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General Background

Relations between information theory and statistical physics:

The maximum entropy principle: Jaynes, Shore & Johnson, Burg, ...

Physics of information: Landauer, Bennet, Maroney, Plenio & Vitelli, ...

Large deviations theory: Ellis, Oono, McAllester, ...

Random matrix theory: Wigner, Balian, Foschini, Telatar, Tse, Hanly,

Shamai, Verdú, Tulino, ...

Coding and spin glasses: Sourlas, Kabashima, Saad, Kanter, Mézard,

Montanari, Nishimori, Tanaka, ...

Physical insights and analysis tools are ‘imported’ to IT.
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In This Talk We:

Briefly review basic background in statistical physics.

Describe relationships between coding and spin glasses.

Relate performance measures in coding to physical quantities.

Develop an analysis technique inspired by stat–mech.

Discuss extensions of the basic models.

– p. 3/42



Background in Statistical Physics

Consider a system with n >> 1 particles which can lie in various microstates,

{x = (x1, . . . , xn)}, e.g., a combination of locations, momenta, angular

momenta, spins, ...

For every x, ∃ energy E(x) – Hamiltonian.

Example: For xi = (pi, ri),

E(x) =
n
X

i=1

„‖pi‖2
2m

+mghi

«

.
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Basic Background (Cont’d)

In thermal equilibrium, x ∼ Boltzmann–Gibbs distribution:

P (x) =
e−βE(x)

Z(β)

where β = 1
kT , k – Boltzmann’s constant, T – temperature, and

Z(β) =
X

x

e−βE(x), a normalization factor = partition function

φ(β) = lnZ(β) ⇒ many physical quantities:

free energy: F = −φβ ; mean internal energy: E = −dφdβ ;

entropy: S = φ− β dφdβ ; heat capacity: C = −β2 d2φ
dβ2 ; ...

From now on: T ← kT ⇒ β = 1
T .
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Bckgd Cont’d: Stat. Mech. of Magnetic Materials

Example: magnetic material – each particle has a magnetic moment (spin) – a

3D vector which tends to align with the

net magnetic field = external field + effective fields of other particles.

Quantum mechanics: each spin ∈ discrete set of values, e.g., for spin 1
2 :

spin up : xi = +
1

2
⇒ +1

spin down : xi = −1

2
⇒ −1
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Background Cont’d: The Ising Model

E(x) = −H ·
n
X

i=1

xi − J ·
X

<i,j>

xixj

J = 0 – paramagnetic: no interactions⇒ spins are independent:

magnetization ∆
= m = E

(

1

n

X

i

Xi

)

= (+1) · eβH

2 cosh(βH)
+ (−1) · e−βH

2 cosh(βH)
= tanh(βH)

J > 0 – ferromagnetic; J < 0 – antiferromagnetic.
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The Ising Model (Cont’d)

Strong interaction⇒ two conflicting effects:

2nd law⇒ entropy ↑ ⇒ disorder ↑

Interaction energy ↓ ⇒ order ↑.

Q: Who wins?

A: Depends on temperature:

Z =
X

x

e−βE(x) =
X

E

N(E)e−βE =
X

E

exp{S(E)− βE}

High temperature – disorder (paramagnetism).

Low temperature – order: magnetization (sometimes spontaneous).

Abrupt passage⇒ phase transition.
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Background Cont’d: Other Models

Interactions between remote pairs:

EI(x) = −
X

i,j

Jijxixj

{Jij} with mixed signs⇒ spin glass.

Disorder: {Jij} = quenched random variables.

Edwards–Anderson (EA): Jij ∼ i.i.d. Gaussian; neighbors only.

Sherrington–Kirkpatrick (SK): Jij same, but all pairs.

p–spin glass model: Like SK, but products of p spins.

Random Energy model (REM): p→∞⇒ {EI(x)} = i.i.d. Gaussian.
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Background Cont’d: The REM (Derrida, 1980,81)

Very simple, but rich enough for phase transitions.

