
 

 

 

  

    Abstract—Accurate clock synchronization is important in 

many distributed applications. This problem was both 

extensively treated in the literature and applied in practice. In 

the Internet, for example, the “Network Time Protocol” (NTP) 

is the most widely accepted standard for clock synchronization. 

In some recent work, improved algorithms that rely on Least-

Squares (LS) estimation were introduced. A central 

characteristic of these methods is their decentralized structure 

that requires only local communication among neighbors. In 

this paper, we extend this LS framework by developing 

algorithms that estimate the offset of the local clock at each 

network node, using a Kalman Filter (KF) induced framework 

that takes account of initial data and multiple measurement 

sets. We propose a synchronous decentralized implementation 

of the estimation algorithm that employs only local broadcasts 

and prove that it converges to the optimal centralized solution. 

We also present some simulation results to illustrate the 

performance benefits of the suggested algorithms.  

I. INTRODUCTION 

ACCURATE clock synchronization is required in many 

distributed applications in computer networks (e.g., sleep 

scheduling in the case of low duty cycle [11], and tracking in 

wireless sensor networks [15]). The task of synchronizing 

clocks in distributed systems is usually accomplished via the 

exchange of time-stamped messages (probe packets) 

between the distributed entities in order to coordinate their 

time. We will assume for simplicity that the links are bi-

directional, the network topology is time-invariant and that 

each node is capable of sending and receiving messages 

from its neighbors. There is a large literature on how to 

synchronize clocks in traditional networked systems; among 

these, the “Network Time Protocol” (NTP) is the most 

widely accepted standard for synchronizing clocks over the 

Internet [12], [13]. This protocol essentially uses a 

hierarchical approach by sending probe messages along a 

spanning tree of the network. 

    More recently, a novel approach for time synchronization 

termed CTP – Classless Time Protocol [5] was proposed. 

This non-hierarchical approach exploits convex optimization 

theory in order to minimize a quadratic objective function of 

clock offsets. It was shown that CTP substantially 

outperforms hierarchical schemes such as NTP in terms of 

clock accuracy without increasing complexity. An 

alternative proposed approach relies on the well known 
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Least-Squares Estimator in [4], [16]. The accuracy of clock 

synchronization was improved by exploiting global network-

wide constraints (e.g., the relative offsets are summing up to 

zero over loops) and the use of a completely asynchronous, 

distributed algorithm employing only local broadcasts. The 

central characteristic of these methods relies in their 

decentralized structure that requires only local 

communication with neighbors. In addition, the work in [1] 

extends the same LS approach to a Weighted Least-Squares 

(WLS) framework, where each measurement is pre-

multiplied by a weighting factor. It is interesting to note that 

the time synchronization problem is mathematically 

equivalent to any related distributed estimation problem 

stemming from relative additive measurements in sensor 

networks [1]. For example, one can apply the same 

algorithms to the sensor localization problem. 

    In estimation theory, for a linear dynamic system under 

the Gaussian assumption the Kalman Filter is the optimal 

MMSE (Minimum Mean Squared-Error) state estimator. If 

the Gaussian assumption is relaxed, we will obtain the linear 

optimal MMSE state estimator. The implementation of the 

KF in a decentralized manner was extensively treated in the 

literature [2], [6], [10], [15]. Our objective is to develop 

efficient decentralized estimation algorithms in order to 

synchronize the different clocks over the network with 

respect to the reference time. Without loss of generality, we 

may assume that Node 1 is synchronized with the universal 

clock, and we thus have to synchronize the other clocks with 

respect to it. Our objective is therefore to estimate the clock 

offsets at each network node relative to the clock reference. 

    The basic Least-Squares framework of [4] considered the 

estimation problem using only a single set of measurements. 

We extend this framework to a recursive one by first taking 

account of a-priori knowledge (namely, initial estimates of 

the local time at each node, together with their confidence 

level), and then considering recursive algorithms for 

multiple measurement sets. We also rely on the well known 

result that claims the equivalence between the KF solution 

and the minimizing vector of a deterministic constrained LS 

problem. In this way, we will be able to obtain the existing 

LS solution as a special case. The problem is conveniently 

formulated within a Kalman filtering framework. However, 

as will become clear, under our assumptions on the state 

vector, this is equivalent to a recursive Least-Squares 

problem. This equivalence will be used to develop the 

decentralized algorithms that are the main goal of this paper. 

    The first step is to formulate the model in the state space 

form where the state is the vector of biases of the clocks in 

the network. Then, we will show that a single measurement 

vector update can be done using a distributed iterative 
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scheme that converges to the optimal centralized estimator. 

