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General Background

Relations between information theory and statistical physics:

® The maximum entropy principle: Jaynes, Shore & Johnson, Burg, ...
® Physics of information: Landauer, Bennet, Maroney, Plenio & Vitelli, ...
® |arge deviations theory: Ellis, Oono, McAllester, ...
9

Random matrix theory: Wigner, Balian, Foschini, Telatar, Tse, Hanly,

Shamai, Verdu, Tulino, ...

°

Coding and spin glasses: Sourlas, Kabashima, Saad, Kanter, Mézard,

Montanari, Nishimori, Tanaka, ...

Physical insights and analysis tools are ‘imported’ to IT.
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In This Talk We:

Briefly review basic background in statistical physics.

Describe relationships between coding and spin glasses.

Relate performance measures in coding to physical quantities.

Develop an analysis technique inspired by stat—mech.

Discuss extensions of the basic models.
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Background in Statistical Physics

Consider a system with n >> 1 particles which can lie in various microstates,

{x = (z1,...,zn)}, €.9., @ combination of locations, momenta, angular

momenta, spins, ...

For every x, 3 energy £(x) — Hamiltonian.

Example: For z; = (p,,7;),

E(x) = i (% —I—mgh7;> :

1=1
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Basic Background (Cont’d)

In thermal equilibrium, x ~ Boltzmann-Gibbs distribution:

o~ BE(T)

where g = ,_%T k — Boltzmann’s constant, 7' — temperature, and

Z(B) = e PE®) anormalization factor = partition function
xr

»(B) =InZ(B) = many physical quantities:

free energy: F' = —%; mean internal energy: E = —5;

entropy: S = ¢ — 395 heat capacity: C' = —? 222,

Fromnowon: T — kT = f= .
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Bckgd Cont’d: Stat. Mech. of Magnetic Materials

Example: magnetic material — each particle has a magnetic moment (spin) — a

3D vector which tends to align with the

net magnetic field = external field + effective fields of other particles.

Quantum mechanics: each spin € discrete set of values, e.g., for spin %:

: 1
spinup: i = +5 = +1

: 1
spindown: zx; = ~3 = —1
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Background Cont’'d: The Ising Model

5(:13) = —H-zn:xi—e]- Z Ly g
1=1

<1,7>

J = 0 — paramagnetic: no interactions = spins are independent:

magnetization

RICRY

PH o—PBH

= () 2 cosh(BH) +(=1)- 2 cosh(BH)

= tanh(SH)

J > 0 — ferromagnetic; J < 0 — antiferromagnetic.
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The Ising Model (Cont’d)

Strong interaction = two conflicting effects:

$» 2ndlaw = entropy T = disorder 1

® Interaction energy | = order 7.

Q: Who wins?

A: Depends on temperature:

7 = ; e PEXT) — ; N(E)e " =% " exp{S(E) - BE}

E

® High temperature — disorder (paramagnetism).
® | ow temperature — order: magnetization (sometimes spontaneous).

Abrupt passage = phase transition.
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Background Cont’d: Other Models

Interactions between remote pairs:

5[((13) = — Z Jijxixj
i5J

{Ji;} with mixed signs = spin glass.

Disorder: {J;;} = quenched random variables.

o

K
9
K

Edwards—Anderson (EA): J;; ~ I.i.d. Gaussian; neighbors only.
Sherrington—Kirkpatrick (SK): J;; same, but all pairs.

p—spin glass model: Like SK, but products of p spins.

Random Energy model (REM): p — oo = {&7(x)} = i.i.d. Gaussian.
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Background Cont'd: The REM (Derrida, 1980,81)

Very simple, but rich enough for phase transitions.

-
Z(B) =Y e Perlr) = /dE-N(E)e—ﬁE Er(z) ~ N(0,nJ?/2)

r=1

N(E) ~ 2" - Pr{&(z) ~ B} = 2™ . e B /%) — oy tnln2 — (E/nJ)2]).

9 (F) with a negative exponent <= |E| > Ej = nJvIn2 = N(FE) ~ 0.

® |F| < Ey = N(F) concentrates rapidly around N (FE).

