997

Willems, Shtar’kov, and Tjalkens, 1998

Willems, 2004

Martin, Seroussi, and Weinberger, 2004.

In predicton, studied by:

Jacquet, Szpankowski, and Apostol, 2002

Ziv, 2002, 2004

for random processes under certain regularity conditions.
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Objectives

Study context–tree prediction in the individual sequence regime.
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Objectives

Study context–tree prediction in the individual sequence regime.

Study the case where S = SN grows concurrently with N .

Propose a context–based prediction algorithm.
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Motivation

Context–tree predictors are more powerful than ‘Markov’ predictors. It is
expected that their relative advantage would be emphasized in this
asymptotic regime.
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Motivation

Context–tree predictors are more powerful than ‘Markov’ predictors. It is
expected that their relative advantage would be emphasized in this
asymptotic regime.

We wish to understand fundamental limits of universality: How fast can
SN grow without sacrificing universal achievability of optimum
performance?

Explore the regime where N is not necessarily very large relative to S.

– p. 7/23



Summary of Main Results

We show that this critical growth rate of SN is linear with N : If
SN/N → const., then the context-predictability cannot be universally
approached.
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It is possible to control the growth rate of the number of contexts
generated by the algorithm. For the best choice, the regret decays like
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Summary of Main Results

We show that this critical growth rate of SN is linear with N : If
SN/N → const., then the context-predictability cannot be universally
approached.

For a sublinear growth rate of SN , we propose a universal predictor that
achieves it uniformly.

It is possible to control the growth rate of the number of contexts
generated by the algorithm. For the best choice, the regret decays like

(SN/N)1/3 in the horizon–dependent case.

An horizon–independent algorithm is proposed too.
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Problem Formulation

A context–tree predictor with S contexts is given by

x̂t+1 = f(st),

where st takes values in a finite set S of |S| = S contexts defined by the leaves
of a complete binary tree.

f : S → {0, 1} may be randomized.

In the earlier example, S = {0, 01, 11}, thus S = 3, and a predictor is defined by
three probability distributions, P (·|0), P (·|01), and P (·|11).
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Problem Forumlation (Cont’d) – Extension

Given a total budget of S states, let us split it between:

SC ≤ S context states as before, plus

ST ≤ S − SC transient states used to store the first few (training) samples
x1, x2, . . . , x`, where ` may be context–dependent.

The set of transient states is defined by the internal nodes of a tree, whose
root serves as the initial state.

The system begins at the transient mode, but at a certain stage, switches to
the context–tree mode.

In the transient mode, the transient mode tree is traversed according to the
incoming symbols. Once a leaf is reached, the system passes to the
context–tree mode.
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Problem formulation (Cont’d)

PS – the class of all predictors with ST + SC ≤ S states.
The Sth order context–predictability, κ(xN , S), is the minimum fraction of
prediction errors attained over xN by the best member of PS .

Given {SN}N≥1, the context predictability is universally achievable w.r.t.
{SN}N≥1, if ∃ predictor such that for every x = (x1, x2, . . .):

lim sup
N→∞

"

1

N

N
X

t=1

Pr{X̂t 6= xt} − κ(xN , SN )

#

≤ 0.

A predictor is said to achieve the context predictability w.r.t. {SN}N≥1 uniformly
if

lim sup
N→∞

max
xN

"

1

N

N
X

t=1

Pr{X̂t 6= xt} − κ(xN , SN )

#

≤ 0.
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Main Result

Theorem: The context predictability w.r.t. {SN}N≥1 is uniformly universally
achievable iff limN→∞ SN/N = 0.

Sufficiency: We propose a universal (context–based) prediction algorithm
which achieves the context predictability whenever limN→∞ SN/N = 0.

Necessity: We show that for a ∈ (0, 1], there is a set B of sequences for each of
which κ(xN , aN + 1) = 0, but ∀ predictor ∃ xN ∈ B such that

1

N

N
X

t=1

Pr{X̂t 6= xt} − κ(xN , aN + 1) ≥
a

2
.

The question of universal achievability which is not uniforml, in this case,
remains open.
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The Algorithm

Horizon–dependent version
For a given N , choose a positive integer MN . Let k0 = k0(x1, . . . , xt) denote
the largest positive integer k such that the following two conditions hold at the
same time:

(xt−k+1, . . . , xt) appears at least MN times along (x1, . . . , xt), and

(xt−k+2, . . . , xt) has already served as prediction context ≥MN times
previously.

If no such k exists, set k0 = 0. (xt−k0+1, . . . , xt) is the prediction context at
time t. For k0 = 0, the context st is “null.”

Having selected st = (xt−k0+1, . . . , xt) according to these rules, randomly
draw x̂t+1 according to Pr{x̂t+1 = 1|st} = φ(p̂t(1|st), N(st)), where φ is defined
as follows:

φ(α, n) =

8

>

>

<

>

>

:

0 α < 1
2 − εn

1
2εn

(α− 1
2 ) + 1

2
1
2 − εn ≤ α ≤ 1

2 + εn

1 α > 1
2 + εn
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Performance

We next show that the excess fraction of prediction errors, beyond κ(xN , SN ),
is upper bounded by

 

2

s

2

MN
+

1

M2
N

+
1

MN

!

