

A Statistical–Mechanical View on Code Ensembles and Random Coding Exponents

Neri Merhav

Communication and Information Theory Seminar

March 27, 2008

General Background

Relations between **information theory** and **statistical physics**:

- The maximum entropy principle: Jaynes, Shore & Johnson, Burg, ...
- Physics of information: Landauer, Bennet, Maroney, Plenio & Vitelli, ...
- Large deviations theory: Ellis, Oono, McAllester, ...
- Random matrix theory: Wigner, Balian, Foschini, Telatar, Tse, Hanly, Shamai, Verdú, Tulino, ...
- Coding and spin glasses: Sourlas, Kabashima, Saad, Kanter, Mézard, Montanari, Nishimori, Tanaka, ...

Physical insights and analysis tools are ‘imported’ to IT.

In This Talk We:

- Briefly review basic background in statistical physics.
- Describe relationships between coding and spin glasses.
- Relate performance measures in coding to physical quantities.
- Develop an analysis technique inspired by stat-mech.
- Discuss extensions of the basic models.

Background in Statistical Physics

Consider a system with $n \gg 1$ particles which can lie in various **microstates**, $\{x = (x_1, \dots, x_n)\}$, e.g., a combination of locations, momenta, angular momenta, spins, ...

For every x , \exists energy $\mathcal{E}(x)$ – **Hamiltonian**.

Example: For $x_i = (p_i, r_i)$,

$$\mathcal{E}(x) = \sum_{i=1}^n \left(\frac{\|p_i\|^2}{2m} + mgh_i \right).$$

Basic Background (Cont'd)

In thermal equilibrium, $x \sim$ Boltzmann–Gibbs distribution:

$$P(x) = \frac{e^{-\beta \mathcal{E}(x)}}{Z(\beta)}$$

where $\beta = \frac{1}{kT}$, k – Boltzmann's constant, T – temperature, and

$$Z(\beta) = \sum_x e^{-\beta \mathcal{E}(x)}, \quad \text{a normalization factor} = \text{partition function}$$

$\phi(\beta) = \ln Z(\beta) \Rightarrow$ many physical quantities:

free energy: $F = -\frac{\phi}{\beta}$; mean internal energy: $E = -\frac{d\phi}{d\beta}$;

entropy: $S = \phi - \beta \frac{d\phi}{d\beta}$; heat capacity: $C = -\beta^2 \frac{d^2 \phi}{d\beta^2}$; ...

From now on: $T \leftarrow kT \Rightarrow \beta = \frac{1}{T}$.

Bckgd Cont'd: Stat. Mech. of Magnetic Materials

Example: magnetic material – each particle has a **magnetic moment (spin)** – a 3D vector which tends to align with the

net magnetic field = external field + effective fields of other particles.

Quantum mechanics: each spin \in **discrete** set of values, e.g., for spin $\frac{1}{2}$:

$$\text{spin up} : \quad x_i = +\frac{1}{2} \Rightarrow +1$$

$$\text{spin down} : \quad x_i = -\frac{1}{2} \Rightarrow -1$$

Background Cont'd: The Ising Model

$$\mathcal{E}(x) = -H \cdot \sum_{i=1}^n x_i - J \cdot \sum_{\langle i,j \rangle} x_i x_j$$

$J = 0$ – **paramagnetic**: no interactions \Rightarrow spins are **independent**:

$$\begin{aligned} \text{magnetization} &\triangleq m = E \left\{ \frac{1}{n} \sum_i X_i \right\} \\ &= (+1) \cdot \frac{e^{\beta H}}{2 \cosh(\beta H)} + (-1) \cdot \frac{e^{-\beta H}}{2 \cosh(\beta H)} = \tanh(\beta H) \end{aligned}$$

$J > 0$ – **ferromagnetic**; $J < 0$ – **antiferromagnetic**.

The Ising Model (Cont'd)

Strong interaction \Rightarrow two conflicting effects:

- 2nd law \Rightarrow entropy $\uparrow \Rightarrow$ disorder \uparrow
- Interaction energy $\downarrow \Rightarrow$ order \uparrow .

Q: Who wins?

A: Depends on temperature:

$$Z = \sum_{\mathbf{x}} e^{-\beta \mathcal{E}(\mathbf{x})} = \sum_E N(E) e^{-\beta E} = \sum_E \exp\{\mathcal{S}(E) - \beta E\}$$

- High temperature – disorder (paramagnetism).
- Low temperature – order: magnetization (sometimes spontaneous).