Typical realization:
Ey
Z(6) %/ dE - N(E) - e PF.
—FEy
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The REM (Cont'd)

E() E 2
/ dE-exp{n [an() }'6BE
B, nJ
expqn- max |ln2— <£> : — BE| ¢ 2 exp{ne(6)}
|E|<Eo nJ

ln2—|—@ 5<% In 2
BJV1In 2 52% In 2

N
=
R

Phase transition at 8 = 8, 2 2vIn2:

$» Hightemp. (6 < Bp) — paramagnetic phase: entropy> 0; Z(/3) dominated
by exponentially many z's at E = —n8J° /2.

® Lowtemp. (B > Bp) — spin—glass phase: ¢ = linear, entropy = 0, frozen at
ground-state £ = — Ey with sub—exponentially few dominant x’s.
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REM & Random Coding (Mézard & Montanari, 2008)

BSC(p) 4+ a random code C = {xg,x1,..., 1}, M = e, (fair coin tossing).

Posterior:

P(y|x) e~ In[1/P(y|x)]

P(zly) = Swec PUl) S o e W/PERE]

Suggests a Boltzmann family:

e~ BIn[1/P(ylx)] _ PP (y|zx)
Sprec e A/ PO 3, 0 PP(yle’)

Ps(zly) =
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REM & Random Coding (Cont’'d)

Motivations:
® [ = degree of freedom for channel uncertainty.
® Annealing: find ground—state by ‘cooling'’.

® Finite—temperature decoding (Rujan 1993):
T: = argmax,, Pg(z: = aly)

B =1 = minimum bit—error probability
B = oo = minimum block—error probability.

® Z(Bly) = zcc PP (y|x) 3 in bounds on P.. Random C <= REM: Phase
transitions ‘inherited’ from REM.
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Statistical Physics of Code Ensembles

xo = correct codeword; B = In 1%9:

Z(Bly) = (1 =p)" Y e PAEY)

xrec

TeC\{To}

1>

Ze(Bly) + Ze(Bly)-
d(zo,y) ~ np = Zc(Bly) ~ (1 —p)"Pe PP,
Ze(Bly) = (1—p)"" Y Ny(nd)e 75
6=0
with Ny (nd) = et . enlh(9)—In2],

R+ h(6) —In2 < 0= Ny(nd) ~ 0. Happens for § < égv(R) and
0 >1—90qyv(R), where dgyv (R) = solution < 1/20f R+ h(d) —In2 = 0.
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Stat. Phys. of Code Ensembles (Cont’d)

Similar to the REM:

: A n¢(B,R)
Ze = m R+ h(0) —1In2 — BB} =
(Bly) =ewpfn, _  max o [R+h(@)-In2- GBI} =

¢(B, R) = { R+Mnfp” + (1-p)”] 12 3 < B:(R) paramagnetic
: Bldcy (R)Inp + (1 —day(R))In(1 —p)] B> Be(R) spin—glass

In[(1 — dgv (R)]/ocv (R)]

PelB) = =1~ p)/nl

Z.(B|y) = ordered phase = ferromagnetic phase.
Ferro—glassy boundary: R = C.
Ferro—para boundary: T'= Ty(R) = 1/59(R), solution to:

Bh(p) =In2 — R —nfp” + (1 —p)”].
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paramagnetic

T.(R) =1/B:(R)

glassy

O R

Phase diagram of finite—temperature decoding (Mezard & Montanari, 2008).
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The Correct Decoding Exponent (M. 2007)

f

P. = E<%Zmﬂgxp(me)}
Yy

\

M—1 1/8
> Pﬁ<yxm>] }

m=0

%; lim B { Ze(8ly)"/"}

f—o0

4
— E<%th
Ty

f—o0

R > C and 8 — ~ = calculating E{Z.(8|y)'/?} in the spin-glass phase.
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The Correct Decoding Exponent (Cont’d)