·

„

1 +
MN

2N

«

+
(2MN + 1)SN

N
,

which → 0 iff MN → ∞ and MNSN/N → 0.

These two conditions can be met at the same time whenever SN/N → 0.

Comments:

Optimum MN is prop. to (N/SN )2/3 yielding redundancy prop. to

(SN/N)1/3.

Horizon–independent version of the algorithm: can be obtained by
defining M as function of k (length of examined context) rather than
function of N .
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Analysis

An upper bound on the redundancy,

1

N

N
X

t=1

[Pr{x̂t 6= xt} − κ(xN , SN )]

will be obtained by bounding (1/N)
PN

t=1 Pr{x̂t 6= xt} from above, and

bounding κ(xN , SN ) from below.

As for the latter, we have:

κ(xN , SN ) ≥
1

N

2

4

X

s∈SC

N

min{N(s, 0), N(s, 1)} − ST
N

3

5

≥
1

N

2

4

X

s∈SC

N

min{N(s, 0), N(s, 1)} − SN

3

5 ,

where N(s, x) is the count of (st = s, xt+1 = x).
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Analysis (Cont’d)

As was shown in [FederMerhavGutman92], when the proposed predictor is
applied, the contribtution of each state s to the expected number of prediction
errors,

ENe(s) =
X

t:st=s

Pr{x̂t 6= xt},

is upper bounded by

ENe(s) ≤ min{N(s, 0), N(s, 1)} +
p

N(s) + 1 +
1

2
, (1)

where N(s) = N(s, 0) +N(s, 1) is the number of occurrences of s.

Consider the above prediction scheme applied to xN , and denote sequence of
contexts, generated by this algorithm, as ŝN = (ŝ1, . . . , ŝN ).
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Analysis (Cont’d)

By the construction of the algorithm, every one of SC
N − 1 internal nodes of the

reference predictor in PSN
is used as a prediction context ≤ 2MN times.

The reason is that in the (2MN + 1)–st time, it was either preceded by ‘0’ or by
‘1’at least MN times, and so, the conditions for extending the context are met.

Thus, except for 2MN (SC
N − 1) < 2MNSN time instants, ŝ is a refinement of the

reference state, s.

Let Ts denote the sub–tree of prediction contexts rooted at s. Then,

1

N

N
X

t=1

Pr{x̂t 6= xt} ≤ 2MNSN +
X

s∈SC

N

X

ŝ∈Ts

min{N(ŝ, 0), N(ŝ, 1)} +

+
X

ŝ∈Ts

»

p

N(ŝ) + 1 +
1

2

–

∆
= 2MNSN + A+B.
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Analysis (Cont’d)

Now,

A =
X

s∈SC

N

X

ŝ∈Ts

min{N(ŝ, 0), N(ŝ, 1)}

≤
X

s∈SC

N

min

8

<

:

X

ŝ∈Ts

N(ŝ, 0),
X

ŝ∈Ts

N(ŝ, 1)

9

=

;

≤
X

s∈SC

N

min{N(s, 0), N(s, 1)}

≤ N · κ(xN , SN ) + SN .
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Analysis (Cont’d)

As for

B =
X

s∈SC

N

X

ŝ∈Ts

»

p

N(ŝ) + 1 +
1

2

–

,

we again use the fact that N(ŝ) ≤ 2MN , and so,

B ≤
X

s∈SC

N

X

ŝ∈Ts

„

p

2MN + 1 +
1

2

«

=

„

p

2MN + 1 +
1

2

«

·
X

s∈SC

N

|Ts|

and
P

s∈SC

N

|Ts| is in turn upper bounded by the total number of contexts

generated by the algorithm, which is ≤ (2N/MN + 1) because each context
pertaining to an internal node is used as a prediction context at least MN

times.
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Horizon–Independent Algorithm

Defining the H–I algorithm in terms of a sequence {M(k)}k≥1, let

ψ(N) = 2min
k

"

2k

N
+

1

M(k)

#

,

then the redundancy is upper bounded by

2SN (M(SN ) + 1)

N
+
p

ψ(N)[1 + ψ(N)] +
ψ(N)

2
.

The choice of M(k) controls the trade–off between the allowed growth rate of
SN and the redundancy rate.

Faster convergence than the LZ–based algorithm in [FederMerhavGutman92].
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Necessity

For each one of the 2aN sequences

x1, x2, . . . , xaN , 0, . . . , 0

there exists a member in PaN+1 which gives error–free prediction, thus

κ(xN , aN + 1) = 0.

This is easily seen by using aN transient states and only one context–tree
state.

On the other hand, ∀ predictor

max
(xaN ,0,...,0)

1

N

N
X

t=1

Pr{x̂t 6= xt} ≥
1

N

aN
X

t=1

EPr{x̂t 6= Xt} ≥
a

2
.
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Conclusion

Context–tree predictability of individual sequences was investigated.
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Conclusion

Context–tree predictability of individual sequences was investigated.

Asymptotic regime allows S = SN .

The critical growth rate is linear.

A context–based algorithm.

Open question no. 1: what about non–uniform achievability?

Open question no. 2: can we get rid of the transient states?

Open question no. 3: sharper upper and lower bounds on the regret.
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