Abrupt passage \Rightarrow phase transition.

Background Cont'd: Other Models

Interactions between remote pairs:

$$\mathcal{E}_I(\mathbf{x}) = - \sum_{i,j} J_{ij} x_i x_j$$

$\{J_{ij}\}$ with mixed signs \Rightarrow spin glass.

Disorder: $\{J_{ij}\}$ = quenched random variables.

- Edwards–Anderson (EA): $J_{ij} \sim$ i.i.d. Gaussian; neighbors only.
- Sherrington–Kirkpatrick (SK): J_{ij} same, but all pairs.
- p –spin glass model: Like SK, but products of p spins.
- Random Energy model (REM): $p \rightarrow \infty \Rightarrow \{\mathcal{E}_I(\mathbf{x})\}$ = i.i.d. Gaussian.

Background Cont'd: The REM (Derrida, 1980,81)

Very simple, but rich enough for phase transitions.

$$Z(\beta) = \sum_{x=1}^{2^n} e^{-\beta \mathcal{E}_I(x)} = \int dE \cdot N(E) e^{-\beta E} \quad \mathcal{E}_I(x) \sim \mathcal{N}(0, nJ^2/2)$$

$$\overline{N(E)} \approx 2^n \cdot \Pr\{\mathcal{E}_I(x) \approx E\} \doteq 2^n \cdot e^{-E^2/(nJ^2)} = \exp\{n[\ln 2 - (E/nJ)^2]\}.$$

- $\overline{N(E)}$ with a **negative** exponent $\iff |E| \geq E_0 \triangleq nJ\sqrt{\ln 2} \Rightarrow N(E) \sim 0$.
- $|E| < E_0 \Rightarrow N(E)$ concentrates **rapidly** around $\overline{N(E)}$.

Typical realization:

$$Z(\beta) \approx \int_{-E_0}^{E_0} dE \cdot \overline{N(E)} \cdot e^{-\beta E}.$$

The REM (Cont'd)

$$\begin{aligned} Z(\beta) &\approx \int_{-E_0}^{E_0} dE \cdot \exp \left\{ n \left[\ln 2 - \left(\frac{E}{nJ} \right)^2 \right] \right\} \cdot e^{-\beta E} \\ &\doteq \exp \left\{ n \cdot \max_{|E| \leq E_0} \left[\ln 2 - \left(\frac{E}{nJ} \right)^2 - \beta E \right] \right\} \triangleq \exp\{n\phi(\beta)\} \end{aligned}$$

$$\phi(\beta) = -\beta F(\beta) = \begin{cases} \ln 2 + \frac{\beta^2 J^2}{4} & \beta < \frac{2}{J} \sqrt{\ln 2} \\ \beta J \sqrt{\ln 2} & \beta \geq \frac{2}{J} \sqrt{\ln 2} \end{cases}$$

Phase transition at $\beta = \beta_0 \triangleq \frac{2}{J} \sqrt{\ln 2}$:

- High temp. ($\beta < \beta_0$) – **paramagnetic phase**: entropy > 0 ; $Z(\beta)$ dominated by **exponentially** many x 's at $E = -n\beta J^2/2$.
- Low temp. ($\beta \geq \beta_0$) – **spin-glass phase**: $\phi = \text{linear}$, entropy $= 0$, **frozen** at ground-state $E = -E_0$ with **sub-exponentially** few dominant x 's.

REM & Random Coding (Mézard & Montanari, 2008)

BSC(p) + a random code $\mathcal{C} = \{x_0, x_1, \dots, x_{M-1}\}$, $M = e^{nR}$, (fair coin tossing).

Posterior:

$$P(\mathbf{x}|\mathbf{y}) = \frac{P(\mathbf{y}|\mathbf{x})}{\sum_{\mathbf{x}' \in \mathcal{C}} P(\mathbf{y}|\mathbf{x}')} = \frac{e^{-\ln[1/P(\mathbf{y}|\mathbf{x})]}}{\sum_{\mathbf{x}' \in \mathcal{C}} e^{-\ln[1/P(\mathbf{y}|\mathbf{x}')]}}.$$