In addition, the decentralized implementation converges in a 

relatively small number of iterations, like in [5]. We make 

the natural assumption that the initial state covariance matrix 

is diagonal, however we observe that after the first 

measurement update of the KF, the state covariance matrix 

does not remain diagonal. Hence, from this step the standard 

KF equations cannot be decentralized and each node has to 

communicate with every other node in the network. This is 

not a desirable situation since it is prohibitively expensive in 

terms of communication time. We solve this issue by 

proposing a decentralized recursive algorithm that relies on 

manipulating the standard equations. The next step is to 

consider the multiple measurement case and to present a 

recursive version. The recursive algorithm computes the 

optimal offsets and the corresponding variances in a 

decentralized manner after receiving each set of 

measurements. We also consider a simple sub-optimal 

algorithm that neglects the off-diagonal terms of the inverse 

covariance matrix. This method reduces significantly the 

complexity, but looses its optimal property.  

    Finally, we present simulation results over several 

network topologies for evaluating and comparing the 

accuracy of the proposed time synchronization schemes. We 

provide several interesting comparisons, where the Kalman 

Filter approach outperforms the existing algorithms.  

    The remainder of this paper is organized as follows. In 

section II, we describe the model and formulate the problem. 

Then, in section III, we present the different algorithms for 

the single measurement update case. Section IV is devoted 

to show the convergence of the most general decentralized 

algorithm to the optimal centralized solution. In section V, 

we provide the recursive version of our algorithm for 

multiple measurements. Sections VI treat several extensions 

of the basic algorithm. Numerical results are presented in 

section VII. Finally, the conclusions and some notes on 

future directions are reported in section VIII. 

II. MODEL AND PROBLEM DEFINITIONS 

We model the network as a directed graph ( ),G V= Ε  with 

V = Ν  nodes { }1 2, ,..., NΛ Λ Λ  and mΕ =  edges. Each 

edge represents the ability to transmit and receive packets 

between the corresponding pair of nodes. The edge 

connecting nodes 
iΛ  and 

jΛ  is denoted by 
ije . We assume 

that all the edges are bidirectional, namely that if 
ije ∈ Ε , 

then 
jie ∈ Ε  and that the graph that corresponds to the 

network is connected, namely there exists a path between 

any pair of nodes in the network. Denote by 
iΝ  the set of 

nodes which are the neighbors of 
iΛ , i.e., one edge away 

from node 
iΛ , and let 

iΝ  be the number of such 

neighbors. We consider a model in which only one out of the 

Ν  nodes is a "reference time node" (the generalization for 

several reference time nodes is straightforward). Without 

loss of generality, we may assume that the reference time 

node is 
1Λ . Our objective is to construct the optimal offset 

estimate for every node { }\ 1u V∈ . 

A. Clock Model 

     A standard model for the clock drift at a node follows the 

linear form: ( )i i iT t tα τ= + , where 
iα  and iτ  are the skew 

(rate deviation) and the offset parameters respectively, t  is 

the real time (or reference time) and ( )iT t  is the local time at 

node 
iΛ . This model is known as the two parameters linear 

model (see [16] and the references therein).  

    The time synchronization problem relates to the task of 

setting the clocks in the network so that they all agree. We 

suppose that node 
1Λ  is synchronized to the reference time: 

1 0τ =  and 
1 1α =  

We will focus on the simplified model where the offsets are 

time-invariant and that all the clocks run at the same speed 

(there is no skew), namely: 1, ,
i j

i jα α= = ∀ . 

These assumptions are appropriate when the effective 

measurement span (or the memory of the estimation 

procedure) is short relative to the rate deviation. In the 

conclusion, we will relate to the case in which the previous 

assumptions are relaxed. 

B. The Measurements 

    Each network node ( 1, 2,...i i NΛ = ) sends probe packets 

to each one of its neighbors. Time is stamped on packet 
mk  

by the sender 
iΛ  upon transmission ( ( )i mT k ) and by the 

receiver 
jΛ  upon reception of the packet ( ( )j mR k ). Then, 

the node 
jΛ  retransmits the packet back to the source 

( ( )j mT k ) and the source stamps its local time when receiving 

the packet back ( ( )i mR k ). Then: 

( ) ( ) ( ) ( )ij m j m i m ij m i j ijT k R k T k x k τ τ ε∆ − = − + + ɶ≜  

Here, ( )ij mx k  is the propagation delay of the link 
ije ,  

ijεɶ  is 

an additive noise that represents the random queuing delay 

(and the other unknown influences) and 
j iτ τ−  is the 

difference between the two clock offsets. Assuming that 

( ) ( )
ij m ji m
x k x k=  (symmetric propagation delay) we obtain: 

( )1ˆ
2

ij ij ji j i ijO T T τ τ ε∆ − ∆ = − +≜  

where:            ( )1

2
ij ij jiε ε ε= −ɶ ɶ  

C. Problem Formulation and State Space Model 

    Our objective is to synchronize all the clocks in the 

network with the reference time. This is equivalent to 

estimating iτ  at each network node. The algorithm is 

required to be decentralized and to converge to the optimal 

centralized solution.  