Z(β) =

2n

X

x=1

e−βEI(x) =

Z

dE ·N(E)e−βE EI(x) ∼ N (0, nJ2/2)

N(E) ≈ 2n · Pr{EI(x) ≈ E} ·
= 2n · e−E

2/(nJ2) = exp{n[ln 2− (E/nJ)2]}.

N(E) with a negative exponent⇐⇒ |E| ≥ E0
∆
= nJ

√
ln 2⇒ N(E) ∼ 0.

|E| < E0 ⇒ N(E) concentrates rapidly around N(E).

Typical realization:

Z(β) ≈
Z E0

−E0

dE ·N(E) · e−βE .
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The REM (Cont’d)

Z(β) ≈
Z E0

−E0

dE · exp

(

n

"

ln 2−
„

E

nJ

«2
#)

· e−βE

·
= exp

(

n · max
|E|≤E0

"

ln 2−
„

E

nJ

«2

− βE
#)

∆
= exp{nφ(β)}

φ(β) = −βF (β) =

(

ln 2 + β2J2

4 β < 2
J

√
ln 2

βJ
√

ln 2 β ≥ 2
J

√
ln 2

Phase transition at β = β0
∆
= 2

J

√
ln 2:

High temp. (β < β0) – paramagnetic phase: entropy> 0; Z(β) dominated
by exponentially many x’s at E = −nβJ2/2.

Low temp. (β ≥ β0) – spin–glass phase: φ = linear, entropy = 0, frozen at
ground–state E = −E0 with sub–exponentially few dominant x’s.
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REM & Random Coding (Mézard & Montanari, 2008)

BSC(p) + a random code C = {x0,x1, . . . ,xM−1}, M = enR, (fair coin tossing).

Posterior:

P (x|y) =
P (y|x)

P

x′∈C P (y|x′)
=

e− ln[1/P (y|x)]

P

x′∈C e
− ln[1/P (y|x′)]

.

Suggests a Boltzmann family:

Pβ(x|y) =
e−β ln[1/P (y|x)]

P

x′∈C e
−β ln[1/P (y|x′)]

=
Pβ(y|x)

P

x′∈C P
β(y|x′)

.
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REM & Random Coding (Cont’d)

Motivations:

β = degree of freedom for channel uncertainty.

Annealing: find ground–state by ‘cooling’.

Finite–temperature decoding (Ruján 1993):

x̂t = argmaxaPβ(xt = a|y)

β = 1⇒ minimum bit–error probability
β =∞⇒ minimum block–error probability.

Z(β|y) =
P

x∈C P
β(y|x) ∃ in bounds on Pe. Random C ⇐⇒ REM: Phase

transitions ‘inherited’ from REM.
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Statistical Physics of Code Ensembles

x0 = correct codeword; B = ln 1−p
p :

Z(β|y) = (1− p)nβ
X

x∈C

e−βBd(x,y)

= (1− p)nβe−βBd(x0,y) + (1− p)nβ
X

x∈C\{x0}

e−βBd(x,y)

∆
= Zc(β|y) + Ze(β|y).

d(x0,y) ≈ np⇒ Zc(β|y) ≈ (1− p)nβe−βBnp.

Ze(β|y) = (1− p)nβ
n
X

δ=0

Ny(nδ)e−βBnδ

with Ny(nδ)
·
= enR · en[h(δ)−ln 2].

R+ h(δ)− ln 2 < 0⇒ Ny(nδ) ∼ 0. Happens for δ < δGV (R) and
δ > 1− δGV (R), where δGV (R) = solution δ ≤ 1/2 of R+ h(δ)− ln 2 = 0.
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Stat. Phys. of Code Ensembles (Cont’d)

Similar to the REM:

Ze(β|y)
·
= exp{n max

δ∈[δGV (R),1−δGV (R)]
[R+ h(δ)− ln 2− βBδ]} ∆

= enφ(β,R)

φ(β,R) =

(

R+ ln[pβ + (1− p)β ]− ln 2 β < βc(R) paramagnetic

β[δGV (R) ln p+ (1− δGV (R)) ln(1− p)] β ≥ βc(R) spin–glass

βc(R) =
ln[(1− δGV (R)]/δGV (R)]

ln[(1− p)/p] .