Suggests a Boltzmann family:

$$P_\beta(\mathbf{x}|\mathbf{y}) = \frac{e^{-\beta \ln[1/P(\mathbf{y}|\mathbf{x})]}}{\sum_{\mathbf{x}' \in \mathcal{C}} e^{-\beta \ln[1/P(\mathbf{y}|\mathbf{x}')]}} = \frac{P^\beta(\mathbf{y}|\mathbf{x})}{\sum_{\mathbf{x}' \in \mathcal{C}} P^\beta(\mathbf{y}|\mathbf{x}')}.$$

REM & Random Coding (Cont'd)

Motivations:

- β = degree of freedom for channel uncertainty.
- Annealing: find ground-state by ‘cooling’.
- Finite-temperature decoding (Ruján 1993):

$$\hat{x}_t = \operatorname{argmax}_a P_\beta(x_t = a | \mathbf{y})$$

$\beta = 1 \Rightarrow$ minimum bit-error probability

$\beta = \infty \Rightarrow$ minimum block-error probability.

- $Z(\beta | \mathbf{y}) = \sum_{\mathbf{x} \in \mathcal{C}} P^\beta(\mathbf{y} | \mathbf{x})$ \exists in bounds on P_e . Random $\mathcal{C} \iff$ REM: **Phase transitions** ‘inherited’ from REM.

Statistical Physics of Code Ensembles

\mathbf{x}_0 = correct codeword; $B = \ln \frac{1-p}{p}$:

$$\begin{aligned}
 Z(\beta|\mathbf{y}) &= (1-p)^{n\beta} \sum_{\mathbf{x} \in \mathcal{C}} e^{-\beta B d(\mathbf{x}, \mathbf{y})} \\
 &= (1-p)^{n\beta} e^{-\beta B d(\mathbf{x}_0, \mathbf{y})} + (1-p)^{n\beta} \sum_{\mathbf{x} \in \mathcal{C} \setminus \{\mathbf{x}_0\}} e^{-\beta B d(\mathbf{x}, \mathbf{y})} \\
 &\stackrel{\Delta}{=} Z_c(\beta|\mathbf{y}) + Z_e(\beta|\mathbf{y}).
 \end{aligned}$$

$$d(\mathbf{x}_0, \mathbf{y}) \approx np \Rightarrow Z_c(\beta|\mathbf{y}) \approx (1-p)^{n\beta} e^{-\beta B np}.$$

$$Z_e(\beta|\mathbf{y}) = (1-p)^{n\beta} \sum_{\delta=0}^n N_{\mathbf{y}}(n\delta) e^{-\beta B n \delta}$$

with $\overline{N_{\mathbf{y}}(n\delta)} \doteq e^{nR} \cdot e^{n[h(\delta) - \ln 2]}$.

$R + h(\delta) - \ln 2 < 0 \Rightarrow N_{\mathbf{y}}(n\delta) \sim 0$. Happens for $\delta < \delta_{GV}(R)$ and $\delta > 1 - \delta_{GV}(R)$, where $\delta_{GV}(R) = \text{solution } \delta \leq 1/2 \text{ of } R + h(\delta) - \ln 2 = 0$.

Stat. Phys. of Code Ensembles (Cont'd)

Similar to the REM:

$$Z_e(\beta|\mathbf{y}) \doteq \exp\{n \max_{\delta \in [\delta_{GV}(R), 1 - \delta_{GV}(R)]} [R + h(\delta) - \ln 2 - \beta B \delta]\} \stackrel{\Delta}{=} e^{n\phi(\beta, R)}$$

$$\phi(\beta, R) = \begin{cases} R + \ln[p^\beta + (1-p)^\beta] - \ln 2 & \beta < \beta_c(R) \text{ paramagnetic} \\ \beta[\delta_{GV}(R) \ln p + (1 - \delta_{GV}(R)) \ln(1-p)] & \beta \geq \beta_c(R) \text{ spin-glass} \end{cases}$$

$$\beta_c(R) = \frac{\ln[(1 - \delta_{GV}(R))/\delta_{GV}(R)]}{\ln[(1 - p)/p]}.$$

$Z_c(\beta|\mathbf{y}) \Rightarrow$ ordered phase = ferromagnetic phase.

Ferro-glassy boundary: $R = C$.

Ferro-para boundary: $T = T_0(R) = 1/\beta_0(R)$, solution to:

$$\beta h(p) = \ln 2 - R - \ln[p^\beta + (1-p)^\beta].$$

Phase diagram of finite-temperature decoding (Mezard & Montanari, 2008).