    Let us define the state vector by the following column 

vector: ( )1 2( ) 0, ,...
T

Nx n τ τ τ=≜ , where,
iτ  is the offset of  



 

 

 

node 
i

Λ . As we previously explained, the measurements for 

each pair of neighboring nodes is given by:  

( )1ˆ
2

ij ij ij ji j i ijy O T T τ τ ε= ∆ − ∆ = − +≜  

Thus, the relative measurement 
ijy  for each pair of 

neighboring nodes is given by their offset difference plus an 

additive noise
ijε . We note that ˆ

ijO  is the standard notation 

for this measurements, and we therefore retain this notation. 

The measurement equation of the state space model is 

related to the incidence matrix A  whose dimensions are N  

(nodes number) ×  m  (edges number) and where in the row 

corresponding to node 
iΛ , we have an entry +1 for all edges 

of the form ( ),i j , an entry -1 for all edges of the form 

( ),j i , and 0 otherwise. For a connected graph, the rank of 

the incidence matrix is 1N − , or one less than the number of 

nodes. Thus, deleting any row from the incidence matrix 

yields a full row rank matrix, which is called the reduced 

incidence matrix. Here, we will work with the ( )1N m− ×  

matrix obtained by deleting the row corresponding to the 

reference node 
1Λ . For notational convenience, we use A  to 

henceforth denote the reduced incidence matrix.  

Consequently, the state space model is given by: 

( 1) ( )

( ) ( ) ( )T

x n x n

y n A x n v n

+ =


= +
 

Here, 0n ≥  is the discrete time index and ( )y n  is the 

measurement set of every pair of neighboring nodes at time 

n . We note that n  need not refer to the actual time, but 

rather corresponds to the epoch when the n-th measurement 

set ( )y n  become available. The initial state of the system 

(0)x  has the following first and second order statistics: 

[ ] [ ]0 0(0) cov (0)E x x x P= = . { }( )v n  is the measurement noise 

modeled as a white noise with zero mean and covariance 

( ) 0R n R= > . We assume that { }( )v n  is uncorrelated and 

therefore the matrix R  is diagonal and Positive Semi-
Definite (PSD). Its i-j element corresponds to the pair of 

neighboring nodes 
iΛ  and 

jΛ : 

( ) jiij
R r=  

{ }( ) , (0)v n x  are uncorrelated, that is: (0) ( ) 0
T

E x v n n  = ∀  . 

III. SINGLE MEASUREMENT SET 

    First, we consider the single measurement update case. 

We start with the pair of parameters 
0 0,x P  and our goal is to 

find ˆ
optτ  by using the Kalman Filter equations. 

0x  and 
0P  

represent the a-priori knowledge and we want to include this 

information together with the measurements to find an 

optimal estimate. This is important, because this initial 

knowledge can improve the quality of the estimation.  

    The KF solution is the optimal linear estimate of (1)x x= , 

given (1)y y=  in the MMSE sense. As is well known (e.g., 

[8]), this solution is equivalent to a Least-Squares 

deterministic problem, which in our case reduces to the 

minimum of the following objective function:  
1 1

0 0 0( ) ( ) ( ) ( )
T T T T

J x x P x x y A x R y A x
− −= − − + − −          (1) 

The first term of the objective function is related to the 
initial knowledge of clock offsets whereas the second term is 

associated with the single set of measurements and its 

corresponding covariance matrix R .  

 In the development of a distributed algorithm, we will find 

more convenient to manipulate the above deterministic LS 
problem rather than starting with the KF equations. 