Zc(β|y)⇒ ordered phase = ferromagnetic phase.
Ferro–glassy boundary: R = C.
Ferro–para boundary: T = T0(R) = 1/β0(R), solution to:

βh(p) = ln 2− R− ln[pβ + (1− p)β ].
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Phase diagram of finite−temperature decoding (Mezard & Montanari, 2008).

R

T = 1/β

1

T = T0(R)

C

T = Tc(R) = 1/βc(R)
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The Correct Decoding Exponent (M. 2007)

Pc = E

8

<

:

1

M

X

y

max
m

P (y|Xm)

9

=

;

= E

8

<

:

1

M

X

y

lim
β→∞

"

M−1
X

m=0

Pβ(y|Xm)

#1/β
9

=

;

=
1

M

X

y

lim
β→∞

E
n

Ze(β|y)1/β
o

R > C and β →∞⇒ calculating E{Ze(β|y)1/β} in the spin-glass phase.
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The Correct Decoding Exponent (Cont’d)

E{Ze(β|y)1/β} = E

8

<

:

"

(1− p)nβ
X

δ

Ny(nδ)e−βBnδ
#1/β

9

=

;

·
= (1− p)nE

(

X

δ

N
1/β
y (nδ)e−Bnδ

)

= (1− p)n
X

δ

E
n

N
1/β
y (nδ)

o

· e−Bnδ

E
n

N
1/β
y (nδ)

o

=

(

exp{n[R+ h(δ)− ln 2]} δ ≤ δGV (R) or δ ≥ 1− δGV (R)

exp{n[R+ h(δ)− ln 2]/β} δGV (R) < δ < 1− δGV (R)
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The Correct Decoding Exponent (Cont’d)

Intuition: Below δGV (R)

E
n

N
1/β
y (nδ)

o

≈ 01/β · Pr{Ny(nδ) = 0}+ 11/β · Pr{Ny(nδ) = 1}
·
= exp{n[R+ h(δ)− ln 2]}

Above δGV (R)⇒ double–exponentially fast concentration:

E
n

N
1/β
y (nδ)

o

≈
ˆ

E{Ny(nδ)}
˜1/β ≈

“

en[R+h(δ)−ln 2]
”1/β

Putting into E{Z1/β
e (β|y)} & taking the dominant δ:

Pc
·
= exp{−n[R− ln 2− Fg]}

Fg = free energy of glassy phase:

Fg = δGV (R) ln
1

p
+ (1− δGV (R)) ln

1

1− p .
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Correct Decoding Exponent (Cont’d)

Alternative expression: use ln 2− R ≡ h(δGV (R)):

Pc
·
= exp{−nD(δGV (R)‖p)}
= Pr{x0 at distance < δGV (R)}

δGV (R) = typical distance of wrong codewords dominating the spin–glass
phase.

Main ideas of the analysis technique:

Summations over exponentially many codewords⇒ summations over
polynomially few terms of distance enumerators, {Ny(·)}.

Power of
P ·

=
P

of powers.

Moments of {Ny(nδ)}: treated differently depending on whether or not
δ ∈ [δGV (R), 1− δGV (R)].
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The Random Coding Error Exponent

Gallager’s bound:

Pe|m=0 ≤
X

y

P (y|x0)
1/(1+ρ)

2

4

X

m≥1

P (y|xm)1/(1+ρ)

3

5

ρ

=
X

y

P (y|x0)
1/(1+ρ) · Zρe

„

1

1 + ρ
|y
«

Jensen⇒ E{Zρe (1/(1 + ρ)|y)} ≤ [EZe(1/(1 + ρ)|y)]ρ. Calculation in
paramagnetic regime⇒ Er(R) is related to paramagnetic F :

P̄e ≤ exp



−n
»

ρ

1 + ρ
Fp
“

1
1+ρ

”

− ln(p1/(1+ρ) + (1− p)1/(1+ρ))
–ff

.
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Another Application: Decoding with Erasures

Decoder with an option not to decide (erasure): Decision rule = partition into

(M + 1) regions:

y ∈ R0 erase

y ∈ Rm (m ≥ 1) decide xm.

