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Abstract 
 
 
Accurate clock synchronization is important in many distributed applications, both in wire 
line and wireless computer networks. Time synchronization between the nodes of a 
network was extensively treated in the literature, where several methods and algorithms 
were proposed to solve this problem efficiently. In the Internet for example, the “Network 
Time Protocol” (NTP) is the most widely accepted standard for clock synchronization.  
 
In some recent work, improved algorithms that rely on Least-Squares estimation were 
introduced. The accuracy of clock synchronization was improved by imposing the global 
constraints for all the loops in the multihop network and the use of a distributed algorithm 
employing only local broadcasts. A central characteristic of these methods is their 
decentralized structure that requires only local communication with neighbors. In this 
research, we will extend the Least-Squares framework by developing algorithms that 
estimate the offset of the local clock at each network node, using a Kalman Filter 
framework. We will present a synchronous decentralized implementation of the filtering 
algorithm that employs only local broadcasts and we will prove that it converges to the 
optimal centralized solution. The Kalman Filter framework allows exploiting some a-priori 
knowledge and providing different weights to the measurements according to their 
accuracy. The next step is to consider the multiple measurement case and to present a 
recursive version of these algorithms. The recursive algorithm computes the optimal offsets 
and the corresponding variances after receiving each set of measurements in a 
decentralized manner. Finally, we will extend the results to the estimation of the clock 
skew (i.e., rate deviation) in addition to its offset. Then, we will consider different 
extensions of the basic algorithm. We will incorporate a discount factor in the objective 
function and treat the case where temporary communication failures are considered. 
 
We also present simulation results over several network topologies for evaluating and 
comparing the accuracy of the proposed time synchronization schemes. We will provide 
several interesting comparisons and as expected, the Kalman Filter approach outperforms 
the existing algorithms.  
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Summary of Notations 
 
 
 

A  Reduced incidence matrix 
iα  Skew (rate deviation) of node iΛ  

ˆ jiα  Estimated skew ratio between nodes iΛ and jΛ  
b  Bias (constant random noise) 
B  Bias covariance matrix 
[ ],Cov ⋅ ⋅  Covariance function 
γ  Forgetting factor 

id  Deviation from the i-th data point 

klδ  Kronecker's delta 
Π  Objective function in the best fitting curve problem 

ije  Bidirectional link between nodes iΛ and jΛ  

[ ]E ⋅  Mathematical expectation 

ijε  Additive noise in the measurement model between nodes iΛ and jΛ  
J Objective function 
k Iteration number 
mk  Probe packet number 
TL  Matrix transpose 

m Number of edges in the network 
M Iteration matrix 
n Discrete time index 
Ν  Number of nodes in the network 

iΝ  Number of elements in the set iN   

( ),N μ Σ  Gaussian density with mean μ  and covariance matrix Σ  

x∇  Gradient operator with respect to x  
ˆ

ijO  Measurement between the pair iΛ  and jΛ  

{}P ⋅  Probability 

{ }|P ⋅ ⋅  Conditional probability 

( | )P n n  Error covariance matrix at time n  given observations up to and including 
time n  

( )1|P n n+  Error covariance matrix at time 1n +  given observations up to and including 
time n  

( )Mρ  Spectral radius of M  

0P  Initial known covariance matrix 

( )1
0 *i

P −  Row number i of the matrix 1
0P −  

jir  Variance of the measurement ˆ
ijO  

1R−  Inverse covariance matrix of the measurement noise 
iΛ  Node number 
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t  Real time (reference time) 
bT  Number of measurement sets in the skew estimation problem 
( )iT t  Local time (at node iΛ )  

ST  Sampling interval 

mt  Transmission time of packet mk  

mt�  Received time of packet mk  

iτ  Offset of node iΛ  
*τ  Optimal centralized solution 

( )u n  External input at time n  in the state space model 
( 1)v n +  Measurement noise at time 1n +  in the state space model 