A. The Basic Algorithm 

    We first present the existing algorithm introduced in [4], 

[5], [15]. In this case, the objective function is given by: 

( )2
,

ˆ( ) ( )

i

T T T

ji i j

i j
j N

J y A x y A x O τ τ

∈

= − − = − +∑  

Differentiating J  with respect to each one of the coordinates 

iτ  and set the derivatives to zero leads to: 

( ) ( ) ( )ˆ2 0
i

T

ji i jii
j Ni

J
AA x A y O τ τ

τ ∈

∂
= − = − − + =

∂ ∑  

From this, we get: 

                          ( )1 ˆ

i

i ji j

j Ni

O
N

τ τ
∈

= ⋅ +∑                             (2) 

The above equation must be satisfied by the optimal solution 

of the offset estimation problem. While this is a set of linear 

equations, a direct solution cannot be carried out in a 
decentralized manner. Instead, we will implement a 

decentralized iterative algorithm and show its convergence 

to the optimal centralized solution. This algorithm follows 

the classical Jacobi iteration model. We will define the 

iterative procedure for the general later in this section and 

we will prove its convergence. The above equation has a 

very simple interpretation. Each node computes its offset 

estimate as the average of all its neighbors' estimates plus 

the corresponding relative measurements. This procedure is 

the same as in [4], [16] and one can easily show that this is 

equivalent to the algorithm in [5]. Our objective is to extend 

the previous result to a wider framework and we will obtain 
this procedure as a special case of a more general algorithm. 

    Next, we will consider the more general framework that 

includes the initial covariance matrix in the objective 

function in addition to a weighting matrix 1R−  . The analysis 

is divided in two cases: non-diagonal and diagonal initial 

covariance matrix. 

B. General Framework 

    Let us solve the original problem where the objective 

function J  is composed of two distinct terms, like in (1). 

In general, the initial covariance matrix 
0P  need not be a 

diagonal matrix. Moreover, even if 
0P  is chosen to be 

diagonal, after the first iteration of the Kalman Filter, the 

inverse covariance matrix will not preserve its diagonal 

structure. Hence, if we have a-priori knowledge of the 

system or if multiple sets of measurements are available, we 



 

 

 

must consider the case in which the covariance matrix is not 

assumed to be diagonal. In this more general case, we get: 

( ) ( ) ( )1

0

1

1 1 ˆ (0) 0
i i

N

i ji j k kik
j N j N ki ji ji

J
O P

r r
τ τ τ τ

τ
−

∈ ∈ =

∂
= − + + − =

∂ ∑ ∑ ∑  

This implies: 

( )
( ) ( ) ( ) ( )1 1

0 0

11

0

1 1 ˆ (0) (0)
1 i

i

N

i ji j i m mii im
j N mji

m i
ii

j N ji

O P P
r

P
r

τ τ τ τ τ− −

∈ =−
≠

∈

 
 = + + − −
  
 +    

 

∑ ∑
∑

The above optimality equations can be applied to a network 

in order to estimate the clock offsets at each node with 

respect to the reference time. There are many iterative 

methods that can be used [9], [17]. The suggested 

decentralized algorithm uses the synchronous iterative 

updates: 

( )
( ) ( )

( ) ( )

( 1) ( ) 1

0

1

0

1 ( )

0

1

1 1 ˆˆ ˆ[ (0)
1

ˆ (0) ]

i

i

k k

i ji j iii
j N ji

ii
j N ji

N
k

m mim
m
m i

O P
r

P
r

P

τ τ τ

τ τ

+ −

∈−

∈

−

=
≠

= + + −
 

+  
 

− −

∑
∑

∑

 (3) 

with initialization (0)ˆ (0) 2,3,...i i i Nτ τ= = . Here, 0k ≥  is 

the iteration number. The main problem in the last formula is 

that each node needs to communicate with all the other 
nodes and not only with its neighbors. Thus, unless the 

matrix 
0
P  is diagonal, each node has to know the global 

topology of the entire network. As we previously explained, 

the initial covariance matrix 
0P  can be assumed to be 

diagonal. However, after applying the Kalman Filter 

equations, the covariance matrix 
nP  will not be diagonal 

anymore.     

C. Diagonal 
0P  

    One can make the logical assumption that the initial 

inverse covariance matrix 1

0
P −  is a diagonal matrix, with 

elements: ( )10

1

ii
i

P
p

− = . Indeed, 1

0P
−  represents the initial 

correlation between the different clocks in the network, and 

there is no reason to have some a-priori knowledge of the 
cross correlation terms but only on the variances of each 

clock (diagonal terms). 

Now, The decentralized iterative procedure is given by: 

( )( 1) ( ) (0)1 1 ˆˆ ˆ (4)
1 1 i

i

k k i
i ji j

j N ji i

j N ji i

O
r p

r p

τ
τ τ+

∈

∈

 
= ⋅ + + 

    +  
 

∑
∑

In words, 
iτ  is given by the weighted average between the 

adjacent measurements and its a-priori estimate. Observe 

that if the matrix 1

0
P −  is equal to zero and 1R I− = , we 

obtain the equation (2) as in the basic LS case described 

above. This algorithm requires only local broadcasts and as 

we will show in section IV, converges to the optimal 

centralized solution (after an infinite number of iterations in 

all the nodes). 