Performance – tradeoff between

Pr{E1} =
1

M

X

m

X

y∈Rc
m

P (y|xm) erasure + undetected error

Pr{E2} =
1

M

X

m

X

y∈Rm

X

m′ 6=m

P (y|xm′) undetected error
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Decoding with Erasures (Cont’d)

Optimum decoder: decide message m iff

P (y|xm)
P

m′ 6=m P (y|xm′)
≥ enT (T ≥ 0 for the erasure case).

Erasure: if this holds for no m.

Forney’s lower bounds on err. exponents of E1 and E2:

E1(R, T ) = max
0≤s≤ρ≤1

[E0(s, ρ)− ρR− sT ] where

E0(s, ρ) = − ln

2

4

X

y

 

X

x

P (x)P 1−s(y|x)
!

·
 

X

x′

P (x′)P s/ρ(y|x′)
!ρ#

,

E2(R,T ) = E1(R, T ) + T.

and P (x) = random coding distribution.
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Decoding with Erasures (Cont’d)

Main step in [Forney68]:

E

8

<

:

0

@

X

m′ 6=m

P (y|Xm′)

1

A

s9
=

;

upper bounded by

E

8

<

:

0

@

X

m′ 6=m

P (y|Xm′)s/ρ

1

A

ρ9
=

;

, ρ ≥ s,

and then Jensen.

Our technique: 1st expression exponentially tight, no need for ρ.

A simpler bound (under some symmetry condition), at least as tight.

Sometimes (e.g., BSC): optimum s in closed form.

Also: exact exponent (complicated) – joint work with A. Somekh–Baruch.
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Two Extensions

The REM in a uniform magnetic field and joint source–channel coding.

The generalized REM (GREM) and hierarchical coding structures.
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Back to Physics: REM in a Magnetic Field (Derrida)

Earlier we modeled only interaction energies, {EI(x)} as N (0, nJ2/2).

When an external magnetic field H is applied

E(x) = EI(x)−H ·
n
X

i=1

xi = EI(x)− n ·m(x)H

where m(x) = 1
n

Pn
i=1 xi = magnetization of x.

Z(β,H) =
X

x

e−β[EI(x)−nm(x)H]

=
X

m

2

4

X

x: m(x)=m

e−βEI(x)

3

5 · enβmH

∆
=

X

m

ζ(β,m)enβmH
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The REM in a Magnetic Field (Cont’d)

ζ(β,m) =
P

x: m(x)=m e−βEI(x): similar to REM with H = 0 with only

exp[nh((1 +m)/2)] terms.

Using the same technique, we compute ζ(β,m)
·
= enψ(β,m) and

φ(β,H) = max
m

[ψ(β,m) + βmH],

where m∗ = m(β,H) = mean (typical) magnetization.
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The REM in a Magnetic Field (Cont’d)

Results: Let βc(H) solve the equation

β2J2 = 4h

„

1 + tanh(βH)

2

«

.

Phase transition at β = βc(H):

m(β,H) =

(

tanh(βH) β < βc(H) paramagentic phase

tanh(βc(H) ·H) β ≥ βc(H) spin glass phase

Free energy: F = −φ/β, where:

φ(β,H) =

8

>

<

>

:

β2J2

4 + h
“

1+tanh(βH)
2

”

+ βH tanh(βH) β < βc(H)

β

»

J

r

h
“

1+tanh(βc(H)H)
2

”

+H · tanh(βc(H)H)

–

β ≥ βc(H)
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glassy phase

paramagnetic   phase

T

H

T = Tc(H)
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REM in a Magnetic Field & JSC Coding

Binary source: U1, U2, . . ., Ui ∈ {−1,+1}, q = Pr{Ui = 1}.
source-rate/channel-rate= θ.