The Correct Decoding Exponent (M. 2007)

$$\begin{aligned}\overline{P_c} &= E \left\{ \frac{1}{M} \sum_{\mathbf{y}} \max_m P(\mathbf{y} | \mathbf{X}_m) \right\} \\ &= E \left\{ \frac{1}{M} \sum_{\mathbf{y}} \lim_{\beta \rightarrow \infty} \left[\sum_{m=0}^{M-1} P^\beta(\mathbf{y} | \mathbf{X}_m) \right]^{1/\beta} \right\} \\ &= \frac{1}{M} \sum_{\mathbf{y}} \lim_{\beta \rightarrow \infty} E \left\{ Z_e(\beta | \mathbf{y})^{1/\beta} \right\}\end{aligned}$$

$R > C$ and $\beta \rightarrow \infty \Rightarrow$ calculating $E\{Z_e(\beta | \mathbf{y})^{1/\beta}\}$ in the spin-glass phase.

The Correct Decoding Exponent (Cont'd)

$$\begin{aligned}
 E\{Z_e(\beta|\mathbf{y})^{1/\beta}\} &= E\left\{\left[(1-p)^{n\beta} \sum_{\delta} N_{\mathbf{y}}(n\delta) e^{-\beta B n \delta}\right]^{1/\beta}\right\} \\
 &\doteq (1-p)^n E\left\{\sum_{\delta} N_{\mathbf{y}}^{1/\beta}(n\delta) e^{-B n \delta}\right\} \\
 &= (1-p)^n \sum_{\delta} E\left\{N_{\mathbf{y}}^{1/\beta}(n\delta)\right\} \cdot e^{-B n \delta}
 \end{aligned}$$

$$E\left\{N_{\mathbf{y}}^{1/\beta}(n\delta)\right\} = \begin{cases} \exp\{n[R + h(\delta) - \ln 2]\} & \delta \leq \delta_{GV}(R) \text{ or } \delta \geq 1 - \delta_{GV}(R) \\ \exp\{n[R + h(\delta) - \ln 2]/\beta\} & \delta_{GV}(R) < \delta < 1 - \delta_{GV}(R) \end{cases}$$

The Correct Decoding Exponent (Cont'd)

Intuition: Below $\delta_{GV}(R)$

$$\begin{aligned} \mathbf{E} \left\{ N_{\mathbf{y}}^{1/\beta}(n\delta) \right\} &\approx 0^{1/\beta} \cdot \Pr\{N_{\mathbf{y}}(n\delta) = 0\} + 1^{1/\beta} \cdot \Pr\{N_{\mathbf{y}}(n\delta) = 1\} \\ &\doteq \exp\{n[R + h(\delta) - \ln 2]\} \end{aligned}$$

Above $\delta_{GV}(R) \Rightarrow$ double-exponentially fast concentration:

$$\mathbf{E} \left\{ N_{\mathbf{y}}^{1/\beta}(n\delta) \right\} \approx [\mathbf{E}\{N_{\mathbf{y}}(n\delta)\}]^{1/\beta} \approx \left(e^{n[R + h(\delta) - \ln 2]} \right)^{1/\beta}$$

Putting into $\mathbf{E}\{Z_e^{1/\beta}(\beta|\mathbf{y})\}$ & taking the dominant δ :

$$\overline{P_c} \doteq \exp\{-n[R - \ln 2 - \mathbf{F}_g]\}$$

F_g = free energy of glassy phase:

$$F_g = \delta_{GV}(R) \ln \frac{1}{p} + (1 - \delta_{GV}(R)) \ln \frac{1}{1-p}.$$

Correct Decoding Exponent (Cont'd)

Alternative expression: use $\ln 2 - R \equiv h(\delta_{GV}(R))$:

$$\begin{aligned}\overline{P}_c &\doteq \exp\{-nD(\delta_{GV}(R)\|p)\} \\ &= \Pr\{x_0 \text{ at distance } < \delta_{GV}(R)\}\end{aligned}$$

$\delta_{GV}(R)$ = typical distance of wrong codewords **dominating the spin-glass phase**.

Main ideas of the analysis technique:

- Summations over **exponentially many** codewords \Rightarrow summations over **polynomially few** terms of **distance enumerators**, $\{N_{\mathbf{y}}(\cdot)\}$.
- Power of $\sum \doteq \sum$ of powers.
- Moments of $\{N_{\mathbf{y}}(n\delta)\}$: treated differently depending on whether or not $\delta \in [\delta_{GV}(R), 1 - \delta_{GV}(R)]$.