IV. CONVERGENCE ANALYSIS 

     We now establish the convergence of the previous 

decentralized clock synchronization algorithms to the 

optimal centralized solution. We consider the most general 

case where the initial covariance matrix 
0
P  need not be 

diagonal. In this case, the synchronous decentralized 

algorithm is given by (3). 
 
Theorem 1. 
Suppose that: 

a) The matrix R  is diagonal and Positive Semi-Definite, 

that is: ( ) 1

0 ,
ji
r i j

−
≤ < ∞ ∀  . 

b) The initial covariance matrix 
0P  is an M-matrix, 

namely: 

( )

( ) ( ) ( )

1

0

1 1

0 0

0

0 0

ij
j

ii ij

P

P and P i j

−

− −

 ≥


 ≥ ≤ ≠


∑
 

c) The clock adjustment operation in (3) is applied 

synchronously by all nodes ( 2,3,...i N= ) in all 

iterations. 

Then, the iterated estimators ( )ˆ ( ) 2,3,...
k

i n i Nτ =  converge 

(as k → ∞ ) to the optimal offsets that minimize the objective 

function in (1). 
 
The proof is provided in the Appendix. 

V. RECURSIVE ALGORITHMS FOR MULTIPLE MEASUREMENT 

SETS 

    So far, the case of one measurement update was 

considered. The next step is to consider the multiple 

measurement case and to present a recursive version of the 

previous decentralized algorithms. Several sets of 

measurements become successively available and our goal is 

to develop an algorithm that recursively estimates the offsets 

after each set of measurements. In the subsequent analysis, 

we still focus on the case where the initial covariance matrix 

0
P  is diagonal. We can then try to apply the algorithm in (3) 

recursively after each set of measurements is received. The 

problem here is that after the first measurement update in the 

KF equations, the covariance matrix 
1P  will not be diagonal 

anymore. Then, each node has to communicate with all the 

other nodes over the network and not only with the one-hop 

neighbors. We therefore cannot apply the equations that 

were previously developed in (3), and our objective is to 

derive an alternative form of the iteration (3), which makes it 

suitable for decentralized implementation.  

    The multiple measurement update case can be solved 

using several approaches. First, we present an optimal 

decentralized recursive algorithm based on the KF 

equations. Then, we propose a sub-optimal decentralized 

algorithm that neglects the off-diagonal terms of the inverse 

covariance matrix. An alternative method is to wait for all 

the measurements and then to perform the estimation 

procedure (batch non-recursive estimation). This last method 

is not presented here and can be found in [3]. 



 

 

 

A. Optimal Decentralized algorithm 

    For the multiple measurement update case,  the objective 

function is given by:  

1 1

0 0 0

1

( ) ( ) ( ) ( ( ) ) ( ( ) ) (5)
n

T T T T

k

J n x x P x x y k A x R y k A x− −

=

= − − + − −∑
For notational simplicity, we assume that the matrix 1R−  is 

similar for each set of measurements. We propose the 

following iterative algorithm: 

[ ] ( )

( ) ( )

[ ] [ ] ( )

[ ] [ ] ( )

( 1) ( ) ( )

( )

1 1 1

0

1 1 1

0

1 ˆˆ ˆ ˆ ˆ( ) ( 1) ( ) { [ ( 1) ( ) ]

1
ˆ ˆ1 [ ( ) ( 1) ]} (6)

1 1
( ) ( 1) 2,...,

(0) (0)

i

i

i i

k n k

i i i ji i j

j N ji

k

j j

j N ji

i i ii
j N j Nji ji

i i ii

n n I n O n n
r

n n n
r

I n I n P n i N
r r

I P P

τ τ τ τ

τ τ

+

∈

∈

− − −

∈ ∈

− − −

= − + ⋅ ⋅ − − − +

+ − ⋅ ⋅ − −

= − + = + ⋅ =

= =

∑

∑

∑ ∑

The above set of equations is a decentralized, synchronous 

and recursive algorithm that computes at each step, the 

estimated offsets and the corresponding error variances. The 

main advantage of this algorithm is its local nature; each 

network node needs to communicate only with its neighbors.  

We now describe in words the iterative procedure in (6). At 

time n , we assume that the estimate of ˆ ( 1)
i
nτ −  is given. 

Then, ( )ˆ ( ) 1,2,...
k

i n kτ =  is computed based on ˆ ( 1)
i
nτ −  and 

the last measurement set ( )y n . We assume that a sufficient 

number of iterations is performed at each time n , so that the 

estimate ˆ ( )
i
nτ  is accurate.   