JSC code: u = (u1, . . . , unθ)⇒ x(u) of length n.

Random coding: Draw 2nθ binary n-vectors {x(u)} by fair coin tossing.

Finite–temperature decoder:

ûi = argmaxu∈{−1,+1}

X

u: ui=u

[P (u)P (y|x(u))]β , i = 1, 2, . . . , nθ.

Z =
X

u

[P (u)P (y|x(u))]β

= [P (u0)P (y|x(u0))]β +
X

u 6=u0

[P (u)P (y|x(u))]β

∆
= Zc + Ze (1)
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REM in a Magnetic Field & JSC Coding (Cont’d)

P (u) = [q(1− q)]nθ/2enθm(u)H where H = 1
2 ln q

1−q . Thus,

Ze = [q(1− q)]nβθ/2
X

m

2

4

X

x(u): m(u)=m

e−β ln[1/P (y|x(u))]

3

5 enβmH

= [q(1− q)]nβθ/2(1− p)nβ
X

m

2

4

X

x(u): m(u)=m

e−βBd(x(u),y)

3

5 enβθmH

∆
= [q(1− q)]nβθ/2(1− p)nβ

X

m

ζ(β,m)enβθmH

Statistical physics of Ze ∼ REM in a magnetic field. Similar analysis⇒:

Let βpg(H) solve:

ln 2− h(pβ) = θh

„

1 + tanh(βH)

2

«

, pβ
∆
=

pβ

pβ + (1− p)β .
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REM in a Magnetic Field & JSC Coding (Cont’d)

Magnetization of Ze (incorrectly decoded patterns):

m(β,H) =

(

tanh(βH) β < βpg(H)

tanh(βpg(H) ·H) β ≥ βpg(H)

Zc ⇒ 3rd phase.
The ferro–glassy boundary is H = Hfg where

Hfg =
1

2
ln

q∗

1− q∗ θh(q∗) = ln 2− h(p).
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REM in a Magnetic Field & JSC Coding (Cont’d)

Discussion

Correct decoding for large |H|.
Low temp.: (sub–exponentially few) typical patterns of erroneneously
decoded {u} have m dictated by the frozen phase, i.e.,
mg(H) = tanh(βpg(H) ·H) independently of temp.

For |H| < Hfg, βpg(H) > 1, means that m of a typical erroneously
decoded u is > m of a typical (correct) u, mf = tanh(H).

If T < Tpg(0), remains true no matter small |H| is.

If Tpg(0) < T < 1, then when |H| ↓ the m of (exponentially many)
erroneously decoded {u} is mp(β,H) = tanh(βH): still > m of typical
u, but now temperature–dependent.

Analysis of Pe and Pc – similar as before.
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glassy phase

paramagnetic  phase

ferromagnetic phaseferromagnetic phase

T

H

1

T = Tpf (H)

−Hfg

T = Tpf (H)

T = Tpg(H)

Hfg
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GREM (Derrida, ‘85) and Hierarchical Code Ensembles

Allowing correlations between {EI(x)} in an hierarchical (tree) structure.

Features:

More realistic model of dependencies.

Still (relatively) easy analysis.

May have > 1 phase transition.

Analogies with code ensembles with a tree structure.
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ε2,1

εM1

ε2,M2

ε2ε1

εM1,1

R1 + R2 = ln 2

a1 + a2 = 1

εi ∼ N (0, nJ2a1/2)

εi,j ∼ N (0, nJ2a2/2)

Ei,j = εi + εi,j

M2 = enR2 leaves

εM1,M2

M2 = enR2 leaves M2 = enR2 leaves

M1 = enR1branches

ε1,1 ε1,M2
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Sketch of Analysis for GREM

As before,

Z(β) =
X

x

e−βEI(x) ≈
Z

dE ·N(E)e−βE

Estimating N(E)
·
= enS(E) for a typical realization: ∀x with energy E: 1st

branch – ε, 2nd branch: E − ε.