( )w n  Process noise at time n  in the state space model 

iiW  Weight number i  in the WLS problem 

0x  Initial known state vector 
( )x n  Sate vector at time n  

ˆ( | )x n n  State estimate at time n  given observations up to and including time n  
ˆ( 1| )x n n+  State estimate at time 1n +  given observations up to and including time n  

( )ij mx k  Propagation delay of packet mk  between nodes iΛ  and jΛ  
( )X n  Augmented state space vector at time n  
y  Measurement vector 

( 1)z n +  Measurement vector at time 1n +  in the state space model 
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Summary of Abbreviations 
 
 
 

BLUE  Best Linear Unbiased Estimator 
CTP  Classless time Protocol 
CKF Centralized Kalman Filter 
CLS Centralized Least-Squares 
DKF Decentralized Kalman Filter 
FTSP Flooding Time Synchronization Protocol 
GM Gauss–Markov 
GPS Global Positioning System 
IID Independent Identically Distributed 
KF  Kalman Filter 

LQG Linear-Quadratic-Gaussian 
LQR Linear-Quadratic Regulator 
LS  Least-Squares 

MAP Maximum-A-Posteriori 
ML Maximum-Likelihood 

MMSE Minimum Mean Squared-Error 
NTP Network Time Protocol 
OLS  Ordinary Least-Squares 
PDF Probability Density Function 
PSD Positive Semi-Definite 
RBS Reference-Broadcast Synchronization 
RLS Recursive Least-Squares 

SNTP Simple Network Time Protocol 
SOA Sub-Optimal Algorithm 

s.t Such That 
UTC Coordinated Universal Time 
WSN Wireless Sensor Network 
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1. Introduction 
 
 
Accurate clock synchronization is required in many distributed applications in computer 
networks (e.g., sleep scheduling in the case of low duty cycle [24], and tracking in wireless 
sensor networks [33]). Moreover, network time synchronization is a critical component for 
commercial organizations that rely on several computers, all of which have clocks that are 
the source of time for the files or operations they handle. When clocks of the different 
components on such systems are not synchronized, data can be lost, processes can fail, the 
exposure increases and security is compromised. The task of synchronizing clocks in 
distributed systems is usually accomplished via the exchange of standard messages (probe 
packets) between the distributed entities in order to coordinate their time. We will assume 
for simplicity that the links are bi-directional, the network topology is time-invariant and 
that each node is capable of sending and receiving messages from its neighbors. There is a 
large literature on how to synchronize clocks in traditional networked systems; among 
these, the “Network Time Protocol” (NTP) is the most widely accepted standard for 
synchronizing clocks over the Internet [28-30].  
 
More recently, a novel approach for time synchronization termed CTP – Classless Time 
Protocol [14] was proposed. This non-hierarchical approach exploits convex optimization 
theory in order to evaluate the impact of each clock offset on the overall objective function. 
It was shown that CTP substantially outperforms hierarchical schemes such as NTP in the 
sense of clock accuracy with respect to a universal clock, without increasing complexity. 
An alternative proposed approach is the well known Least-Squares Estimator in [41, 12]. 
The accuracy of clock synchronization was improved by exploiting global network-wide 
constraints (e.g., the relative offsets are summing up to zero over loops) and the use of a 
completely asynchronous, distributed algorithm employing only local broadcasts. The 
central characteristic of these methods relies in their decentralized structure that requires 
only local communication with neighbors.  
 
In estimation theory, for a linear dynamic system under the Gaussian assumption the 
Kalman Filter (KF) is the optimal MMSE (Minimum Mean Squared-Error) state estimator. 
If the Gaussian assumption is relaxed, we will obtain the linear optimal MMSE state 
estimator. The implementation of the KF in a decentralized manner was extensively treated 
in the literature, as we will see in Section 3. Our objective is to develop efficient 
decentralized estimation algorithms in order to synchronize the different clocks over the 
network with respect to the reference time. Without loss of generality, we can assume that 
Node 1 is synchronized with the universal clock, and we thus have to synchronize the other 
clocks with respect to it. Firstly, we will consider the case where all the clocks run exactly 
at the same rate (i.e., there is no clock skew). In this case, our objective reduces to estimate 
the clock offsets at each network node relative to the clock reference. 
 