E{Z(8ly)""}

1/8
; { [(1 —n)" > Ny (né)ﬁBné] }

o

= (1-p)"E {ZNzll/ﬂ(ms)eBné}
= (1—p nZE{ 1/6n5} —Bné

E{Ny/ (ns)} { expinfit (o) =2l 0= dav ) or 2 1= dav()
Y exp{n[R + h(6) — n2)/8} dav(R) <6 <1—dqy(R)
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The Correct Decoding Exponent (Cont’d)

Intuition: Below gy (R)
E {Ng/ﬁ(na)} ~ 0YP . Pr{Ny(ns) = 0} + 1% . Pr{Ny (ns) = 1}
= exp{n[R+ h(§) — In2]}
Above iy (R) = double—exponentially fast concentration:

1
E {Né/ﬁ(né)} ~ [E{Ny(n(s)}]l/ﬂ - (en[R—i—h(é)_an]) /B

Putting into E{Zel/ﬁ(my)} & taking the dominant é:
P. = exp{-n[R—1n2— Fy|}
F, = free energy of glassy phase:

1 1
Fo=9¢ R)In — 1—9 R))1 .
9 =6av( )Hp+( av ( ))nl—p
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Correct Decoding Exponent (Cont’'d)

Alternative expression: use In2 — R = h(dgyv (R)):

Pe = exp{—nD(av(R)|p)}
= Pr{zo atdistance < égy (R)}

dav (R) = typical distance of wrong codewords dominating the spin—glass
phase.

Main ideas of the analysis technique:

» Summations over exponentially many codewords = summations over
polynomially few terms of distance enumerators, {Ny(-)}.

® Power of > =" of powers.

® Moments of { Ny (nd)}: treated differently depending on whether or not
0 € [bgv(R), 1 —dav(R)].
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The Random Coding Error Exponent

Gallager’s bound:

IA

e|lm=0
m>1

P
(ylwo)'/ 1+ {Z P(ylam)" (Hp)}

L+p

2P
Yy

— > Pyl 22 ()
Yy

Jensen = E{ZP(1/(1+p)|ly)} < [EZ(1/(1+ p)|y)]”. Calculation in
paramagnetic regime = FE,-(R) Is related to paramagnetic F"

Fo S oxp {_ [1 Jpr pr (1+p) In(p'/ () 4 (1 — p)/1HP)

b
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Another Application: Decoding with Erasures

Decoder with an option not to decide (erasure): Decision rule = partition into
(M + 1) regions:

y € Ry erase
Yy € Rm (m>1) decide x,.

Performance — tradeoff between

1
Pr{€i} = - > )  P(ylzm) erasure + undetected error
m YeRg,

Pr{&} = %Z > Y  P(yl@, ) undetected error
m YR, m'#£m
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Decoding with Erasures (Cont’'d)

Optimum decoder: decide message m iff

Py|zm)
> mrtm PYlEms)

> "1 (T > 0 for the erasure case).

Erasure: if this holds for no m.

Forney’s lower bounds on err. exponents of £; and &s:

= E — — sT her
Er(R,T) Ogrggggl[ 0(s,p) — pR —sT] where

T

Eo(s,p) = —In [zy: <Z P(z)P'*(y|a) ) <ZP PP yiﬁ’)) p] ,

Eo (R, T) = (R, T) + T

and P(z) = random coding distribution.
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Decoding with Erasures (Cont’'d)

Main step in [Forney68]:

E {( > P(me/)) } upper bounded by

m’#m

o)
E{(Z P(mef)S/p> } p>s,
m'#m

Our technique: 1st expression exponentially tight, no need for p.

and then Jensen.

® A simpler bound (under some symmetry condition), at least as tight.
» Sometimes (e.g., BSC): optimum s in closed form.
Also: exact exponent (complicated) — joint work with A. Somekh—Baruch.
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Two Extensions

® The REM in a uniform magnetic field and joint source—channel coding.

® The generalized REM (GREM) and hierarchical coding structures.
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Back to Physics: REM in a Magnetic Field (Derrida)

Earlier we modeled only interaction energies, {£;(x)} as N (0,nJ?/2).

When an external magnetic field H is applied

E(m)=E(x)—H-» x;=&(x) —n-m(z)H
=1

where m(z) = + =%, x; = magnetization of x.