It may be shown that the elements of [ ] 1
( )iI n

−
 are the 

diagonal entries of the inverse covariance matrix in the 

Kalman Filter equations. Thus, the variances of the 

estimation errors at each step are available. This is a 

desirable property since it gives information on the 

estimation quality. Observe however that we do not compute 

the non-diagonal elements of the inverse covariance matrix. 

We point out that the suggested recursion slightly deviates 

from the standard structure of a recursive algorithm due to 

the term n  (time explicit index) in the denominator and in 

the internal term. 

The proposed algorithm may be derived in two ways, which 

lead to the same optimal equations: 

1. Differentiate ( 1)J n −  and ( )J n  with respect to the 

offsets vector x  and set the partial derivatives to zero. 

The algebraic details (which can be found in [3]) are 

omitted since the procedure is similar to the previous 

case. 

2. Algebraic manipulations of the standard recursive 

extension of (3), with the following  KF update inverse 

covariance equation: 

                       ( ) ( )1 1 1

1

T

k kP P AR A
− − −

+ = +                              (7) 

In other words, the set of iterative equations in (6) is 

mathematically equivalent to perform (3) separately for each 

measurement set in addition to (7). This result will be useful 

in the convergence analysis of Theorem 2. This can be 

shown easily by some appropriate mathematical 

manipulations and is not presented here due to space 

limitations. We note that an alternative derivation of these 

equations that starts with the KF equations in information 

form is given in [3]. However, the obtained recursion in (6) 

is not equivalent to the KF equations. 

Now, let us show the convergence of the set of equations in 

(6) to the optimal centralized solution. 
 
Theorem 2. 

Suppose that: 

a) Assumptions a) and b) from Theorem 1 hold. 
b) The clock adjustment operation in (6) is applied 

synchronously by all nodes ( 2,3,...i N= ) in all 

iterations, recursively for n  sets of measurements . 

c) A sufficient number of iterations is performed after each 

measurement set n , so that ( )ˆ ( )k

i nτ  converges to ˆ ( )i nτ . 

Then, for each 1n ≥ , the iterated estimators 
( )ˆ ( ) 2,3,...
k

i n i Nτ =  converge (as k → ∞ ) to the optimal 

offsets that minimize the objective function in (5). 
 
The proof is provided in the Appendix. 
 
    Next, we propose a simple sub-optimal algorithm for the 

case where multiple sets of measurements are available. 

B. A Sub-Optimal Decentralized Algorithm 

    For the case where 
0
P  is non-diagonal, we obtained in (3) 

that the estimated offset of node 
iΛ  depends on all the other 

offsets and not only on those of its neighbors. One can think 

about the naïve sub-optimal algorithm that neglects the off-

diagonal terms of the inverse covariance matrix: 

( )
( ) ( )( 1) ( ) 1

0

1

0

1 1 ˆˆ ˆ (0)
1 i

i

k k

i ji j iii
j N ji

ii
j N ji

O P
r

P
r

τ τ τ+ −

∈−

∈

 
= + + 

    +  
 

∑
∑

 

The decentralized sub-optimal recursive algorithm for the 

multiple measurement scenario is given by: 

( )
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 Here, we neglect the off-diagonal terms before inverting the 

information matrix ( ) 1

1nP
−

−
, in the goal to improve the 

complexity. In this case, we will invert a diagonal matrix 

and hence the time computation will significantly decrease. 

We can interpret the previous equation in a very logical 

manner. The new estimate is given by the sum of the 

previous estimate and a correction term. This correction term 

is composed of the latest measurement minus the estimated 

measurement multiplied by the measurement variance and 

the total is normalized by the accumulative variance. In the 

numerical results section, we will compare the decentralized 

recursive algorithm that converges to the optimal solution to 

the above sub-optimal scheme.  

VI. NUMERICAL RESULTS 

    In this section, we implement some of the algorithms that 

we previously developed for typical problems and we 

compare the results with the existing algorithms. More 

extensive comparisons can be found in [3]. The convergence 



 

 

 

analysis of the decentralized algorithm is not presented 

because the convergence is achieved after a relatively small 

number of iterations and the results are very similar than [5]. 

Consider two different network topologies: 

-  Network 1: a 400 node network with 997 edges. 

-  Network 2: a 170 node network with 1200 edges. 