We will extend the Least-Squares framework by developing algorithms that estimate the 
offset of the local clock at each network node, using a Kalman Filter framework. The first 
step is to formulate the model in the state space form where the state is the vector of biases 
of the clocks in the network. Then, we will show that a single measurement vector update 
can be done using a distributed iterative scheme that converges to the optimal centralized 
estimator. The Kalman Filter framework allows exploiting a-priori knowledge about the 
estimated quantity and providing different weights to the measurements according to their 
accuracy and quality. We will make the natural assumption that the initial state covariance 
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matrix is diagonal, however we will observe that after the first measurement update of the 
KF, the state covariance matrix does not remain diagonal. Hence, from this step the 
standard KF equations cannot be decentralized and each node has to communicate with 
every other node in the network. This is not a desirable situation since it is prohibitively 
expensive in terms of communication time. We will solve this issue by proposing a 
decentralized recursive algorithm that relies on manipulating the standard equations. We 
rely on the theorem that claims the equivalence between the KF solution and the 
minimizing vector of a deterministic constrained LS problem. In this way, we will be able 
to obtain the existing LS solution as a special case. We find the optimal solution by a 
coordinate differentiation and then we will implement the optimal equation by a 
synchronous iterative algorithm that employs only local broadcasts. Then, we will prove 
that it converges to the optimal centralized solution. The next step is to consider the 
multiple measurement case and to present a recursive version of these algorithms. The 
recursive algorithm computes the optimal offsets and the corresponding variances in a 
decentralized manner after receiving each set of measurements. We also consider a simple 
sub-optimal algorithm that neglects the off-diagonal terms of the inverse covariance matrix. 
This method reduces significantly the complexity, but looses its optimal property. We will 
see in the simulation results section that this algorithm leads to poor results. 
 
In the extensions section we will incorporate a discount factor in the objective quadratic 
function to compensate for the time-invariant offsets assumption. Then, we modify our 
algorithm slightly to make it robust to temporary communication failures. We briefly 
consider the extension of our results to the estimation of both the offsets and the clock 
skew (i.e., rate deviation). We will show that the clock skew estimation problem reduces to 
the same mathematical setup as the offset estimation problem under the appropriate 
substitutions. For the clock skew estimation problem, we propose different approaches. In 
the first, the clock skew estimation is performed separately from that of the clock offset. In 
the second, we propose an optimal combined estimation of both the clock offset and the 
clock skew. 
 
Finally, we present simulation results over several network topologies for evaluating and 
comparing the accuracy of the proposed time synchronization schemes. We provide several 
interesting comparisons, where the Kalman Filter approach outperforms the existing 
algorithms.  
 
It is interesting to note that the time synchronization problem is mathematically equivalent 
to any related distributed estimation problem stemming from relative additive 
measurements in sensor networks [3]. For example, one can apply the same algorithms to 
the sensor localization problem. We will briefly elaborate on this point in Section 7.  
 
This thesis is organized as follows. In sections 2 and 3, we review the required scientific 
background and the related work respectively. In Section 4, we describe the model and 
formulate the problem. Then, in Section 5, we present the different algorithms for the case 
of single measurement update (both centralized and decentralized versions). Section 6 is 
devoted to show the convergence of the most general decentralized algorithm to the 
optimal centralized solution. In Section 7, we provide the recursive version of our 
algorithm for multiple measurements and an additional non-recursive algorithm. Sections 8 
and 9 treat several extensions, like the incorporation of a discount factor and the estimation 
of the clock skew. Numerical results are presented in Section 10. Finally, the conclusions 
and some notes on future directions are reported in Section 11. 
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2. Scientific Background 
 