23, H) = Y e PlEr@—nm@)H]

xr

_ Z |: Z eﬁSI(CB):| .eanH

m | m(T)=m

2 S ¢B,myenmH
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The REM in a Magnetic Field (Cont’d)

C(B,m) =D g m(x)=m e~ PE1(T): similar to REM with H = 0 with only
exp[nh((1 4+ m)/2)] terms.

Using the same technique, we compute ¢(3, m) = ¢"¥(%™) and
¢(8, H) = max[¢(8, m) + BmH],

where m™ = m(8, H) = mean (typical) magnetization.
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The REM in a Magnetic Field (Cont’d)

Results: Let 3.(H) solve the equation

62J2 _4h (1+tanh(ﬁH)> |

2

Phase transition at 3 = G.(H):

tanh(GH) B < B.(H) paramagentic phase

H) =
m(5, H) { tanh(G.(H) - H) (> B.(H) spin glass phase

Free energy: F = —¢/3, where:

( 524J2 h (1—|—tan§l(5H)) +6Htanh([3H) ﬁ < ﬁC(H)

3 [J\/h (1—|—tanh(gc(H)H)) + H - tanh(ﬁc(H)H) 8> ﬁc(H)

OB, H) =
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paramagnetic | phase

glassy| phase 7
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REM in a Magnetic Field & JSC Coding

® Binary source: Uy,Us,...,U; € {—1,+1}, g = Pr{U; = 1}.

® source-rate/channel-rate= 6.

® JSCcode: u = (uy,...,uyg) = x(u) of length n.

® Random coding: Draw 2™ binary n-vectors {x(u)} by fair coin tossing.

Finite—temperature decoder:

;= argmax,cr_q 41y Y. [Pw)P(ylz(w)]’, i=1,2,...,n0.

Uu: u,=u

Z = > [P(u)P(yle(u))’

u

= [P(uo)P(ylz(uo)))’ + D [P(u)P(ylx(u))]”

UF£Ug

Ze+ Zo (1)
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REM in a Magnetic Field & JSC Coding (Cont'd)

P(u) = [g(1 — q)]"?/2em?™(WH where H = L In -L. Thus,

q

Ze = [q(1— n69/2z [ Z 6Bln[l/P(ya:(u))]} nBmH

m lx(u): m(U)=m

= [q(1 — )]n59/2 nﬁz [ Z eﬁBd(wm),y)}  nBOmH

m 1x(u): m(U)=m

1>

[q(l . )]n59/2 nﬁ Z C nBHmH

Statistical physics of Z. ~ REM in a magnetic field. Similar analysis =-:

Let G5,4(H) Solve:

p
ln2—h(p5):9h<1+tar;h(ﬁH)>, A p
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REM in a Magnetic Field & JSC Coding (Cont'd)

Magnetization of Z. (incorrectly decoded patterns):

tanh(GH) B < fBpg(H)

m(B, H) =
(5, H) {tanhwpg(H)-H) 8> Byg(H)

Z. = 3rd phase.
The ferro—glassy boundary is H = H, where

He, = 1ln 1 Oh(q") = In2 — h(p).
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REM in a Magnetic Field & JSC Coding (Cont’d)

Discussion
® Correct decoding for large |H|.

® Low temp.: (sub—exponentially few) typical patterns of erroneneously
decoded {u} have m dictated by the frozen phase, i.e.,
mg(H) = tanh(Gpq (H) - H) independently of temp.

® For |H| < Hyg, Bpg(H) > 1, means that m of a typical erroneously
decoded u is > m of a typical (correct) u, m; = tanh(H).
o If T < Tpe(0), remains true no matter small |H| is.

® IfT,,(0) <T < 1,thenwhen |H| | the m of (exponentially many)
erroneously decoded {u} is my (6, H) = tanh(8H): still > m of typical
u, but now temperature—dependent.

# Analysis of P. and P. — similar as before.
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T
/ paramagnetic | phase \
T = Ty (H) T =Tpp(H)
SRR | S
ferromagnetic phase \/\ ferromagnetic phase
T = Tpy(H)
glassy|phase H
—Hy,g Hp,g
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GREM (Derrida, ‘85) and Hierarchical Code Ensembles

Allowing correlations between {£;(x)} in an hierarchical (tree) structure.