    The first case we analyze is the one where 10% of the 

nodes are perfectly synchronized to the global time (through 

a GPS for example), and the remainder are not synchronized 

at all. Namely, for these arbitrary 40 nodes we take the 

initial variances to be very small (0.01) and the offsets equal 

to zero, and for the rest of the nodes, the variances tend to 

infinity and the offsets are randomly chosen according to a 

uniform distribution. The graphical comparison between the 

decentralized CTP algorithm (equation (2)) and the 

Decentralized Kalman Filter (DKF) (equation (4)) is 

presented in Fig. 2. As expected, the DKF algorithm 

outperforms the decentralized CTP method in terms of clock 

accuracy. Fig. 2 shows the fraction of nodes with clock 

offset with respect to the reference time node that is not 

grater than t  for the different algorithms. In other words, the 

y-axis represents the fraction of nodes with clock offset, 

relating to the global time, not greater than the value 

described by the x-axis. 
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Fig. 2. Comparison between the decentralized CTP and DKF algorithms 

(with 10% of nodes synchronized via GPS) in Network 1. 
 
The second part of this section is devoted to the comparison 

of the recursive Centralized Kalman Filter (CKF) algorithm 

to the Sub-Optimal Algorithm (SOA) that neglects the off-

diagonal terms of the inverse covariance matrix (see section 

V. B). We consider the topology of Network 2 and we check 

several values of n  (the number of measurements). The 

queuing delay is randomized in accordance with the Kalman 

Filter assumptions, namely normally distributed with zero 

mean and covariance matrix R : 

[ ] ( )0.01,12 0,delayR U Q N R∼ ∼  

In addition, we consider that 10% of the nodes are perfectly 

synchronized to the global time and the remainder are not 

synchronized at all (similar to the case in Fig. 2). In this 

analysis, we also compare the results to the Centralized 

Least-Squares (CLS) algorithm. Fig. 3 presents the results 

for the offsets obtained by applying the optimal CKF 

method, the SOA and the CLS algorithms for two different 

values of n . As expected, the optimal algorithm gives the 

best results. The sub-optimal algorithm gives relatively poor 

results but reduces the complexity and is not diverging. 

Moreover, we obtained that the sub-optimal algorithm is 

even worse (in terms of clock accuracy) than the basic 

centralized Least-Squares method (that does not take into 

account the initial covariance matrix). 
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Fig. 3. Comparison between CKF, SOA and CLS (with [ ]0.01,12R U∼  

and 
0P I≠ ) in Network 2 for 1,50n = . 

VII. CONCLUSION 

    In this paper, we have developed several decentralized 

algorithms for estimating the offset at each network node 

with respect to the reference time, utilizing a Kalman Filter 

framework. The essential characteristic of these algorithms 

is their decentralized nature; each node can estimate its clock 

offset by only exchanging packets among its one-hop 

neighbors. We extend the existing Least-Squares based 

algorithms using a Kalman Filter framework so we can 

assign different weights to the measurements according to 

their accuracy, include a-priori knowledge and provide a 

recursive estimation scheme. The main algorithm is both 

decentralized (requires only local broadcasts), recursive 

(works in on-line applications) and converges to the optimal 

centralized solution. Finally, some numerical results were 

presented to show that, as expected, the proposed algorithm 

outperforms the existing methods. 

    We close the paper by mentioning several extensions of 

interest. A discount factor is easily incorporated into the 

objective function (5) in order to give a higher weight to the 

more recent measurements, and leads to similar algorithms. 

This will be useful when the offsets are time-varying. The 

proposed algorithms may also be extended to handle 

dynamic changes in the communication topology by 

considering temporary link failures, following the treatment 

in [1]. Further details related to these two issues may be 

found in [3]. 

   One may also consider more elaborate state dynamics to 

model possible time variations in the clock offsets. The 



 

 

 

simplest is adding a white system noise in the state space 

model. Interestingly, the results of this paper are not easily 

extendable to this model. Another major issue is the 

incorporation of the clock skew parameter into the clock 

model (see section II. A). These scenarios were partially 

investigated in [3] and may be considered as directions for 

future research.  

APPENDIX 

    First, we present the proof of Theorem 1. Let us recall that 

the general objective function is given by: 
 

1 1

0 0 0( ) ( ) ( ) ( )T T T TJ x x P x x y A x R y A x− −= − − + − −  
 
Let us analyze the convergence properties of the general 

case, where 
0
P   is not necessarily assumed to be a diagonal 

matrix. We recall that iteration (3) cannot be easily 

decentralized when 
0
P  is not diagonal as we previously 

explained. However, the iteration is still well defined 

mathematically. 