 
2.1 Least-Squares Fit 
 
Let us first consider the Least-Squares (LS) method in a deterministic context and then 
explain its statistic interpretation. The method of Least-Squares or Ordinary Least-Squares 
(OLS) is used to solve over-determined systems and can be interpreted as a method of 
fitting data. This algorithm is often applied in statistical contexts, particularly in regression 
analysis. The best Least-Squares fit is that instance of the model for which the sum of 
squared residuals has its lowest value, a residual being the difference between an observed 
value and the value given by the model. In other words, the method of Least-Squares 
assumes that the best-fit curve of a given type is the curve that has the minimal sum of 
deviations squared (least square error) for a given set of data. For example, we can fit the 
data to a polynomial function, as presented in the following figure:  
 

 

Figure 2.1. Fitting a set of data points using a quadratic function. 

Suppose that the data points are: 

( ) ( ) ( )1 1 2 2, , , ,..., ,n nx y x y x y  

Here iy  are the measured values (data) and ix  are the independent variables (unknown). 
The fitting curve ( )f x  has the deviation id  from each data point: 

( ) 1,2,..i i id y f x i n= − = . 

According to the LS method, the best fitting curve has the property that the following 
expression is minimal:  

 

              ( ) ( )2 22

1 1
( ) min

n n

i i i
i i

d d y f x
= =

Π = = = − →∑ ∑                (2.1.1) 
 
The above minimum in (2.1.1) can be found by setting the gradient to zero. Since the 
model contains n  parameters, we will obtain n  gradient equations. 

( )f x

x
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As a special case, the linear LS problem with the following over-determined system ( M  
linear equations in N  unknown variables, with M>N) is considered: 

 

1
1, 2,..,

N

ij j i
j

a x y i M
=

= =∑  

 
In a matrix notation: 
 

Ax y=  
 
In order to find the optimal LS solution, we have to minimize the following quadratic 
objective function: 
 

2 miny AxΠ = − →  
 
A unique optimal solution is obtained (when 0TA A >  ) by solving the normal equations: 
 

( )T TA A x A y=  
 
The above equation can be obtained by differentiating the objective function with respect to 
the vector x and setting the result to zero.  
 
Now, we will consider several approaches to iteratively solve the normal equations. Let us 
define: 
 

T

T

M I A A
y A y

⎧ = −⎪
⎨

=⎪⎩
 

 
We note that the matrices M  and I M−  are the projection matrices.  
Using these notations in the normal equations, we will obtain: 
 
 
 
This implies: 
 
 
 
We can implement the above equation through the use of an iterative (synchronous or 
asynchronous) algorithm and the convergence depends on the structural properties of the 
matrix M . For example, the synchronous algorithm (all the entries are updated 
simultaneously) is given by: 
 
 
 
Here, 0k ≥  is the iteration number. The initial conditions can be randomly chosen and 
does not affect the convergence of the algorithm in (2.1.2). 
 
The above method is known as the Jacobi algorithm and is very common in linear algebra. 
In this thesis, we will employ this method in a synchronous way to solve the linear Least-
Squares problem.  
 
We also mention the relaxed form of the Jacobi algorithm. This is an alternative approach 
that leads to similar equations based on the gradient algorithm. Given the similar linear 
equations: 

Ax y=  

( )I M x y− =

x Mx y= +

( 1) ( ) (2.1.2)k kx Mx y+ = +
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The gradient descent method is given by: 
 

( )
( )

( ) ( )

( 1) ( ) ( ) ( )

( 1) ( )

( 1) ( ) ( )1

k k k k
x

k k

k k k

x x x I M x y

x I I M x y

x I x Mx y

η η

η η

η η

+

+

+

⎡ ⎤= − ⋅∇ Π = − ⋅ − −⎣ ⎦
= − − +⎡ ⎤⎣ ⎦

= − ⋅ + +

 

 
Here, η  is the step size of the algorithm. One can note that if 1η = , the gradient algorithm 
reduces to the Jacobi method. Hence, the gradient algorithm is more general and can be 
viewed as a relaxed Jacobi method. In the case where the Jacobi algorithm does not 
converge, we can try to use the gradient algorithm and reduce the step size to achieve 
convergence. 
 