The Random Coding Error Exponent

Gallager's bound:

$$\begin{aligned} P_{e|m=0} &\leq \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_0)^{1/(1+\rho)} \left[\sum_{m \geq 1} P(\mathbf{y}|\mathbf{x}_m)^{1/(1+\rho)} \right]^\rho \\ &= \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_0)^{1/(1+\rho)} \cdot Z_e^\rho \left(\frac{1}{1+\rho} | \mathbf{y} \right) \end{aligned}$$

Jensen $\Rightarrow E\{Z_e^\rho(1/(1+\rho)|\mathbf{y})\} \leq [EZ_e(1/(1+\rho)|\mathbf{y})]^\rho$. Calculation in **paramagnetic regime** $\Rightarrow E_r(R)$ is related to paramagnetic F :

$$\bar{P}_e \leq \exp \left\{ -n \left[\frac{\rho}{1+\rho} \textcolor{blue}{F_p} \left(\frac{1}{1+\rho} \right) - \ln(p^{1/(1+\rho)} + (1-p)^{1/(1+\rho)}) \right] \right\}.$$

Another Application: Decoding with Erasures

Decoder with an option **not** to decide (erasure): Decision rule = partition into $(M + 1)$ regions:

$$\mathbf{y} \in \mathcal{R}_0 \text{ erase}$$

$$\mathbf{y} \in \mathcal{R}_m \ (m \geq 1) \text{ decide } x_m.$$

Performance – tradeoff between

$$\Pr\{\mathcal{E}_1\} = \frac{1}{M} \sum_m \sum_{\mathbf{y} \in \mathcal{R}_m^c} P(\mathbf{y} | x_m) \text{ erasure + undetected error}$$

$$\Pr\{\mathcal{E}_2\} = \frac{1}{M} \sum_m \sum_{\mathbf{y} \in \mathcal{R}_m} \sum_{m' \neq m} P(\mathbf{y} | x_{m'}) \text{ undetected error}$$

Decoding with Erasures (Cont'd)

Optimum decoder: decide message m iff

$$\frac{P(\mathbf{y}|\mathbf{x}_m)}{\sum_{m' \neq m} P(\mathbf{y}|\mathbf{x}_{m'})} \geq e^{nT} \quad (T \geq 0 \text{ for the erasure case}).$$

Erasure: if this holds for no m .

Forney's **lower bounds** on err. exponents of \mathcal{E}_1 and \mathcal{E}_2 :

$$E_1(R, T) = \max_{0 \leq s \leq \rho \leq 1} [E_0(s, \rho) - \rho R - sT] \quad \text{where}$$

$$E_0(s, \rho) = -\ln \left[\sum_y \left(\sum_x P(x) P^{1-s}(y|x) \right) \cdot \left(\sum_{x'} P(x') P^{s/\rho}(y|x') \right)^\rho \right],$$

$$E_2(R, T) = E_1(R, T) + T.$$

and $P(x)$ = random coding distribution.

Decoding with Erasures (Cont'd)

Main step in [Forney68]:

$$E \left\{ \left(\sum_{m' \neq m} P(\mathbf{y} | \mathbf{X}_{m'}) \right)^s \right\} \quad \text{upper bounded by}$$

$$E \left\{ \left(\sum_{m' \neq m} P(\mathbf{y} | \mathbf{X}_{m'})^{s/\rho} \right)^\rho \right\}, \quad \rho \geq s,$$

and then Jensen.

Our technique: 1st expression **exponentially tight**, **no need for ρ** .

- A simpler bound (under some symmetry condition), at least as tight.
- Sometimes (e.g., BSC): optimum s in closed form.

Also: **exact** exponent (complicated) – joint work with A. Somekh-Baruch.

Two Extensions

- The REM in a uniform magnetic field and joint source–channel coding.
- The generalized REM (GREM) and hierarchical coding structures.

Back to Physics: REM in a Magnetic Field (Derrida)

Earlier we modeled only **interaction energies**, $\{\mathcal{E}_I(\mathbf{x})\}$ as $\mathcal{N}(0, nJ^2/2)$.