Features:
® More realistic model of dependencies.
Still (relatively) easy analysis.

May have > 1 phase transition.

e o 0

Analogies with code ensembles with a tree structure.
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€; N(O,nJQal/Z)
€45 ™ N(O, TLJ26L2/2)
Lij =€+ €y

€1
,1 €Mq,1 My, Mo

__ _nR
My = e™2leaves My = e"F2leaves M, = e™2jeaves
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Sketch of Analysis for GREM

As before,

Z(B) =Y e Perin) & /dE-N(E)e—ﬁE

xr

Estimating N(E) = ¢™°(¥) for a typical realization: vz with energy E: 1st
branch — ¢, 2nd branch: E — e.

2
. € 1 € \2
Ni(e) = e Ry .exp{—nJQCLl}:exp{n [Rl—a (n—) ]}7

“alive” for |e| < e a nJ+/a1R1. Thus,

+€o
N(E)if de - N1(e) - exp {n

m- (259
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Sketch of Analysis for the GREM (Cont’d)

In N(F) e

n— 00 n |€|§€0

1 € 2 1 (E—¢e\?
Rl__(n—J) +R2a2<nJ>]

$(8) = lim ~In [ / dE - "5 (E) . —BE] max[S(E) — BE).

n—oo N FE

Two cases:
If R1/a1 > R2/a2 = behavior exactly like in the REM.

Otherwise: two phase transitions at 3; = %, / f i=1,2:

In2+ B < (31 pure paramagnetic
¢(B) =1 BJVa R, + Ro + # B1 < B < B2 glassy-paramagnetic
| BJ(Va1R1 + Va2 Ra) B > B2 pure glassy

( /62 J2
4
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GREM and Hierarchical Lossy Source Coding

®» BSS X, Xo,..., X; € {0,1} and Hamming distortion measure.
® Performance measure E{exp{—sdistortion}} —related to ~.

® Tree structured code:
® n=n1+nyand nR =n1R{ + noRs.

1st—stage code: M; = ™

ni—vectors {&;}.

2nd—-stage code: For each i, My = e™2f2 o _vectors {zi;}
Encode = = (z', ") by min{d(z’, ;) + d(z",2; ;)}.
Decode 1st n; symbols using 1st ny Ry compressed bits.

# Opverall distortion <= overall energy in GREM.

o o o 0

® Hierarchical ensembile:
o Draw M; ni—Vvectors {x;} by fair coin tossing.
# For each ¢, draw M no—vectors {x; ;} by fair coin tossing.
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Results

Evaluate E{exp{—sdistortion}}, using

Z(flz) = 3 e MY

yecC

and then limg_, o E{Z"/9(s0|z)}.
= calculation in the glassy regime.
For R1 > Ro,

® ¢(3) = lim, < is like in the REM:

n

[ R—-Im2-B+In(1+¢”) B<B(R)
#) { —Bécv (R) 5> B(R)

where 8(R) = In[(1 — §(R))/5(R)].

® F{exp{—sdistortion}} like in an optimum code for s € (0, sg) with sg = co
when R; = Rs.
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Results (Cont’d)

For R1 < Ro,

®» Two phase transitions: Defining A = limy,, n1/n and
v(8,R) =In2 — R+ 3 —1In(1+ €°):

[ (3, R) B < B(R)
¢(B) = —BNav(R1) — (1 —=Nv(B,R2)  B(R1) <8 < B(R2)
| —BMgv(R1) + (1= Ndgv(Rz)] B = B(R2)

® F{exp{—sdistortion}} behaves like in two decoupled codes in the two
segments.
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Conclusion

Analogies between certain mathematical models in stat. mech. and IT.

Inspiring alternative analysis techniques of code performance (error
exponents).

Applied to error— and correct decoding exponets in channel coding, joint
source channel coding, and decoding with erasures.

Potentially applicable to other situations, e.g., the IFC (joint work with
Ordentlich and Etkin).
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