Two interesting extensions to the basic LS case are considered: the Weighted Least-
Squares (WLS) and the Recursive Least-Squares (RLS). In the WLS method, each data is 
multiplied by a weighting factor. In other words, the objective function to be minimized is 
a weighted sum of the form: 
 

( )2

1
min

n

ii i
i

W d
=

Π = →∑  
 
The RLS method is the recursive version of the basic LS algorithm where data arrives 
progressively. In this particular case, the minimization process is repeated for each set of 
measurements. Moreover, the most useful form is RLS with exponential data weighting 
(incorporation of a forgetting factor). In the latter, we consider the scenario where the most 
recent data is assumed to be more informative than past data and hence we exponentially 
discard old data.  
 
The Least-Squares method also has a statistical interpretation in estimation theory. In a 
linear model in which the errors have a zero expectation conditional on the independent 
variables, are uncorrelated and have equal variances (IID), the Best Linear Unbiased 
Estimator (BLUE) of any linear combination of the observations is its Least-Squares 
estimator. This result is known as the Gauss-Markov (GM) theorem. "Best" means that the 
Least-Squares parameter estimators have minimum variance. The assumption of equal 
variance is valid when the errors all belong to the same distribution. Moreover, in a linear 
model, if the errors belong to a Normal distribution, the Least-Squares estimators are also 
the Maximum-Likelihood estimators (as we will show in Appendix B).  
 
Aitken [1] showed that when a weighted sum of squared residuals is minimized, the 
solution is the BLUE if each weight is equal to the reciprocal of the variance-covariance 
matrix of the observations. This method is known as the Weighted-Least-Squares (WLS) 
method. In the linear non-deterministic case, there exists a closed form solution to the RLS 
algorithm that can be implemented through an iterative procedure. For more details on 
RLS, see [13, 40].  
 
It can be found in Appendix A that the Kalman-Filter algorithm can be viewed as a 
deterministic LS optimization problem. Next, we present the basic background on Kalman 
Filtering. 
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2.2 Kalman Filtering 
 
The Kalman Filter (KF) is an efficient recursive filter that estimates the state of a linear 
dynamic system from a series of noisy measurements. It is used in a wide range of 
engineering applications from radar to computer vision, and is an important topic in control 
theory and control systems engineering. Together with the Linear-Quadratic Regulator 
(LQR), the Kalman Filter solves the Linear-Quadratic-Gaussian control problem (LQG) 
[27, 13]. As seen in Figure 2.2, the KF is fed measurements from the system of interest and 
produces an estimate of the system state. The system is modeled either as a set of 
differential equations in the continuous-time case or as a set of difference equations in the 
case of a discrete-time system. The system model is used to propagate the estimate of the 
system state forward in time until a new measurement is received. At this point, the system 
state attained from the measurement is compared to the estimate of the system state and 
combined in an optimal (MMSE) manner.  

 
 

 
 

Figure 2.2. Typical Kalman Filter application, from Maybeck [27]. 
 
In order to use the Kalman Filter to estimate the internal state of a process given only a 
sequence of noisy observations, one must model the process in accordance with the 
framework of the KF, i.e., in a state space model notation. This means specifying the 
matrices , , HΦ Γ  for each time-step n  as described below. In other words, the KF model 
assumes the true state at time 1n +  is evolved from the state at n  according to: 
 

( 1) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x n n x n n w n
y n H n x n v n

+ = Φ +Γ⎧
⎨ = +⎩

 

 
The Kalman Filter is a recursive estimator. This means that only the estimated state from 
the previous time step and the current measurement are needed to compute the estimate of 
the current state. In contrast to batch estimation techniques, no history of observations 
and/or estimates is required. The state of the filter is represented by two variables: 
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• ˆ( | )x n n , the state estimate at time n  given observations up to and including time n . 
• ( | )P n n , the error covariance matrix (a measure of the estimated accuracy) at time n                     

given observations up to and including time n . 
 