When an external magnetic field H is applied

$$\mathcal{E}(\mathbf{x}) = \mathcal{E}_I(\mathbf{x}) - H \cdot \sum_{i=1}^n x_i = \mathcal{E}_I(\mathbf{x}) - n \cdot m(\mathbf{x})H$$

where $m(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n x_i$ = **magnetization** of \mathbf{x} .

$$\begin{aligned} Z(\beta, H) &= \sum_{\mathbf{x}} e^{-\beta[\mathcal{E}_I(\mathbf{x}) - nm(\mathbf{x})H]} \\ &= \sum_m \left[\sum_{\mathbf{x}: m(\mathbf{x})=m} e^{-\beta\mathcal{E}_I(\mathbf{x})} \right] \cdot e^{n\beta mH} \\ &\triangleq \sum_m \zeta(\beta, m) e^{n\beta mH} \end{aligned}$$

The REM in a Magnetic Field (Cont'd)

$\zeta(\beta, m) = \sum_{\mathbf{x}: m(\mathbf{x})=m} e^{-\beta \mathcal{E}_I(\mathbf{x})}$: similar to REM with $H = 0$ with only $\exp[nh((1+m)/2)]$ terms.

Using the same technique, we compute $\zeta(\beta, m) \doteq e^{n\psi(\beta, m)}$ and

$$\phi(\beta, H) = \max_m [\psi(\beta, m) + \beta m H],$$

where $m^* = m(\beta, H) = \text{mean (typical) magnetization.}$

The REM in a Magnetic Field (Cont'd)

Results: Let $\beta_c(H)$ solve the equation

$$\beta^2 J^2 = 4h \left(\frac{1 + \tanh(\beta H)}{2} \right).$$

Phase transition at $\beta = \beta_c(H)$:

$$m(\beta, H) = \begin{cases} \tanh(\beta H) & \beta < \beta_c(H) \text{ paramagnetic phase} \\ \tanh(\beta_c(H) \cdot H) & \beta \geq \beta_c(H) \text{ spin glass phase} \end{cases}$$

Free energy: $F = -\phi/\beta$, where:

$$\phi(\beta, H) = \begin{cases} \frac{\beta^2 J^2}{4} + h \left(\frac{1 + \tanh(\beta H)}{2} \right) + \beta H \tanh(\beta H) & \beta < \beta_c(H) \\ \beta \left[J \sqrt{h \left(\frac{1 + \tanh(\beta_c(H) H)}{2} \right)} + H \cdot \tanh(\beta_c(H) H) \right] & \beta \geq \beta_c(H) \end{cases}$$

REM in a Magnetic Field & JSC Coding

- Binary source: $U_1, U_2, \dots, U_i \in \{-1, +1\}$, $q = \Pr\{U_i = 1\}$.
- source-rate/channel-rate = θ .
- JSC code: $\mathbf{u} = (u_1, \dots, u_{n\theta}) \Rightarrow \mathbf{x}(\mathbf{u})$ of length n .
- Random coding: Draw $2^{n\theta}$ binary n -vectors $\{\mathbf{x}(\mathbf{u})\}$ by fair coin tossing.

Finite-temperature decoder:

$$\hat{u}_i = \operatorname{argmax}_{u \in \{-1, +1\}} \sum_{\mathbf{u}: u_i = u} [P(\mathbf{u})P(\mathbf{y}|\mathbf{x}(\mathbf{u}))]^\beta, \quad i = 1, 2, \dots, n\theta.$$

$$\begin{aligned} Z &= \sum_{\mathbf{u}} [P(\mathbf{u})P(\mathbf{y}|\mathbf{x}(\mathbf{u}))]^\beta \\ &= [P(\mathbf{u}_0)P(\mathbf{y}|\mathbf{x}(\mathbf{u}_0))]^\beta + \sum_{\mathbf{u} \neq \mathbf{u}_0} [P(\mathbf{u})P(\mathbf{y}|\mathbf{x}(\mathbf{u}))]^\beta \\ &\stackrel{\Delta}{=} Z_c + Z_e \end{aligned} \tag{1}$$

REM in a Magnetic Field & JSC Coding (Cont'd)

$P(\mathbf{u}) = [q(1 - q)]^{n\theta/2} e^{n\theta m(\mathbf{u})H}$ where $H = \frac{1}{2} \ln \frac{q}{1-q}$. Thus,

$$\begin{aligned}
 Z_e &= [q(1 - q)]^{n\beta\theta/2} \sum_m \left[\sum_{\mathbf{x}(\mathbf{u}): m(\mathbf{u})=m} e^{-\beta \ln[1/P(\mathbf{y}|\mathbf{x}(\mathbf{u}))]} \right] e^{n\beta m H} \\
 &= [q(1 - q)]^{n\beta\theta/2} (1 - p)^{n\beta} \sum_m \left[\sum_{\mathbf{x}(\mathbf{u}): m(\mathbf{u})=m} e^{-\beta B d(\mathbf{x}(\mathbf{u}), \mathbf{y})} \right] e^{n\beta\theta m H} \\
 &\triangleq [q(1 - q)]^{n\beta\theta/2} (1 - p)^{n\beta} \sum_m \zeta(\beta, m) e^{n\beta\theta m H}
 \end{aligned}$$