    The synchronous iteration can be written in vector form: 
 

( ) ( )1
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The optimal solution (equivalent to performing the 

centralized protocol) is given by: 
 

( ) ( )1
* 1 1 1 1

0 0 0

TAR A P AR y P xτ
−− − − −= + +  

Let us define:               ( ) ( ) *ˆk kτ τ τ−≜  
 
Then we obtain after some manipulations: 
 

( 1) ( )k kMτ τ+ =  

where:             ( ) ( )1
1 1

0 0

TM I D P AR A P
− − −− + +ɶ ɶ≜  

Thus, the convergence of the sequence ( )ˆ kτ  to *τ  is 

equivalent to the convergence of ( )kτ  to the zero vector, 

which is determined by the matrix M . The necessary and 

sufficient condition for this convergence is that the spectral 

radius of M  is strictly smaller than 1. The following result 

is well known (see, e.g., [7], chapter 6). 
 
Proposition 1. 
Consider a non-negative square matrix A  with the following 

properties: 

a) All the row sums of A  are smaller or equal than 1. 

b) At least in one row this sum is strictly smaller than 1. 

c) The matrix A  is irreducible (i.e., there exists a path 
from any node to any other node in the network). 

Then,                             ( ) 1Aρ < . 
 

According to Proposition 1, ( ) 0kτ →  if the sufficient 

conditions apply to the matrix M . In order to show that the 

spectral radius of M  is strictly smaller than 1, we will 

require that the matrix M  is both non-negative and sub-

stochastic (the row sums are smaller than one).  

     The elements of the matrix M  can be determined by 

inspection as the following: 0iiM = , and 
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    Let us find the conditions for the row sums of the matrix 

M  to be smaller than 1: 
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It follows that 1ijj
M ≤∑  if and only if: ( )10 0

j ij
P

− ≥∑ . 

In other words, we obtained that the necessary condition is 

that for each node 
iΛ , the row sum of the matrix 1

0
P −  has to 

be non-negative.  

    Requiring that all the entries of the matrix M  are non-

negative leads to: 
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Hence, we can write:  ( ) ( )1 1

0 0 0
j iii ij

P P− −

∀ ≠
≥ − ≥∑  

The above requirement can be seen as a diagonal dominance 

condition over the matrix 1

0
P − . 

    In the case that the node 
iΛ  is adjacent to the reference 

node, the corresponding row sum of the M  matrix is given 

by: 
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In the case that the node 

iΛ  is not adjacent to the reference 

node, the corresponding row sum of the M  matrix is given 

by: 
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Hence, we have shown that at least in one row, the row sum 
of M  is strictly smaller than 1. Actually, we proved that the 

iteration matrix verifies all the sufficient conditions for 

convergence. Namely, the row sums of the matrix M  are 

less or equal than 1 (and at least in one row this sum is 

strictly smaller than 1), the matrix M  is irreducible and all 

its entries are non-negative. 

    As a result, we proved the convergence of the 

decentralized algorithm to the optimal solution performed by 

the centralized Kalman Filter for the most general case.   
 
To sum up, the convergence conditions are given by: 
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                                                                                        ■ 
We next present the proof of Theorem 2. The case in which 

1n =  was treated in Theorem 1. Our proof relies on the 

following lemma. 
 
Lemma 1. 

Suppose that 
0
P  satisfies the convergence conditions of 

Theorem 1, namely 
0P  is an M-matrix. Let 

nP  be computed 

using (7), then 
n
P  is an M-matrix  for all 1n ≥ . 

 
Proof 
Equation (7) corresponds to the measurement update 

equation of the inverse covariance matrix of the KF. 

Recalling that the matrix 1R−  is assumed to be diagonal, let 

us analyze the properties of the matrix 1 TAR A− . For the 
reduced incidence matrix, we have: 

1

1

1

TAR A v−

 
  = 
 
 

⋮  

Here, v  is a vector with non-negative components. The 

structure of the matrix 1 TAR A−  is as follows: 
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The row sums are ( )1 0T

j ij
AR A−

∀
=∑  for each node 

iΛ  that 

is not adjacent to the reference node. Moreover, if the node 

iΛ  is adjacent to the reference node, this sum is a strictly 

positive number. Hence, we conclude that if the a-priori 

inverse covariance matrix ( ) 1

1nP
−

−
 verifies the convergence 

conditions, then the a-posteriori inverse covariance matrix 

( ) 1

nP
−
 will verify them too.  

                                                                                        ■ 
This lemma immediately implies the convergence of the 

recursive extension (for several measurement sets) of 

equation (3) to the optimal solution, where at each step, the 

new covariance matrix is computed according to (7). Since 

the iterations in (6) are equivalent to the procedure in (3), we 
obtain the claimed convergence in Theorem 2. 

                                                                                        ■ 
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