The Kalman Filter has two distinct phases: prediction and update. The prediction phase 
uses the state estimate from the previous step to produce an estimate of the state at the 
current step. In the update phase, measurement information at the current time is used to 
refine this prediction to arrive at a new, (hopefully) more accurate state estimate. 
 
We will next present the equations of the Kalman Filter algorithm. We consider both the 
standard form and the information form. 
 
Consider the following state space model: 
 

( 1) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x n n x n n w n
y n H n x n v n

+ = Φ +Γ⎧
⎨ = +⎩

 

 
(0)x  is the initial state of the system with the following first and second order statistics: 

[ ] [ ] ( )( ) 0(0) (0) cov (0) (0) (0) (0) (0) (0)T
x x x xE x m x E x m x m P P⎡ ⎤= = − − = =⎣ ⎦ . 

{ }( )w n  is the process noise modeled as a white Gaussian noise with zero mean and 
covariance ( ) 0Q n ≥ . 
{ }( )v n  is the measurement noise modeled as a white Gaussian noise with zero mean and 
covariance ( ) 0R n > . 
{ } { }( ) , ( ) , (0)w n v n x  are uncorrelated, namely: 
 

( ) ( ) (0) ( ) (0) ( ) 0 ,T T TE v n w n E x v m E x w m m n⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = ∀⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
 
The state estimation cycle is divided into two steps ( n  is the discrete time index): 
 

• Time update (prediction): 
 

ˆ ˆ( 1| ) ( ) ( | )
( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )T T

x n n n x n n
P n n n P n n n n Q n n

+ = Φ⎧
⎨

+ = Φ Φ +Γ Γ⎩
 

 
• Measurement update: 
 

[ ]

1

ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1) ( 1) ( 1| )

( 1) ( 1| ) ( 1) ( 1) ( 1| ) ( 1) ( 1)

( 1| 1) ( 1) ( 1) ( 1| )

T T

x n n x n n K n y n H n x n n

K n P n k H n H n P n k H n R n

P n n I K n H n P n n

−

⎧ ⎡ ⎤+ + = + + + + − + +⎣ ⎦⎪
⎪ ⎡ ⎤+ = + + + + + + +⎨ ⎣ ⎦
⎪

+ + = − + + +⎪⎩

 

 
The initialization is as follows: 
 

ˆ(0 | 0) (0) ; (0 | 0) (0)x xx m P P= =  
As we will see later, in our case, we have: 
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( ) ( )
( ) ( )

;
n n I

Q n Q R n R
Γ = Φ =

= =
 

 
Next, we will review an additional form of the Kalman Filter, called the information form. 
 
 
2.3 Kalman Filter - Information Form 
 
The information form of the Kalman Filter differs in the fact that the covariance prediction 
and update equations are different. Since the prediction covariance equation is quite 
complex, another option is to use the regular form of the KF with the modification in the 
update covariance equation only. Under the same assumptions as those stated previously, 
the Kalman Filter equations are given by the same equations as before except for the 
following update inverse covariance equation: 
 

                1 1 1( 1| 1) ( 1| ) ( 1) ( 1) ( 1)TP n n P n n H n R n H n− − −+ + = + + + + +               (2.3.1) 
 
There exists an additional equation for the Kalman gain ( 1)K n +  (see for example in [36]): 
 

                    1( 1) ( 1| 1) ( 1) ( 1)TK n P n n H n R n−+ = + + + +                                      (2.3.2) 
 
For more details on the Kalman Filter, one can refer to the original article of R. E. Kalman 
[18], or to any book on optimal filtering (e.g., [27, 13]). 
 