Statistical physics of $Z_e \sim$ REM in a magnetic field. Similar analysis \Rightarrow :

Let $\beta_{pg}(H)$ solve:

$$\ln 2 - h(p_\beta) = \theta h \left(\frac{1 + \tanh(\beta H)}{2} \right), \quad p_\beta \triangleq \frac{p^\beta}{p^\beta + (1 - p)^\beta}.$$

REM in a Magnetic Field & JSC Coding (Cont'd)

Magnetization of Z_e (incorrectly decoded patterns):

$$m(\beta, H) = \begin{cases} \tanh(\beta H) & \beta < \beta_{pg}(H) \\ \tanh(\beta_{pg}(H) \cdot H) & \beta \geq \beta_{pg}(H) \end{cases}$$

$Z_c \Rightarrow$ 3rd phase.

The ferro–glassy boundary is $H = H_{fg}$ where

$$H_{fg} = \frac{1}{2} \ln \frac{q^*}{1 - q^*} \quad \theta h(q^*) = \ln 2 - h(p).$$

REM in a Magnetic Field & JSC Coding (Cont'd)

Discussion

- Correct decoding for large $|H|$.
- Low temp.: (sub-exponentially few) typical patterns of erroneously decoded $\{u\}$ have m dictated by the frozen phase, i.e., $m_g(H) = \tanh(\beta_{pg}(H) \cdot H)$ independently of temp.
- For $|H| < H_{fg}$, $\beta_{pg}(H) > 1$, means that m of a typical erroneously decoded u is $> m$ of a typical (correct) u , $m_f = \tanh(H)$.
 - If $T < T_{pg}(0)$, remains true no matter small $|H|$ is.
 - If $T_{pg}(0) < T < 1$, then when $|H| \downarrow$ the m of (exponentially many) erroneously decoded $\{u\}$ is $m_p(\beta, H) = \tanh(\beta H)$: still $> m$ of typical u , but now temperature-dependent.
- Analysis of P_e and P_c – similar as before.

GREM (Derrida, '85) and Hierarchical Code Ensembles

Allowing correlations between $\{\mathcal{E}_I(x)\}$ in an hierarchical (tree) structure.

Features:

- More realistic model of dependencies.
- Still (relatively) easy analysis.
- May have > 1 phase transition.
- Analogies with code ensembles with a tree structure.

Sketch of Analysis for GREM

As before,

$$Z(\beta) = \sum_x e^{-\beta \mathcal{E}_I(x)} \approx \int dE \cdot N(E) e^{-\beta E}$$

Estimating $N(E) \doteq e^{nS(E)}$ for a typical realization: $\forall x$ with energy E : 1st branch $-\epsilon$, 2nd branch: $E - \epsilon$.

$$N_1(\epsilon) \doteq e^{nR_1} \cdot \exp \left\{ -\frac{\epsilon^2}{nJ^2 a_1} \right\} = \exp \left\{ n \left[R_1 - \frac{1}{a_1} \left(\frac{\epsilon}{nJ} \right)^2 \right] \right\},$$

“alive” for $|\epsilon| \leq \epsilon_0 \triangleq nJ\sqrt{a_1 R_1}$. Thus,

$$N(E) \doteq \int_{-\epsilon_0}^{+\epsilon_0} d\epsilon \cdot N_1(\epsilon) \cdot \exp \left\{ n \left[R_2 - \frac{1}{a_2} \left(\frac{E - \epsilon}{nJ} \right)^2 \right] \right\}.$$

Sketch of Analysis for the GREM (Cont'd)

$$S(E) = \lim_{n \rightarrow \infty} \frac{\ln N(E)}{n} = \max_{|\epsilon| \leq \epsilon_0} \left[R_1 - \frac{1}{a_1} \left(\frac{\epsilon}{nJ} \right)^2 + R_2 - \frac{1}{a_2} \left(\frac{E - \epsilon}{nJ} \right)^2 \right]$$

$$\phi(\beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \ln \left[\int dE \cdot e^{nS(E)} \cdot e^{-\beta E} \right] = \max_E [S(E) - \beta E].$$

Two cases:

If $R_1/a_1 > R_2/a_2 \Rightarrow$ behavior exactly like in the REM.