N1(ε)
·
= enR1 · exp



− ε2

nJ2a1

ff

= exp



n

»

R1 −
1

a1

“ ε

nJ

”2
–ff

,

“alive” for |ε| ≤ ε0 ∆
= nJ

√
a1R1. Thus,

N(E)
·
=

Z +ε0

−ε0

dε ·N1(ε) · exp

(

n

"

R2 −
1

a2

„

E − ε
nJ

«2
#)

.
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Sketch of Analysis for the GREM (Cont’d)

S(E) = lim
n→∞

lnN(E)

n
= max

|ε|≤ε0

"

R1 −
1

a1

“ ε

nJ

”2
+ R2 −

1

a2

„

E − ε
nJ

«2
#

φ(β) = lim
n→∞

1

n
ln

»Z

dE · enS(E) · e−βE
–

= max
E

[S(E)− βE].

Two cases:
If R1/a1 > R2/a2 ⇒ behavior exactly like in the REM.

Otherwise: two phase transitions at βi = 2
J

q

Ri

ai
, i = 1, 2:

φ(β) =

8

>

>

<

>

>

:

ln 2 + β2J2

4 β < β1 pure paramagnetic

βJ
√
a1R1 + R2 + a2β

2J2

4 β1 < β ≤ β2 glassy-paramagnetic

βJ(
√
a1R1 +

√
a2R2) β > β2 pure glassy
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GREM and Hierarchical Lossy Source Coding

BSS X1, X2, . . ., Xi ∈ {0, 1} and Hamming distortion measure.

Performance measure E{exp{−sdistortion}} – related to Z.

Tree structured code:

n = n1 + n2 and nR = n1R1 + n2R2.

1st–stage code: M1 = en1R1 n1–vectors {x̂i}.
2nd–stage code: For each i, M2 = en2R2 n2–vectors {x̃i,j}.
Encode x = (x′,x′′) by min{d(x′, x̂i) + d(x′′, x̃i,j)}.
Decode 1st n1 symbols using 1st n1R1 compressed bits.

Overall distortion⇐⇒ overall energy in GREM.

Hierarchical ensemble:

Draw M1 n1–vectors {x̂i} by fair coin tossing.

For each i, draw M2 n2–vectors {x̃i,j} by fair coin tossing.
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Results

Evaluate E{exp{−sdistortion}}, using

Z(β|x) =
X

y∈C

e−βd(x,y)

and then limθ→∞ E{Z1/θ(sθ|x)}.
⇒ calculation in the glassy regime.
For R1 ≥ R2,

φ(β) = limn
lnZ
n is like in the REM:

φ(β) =

(

R− ln 2− β + ln(1 + eβ) β < β(R)

−βδGV (R) β ≥ β(R)

where β(R) = ln[(1− δ(R))/δ(R)].

E{exp{−sdistortion}} like in an optimum code for s ∈ (0, s0) with s0 =∞
when R1 = R2.
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Results (Cont’d)

For R1 < R2,

Two phase transitions: Defining λ = limn n1/n and
v(β,R) = ln 2−R+ β − ln(1 + eβ):

φ(β) =

8

>

>

<

>

>

:

−v(β,R) β < β(R1)

−βλδGV (R1)− (1− λ)v(β,R2) β(R1) ≤ β < β(R2)

−β[λδGV (R1) + (1− λ)δGV (R2)] β ≥ β(R2)

E{exp{−sdistortion}} behaves like in two decoupled codes in the two
segments.
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Conclusion

Analogies between certain mathematical models in stat. mech. and IT.

Inspiring alternative analysis techniques of code performance (error
exponents).

Applied to error– and correct decoding exponets in channel coding, joint
source channel coding, and decoding with erasures.

Potentially applicable to other situations, e.g., the IFC (joint work with
Ordentlich and Etkin).
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