Otherwise: two phase transitions at $\beta_i = \frac{2}{J} \sqrt{\frac{R_i}{a_i}}$, $i = 1, 2$:

$$\phi(\beta) = \begin{cases} \ln 2 + \frac{\beta^2 J^2}{4} & \beta < \beta_1 \text{ pure paramagnetic} \\ \beta J \sqrt{a_1 R_1} + R_2 + \frac{a_2 \beta^2 J^2}{4} & \beta_1 < \beta \leq \beta_2 \text{ glassy-paramagnetic} \\ \beta J (\sqrt{a_1 R_1} + \sqrt{a_2 R_2}) & \beta > \beta_2 \text{ pure glassy} \end{cases}$$

GREM and Hierarchical Lossy Source Coding

- BSS $X_1, X_2, \dots, X_i \in \{0, 1\}$ and Hamming distortion measure.
- Performance measure $E\{\exp\{-s\text{distortion}\}\}$ – related to Z .
- Tree structured code:
 - $n = n_1 + n_2$ and $nR = n_1R_1 + n_2R_2$.
 - 1st–stage code: $M_1 = e^{n_1 R_1}$ n_1 –vectors $\{\hat{x}_i\}$.
 - 2nd–stage code: For each i , $M_2 = e^{n_2 R_2}$ n_2 –vectors $\{\tilde{x}_{i,j}\}$.
 - Encode $x = (x', x'')$ by $\min\{d(x', \hat{x}_i) + d(x'', \tilde{x}_{i,j})\}$.
 - Decode 1st n_1 symbols using 1st $n_1 R_1$ compressed bits.
 - Overall **distortion** \iff overall **energy** in GREM.
- Hierarchical ensemble:
 - Draw M_1 n_1 –vectors $\{\hat{x}_i\}$ by fair coin tossing.
 - For each i , draw M_2 n_2 –vectors $\{\tilde{x}_{i,j}\}$ by fair coin tossing.

Results

Evaluate $E\{\exp\{-s\text{distortion}\}\}$, using

$$Z(\beta|\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{C}} e^{-\beta d(\mathbf{x}, \mathbf{y})}$$

and then $\lim_{\theta \rightarrow \infty} E\{Z^{1/\theta}(s\theta|\mathbf{x})\}$.

⇒ calculation in the **glassy regime**.

For $R_1 \geq R_2$,

- $\phi(\beta) = \lim_n \frac{\ln Z}{n}$ is like in the REM:

$$\phi(\beta) = \begin{cases} R - \ln 2 - \beta + \ln(1 + e^\beta) & \beta < \beta(R) \\ -\beta\delta_{GV}(R) & \beta \geq \beta(R) \end{cases}$$

where $\beta(R) = \ln[(1 - \delta(R))/\delta(R)]$.

- $E\{\exp\{-s\text{distortion}\}\}$ like in an **optimum** code for $s \in (0, s_0)$ with $s_0 = \infty$ when $R_1 = R_2$.

Results (Cont'd)

For $R_1 < R_2$,

- Two phase transitions: Defining $\lambda = \lim_n n_1/n$ and

$$v(\beta, R) = \ln 2 - R + \beta - \ln(1 + e^\beta):$$

$$\phi(\beta) = \begin{cases} -v(\beta, R) & \beta < \beta(R_1) \\ -\beta\lambda\delta_{GV}(R_1) - (1 - \lambda)v(\beta, R_2) & \beta(R_1) \leq \beta < \beta(R_2) \\ -\beta[\lambda\delta_{GV}(R_1) + (1 - \lambda)\delta_{GV}(R_2)] & \beta \geq \beta(R_2) \end{cases}$$

- $E\{\exp\{-s\text{distortion}\}\}$ behaves like in two decoupled codes in the two segments.

Conclusion

- Analogies between certain mathematical models in stat. mech. and IT.
- Inspiring alternative analysis techniques of code performance (error exponents).
- Applied to error- and correct decoding exponents in channel coding, joint source channel coding, and decoding with erasures.
- Potentially applicable to other situations, e.g., the IFC (joint work with Ordentlich and Etkin).