 
2.4 Facts from Graph Theory 
 
A common method of obtaining estimates of clock offsets between directly communicating 
pairs of nodes is based on the exchange of time-stamped packets. Viewing the network as a 
graph, this corresponds to finding estimates of clock offsets across the edges of the graph. 
These quantities must then be processed by the network to obtain estimates of the clock 
offsets at each node with respect to the reference clock.  
 
Hence it is worthwhile to model the network as a directed graph ( ),G V ε=  with V = Ν�  

nodes { }1 2, ,..., NΛ Λ Λ �  and mε =  edges. Each edge represents the ability to transmit and 
receive packets between the corresponding pair of nodes. We will focus on an underlying 
network which consists of the entities that participate in the clock synchronization protocol. 
Let Ν  denote this set of nodes and let Ν  be its cardinality (the number of nodes). The 
edge connecting nodes iΛ  and jΛ  will be denoted by ije  and the collection of all the edges 
by ε . We will assume throughout this thesis that all the edges are bidirectional, namely 
that if ije ε∈ , then jie ε∈ . Let us denote by iΝ  the set of nodes which are the neighbors of 

iΛ , i.e., one edge away from node iΛ , and let iΝ  be the number of such neighbors. For 
simplicity of notation, we exclude the existence of multiple edges between the same pair of 
nodes and also the edges from a node to itself. We consider a model in which only one out 
of the Ν  nodes is a "reference time node" (the generalization for several reference time 
nodes is straightforward). Without loss of generality, we may assume that the reference 
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time node is 1Λ . Our objective is to construct the optimal offset estimate for every node 

{ }\ 1u V∈ . 
 
The dimensions of the incidence matrix A are N (nodes number) ×  m  (edges number). In 
the row corresponding to node iΛ , we have an entry +1 for all edges of the form (i,*), an 
entry -1 for all edges of the form (*,i), and 0 otherwise. 
 
For a connected graph, the rank of the incidence matrix is 1N − , or one less than the 
number of nodes. Thus, deleting any row from the incidence matrix yields a full row rank 
matrix, which is called the reduced incidence matrix. Here, we will work with the 
( )1N m− ×  matrix obtained by deleting the row corresponding to the reference node 1Λ . 
For notational convenience, we use A  to henceforth denote the reduced incidence matrix.  
 
We present a simple illustrative example, similar to [41]. Consider the network in Figure 
2.3. Here, for the construction of the matrix A , one can randomly choose the direction of 
the edges without affecting the results. In other words, the links are bidirectional but each 
link has a single entry in A . 
 

 
 

Figure 2.3. Example of a 5-node network. 
 
 

The corresponding incidence matrix is given by: 
 
 

 
 
 
 
 
 
 

 
 

If node number 1 is the reference, we will delete the first line of the above matrix in order 
to obtain the reduced incidence matrix A . We will use this matrix to obtain the state space 
model of the system in Section 4.4.  

1 

4 

2

3

5 
Loop 1 Loop 2 

( ) ( ) ( ) ( ) ( ) ( )1,2 2,3 3,4 1,4 2,5 3,5
1 1 0 0 1 0 0
2 1 1 0 0 1 0
3 0 1 1 0 0 1
4 0 0 1 1 0 0
5 0 0 0 0 1 1

A

+ +
− + +

=
− + +

− −
− −
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2.5 Matrix Analysis 
 
In the convergence analysis (Section 6), we will show that our decentralized algorithm can 
be written in the form: ( 1) ( )k kMτ τ+ = . This is a standard iteration equation. Further, a 
sufficient and necessary condition to obtain convergence to zero from any initial guess is 
one where the spectral radius (the biggest eigen-value in absolute value) of the matrix M  
is strictly smaller than one: 
 

( ) 1Mρ <  
 
In Non-Negative Matrix Theory (see the chapter on Gersgorin discs in [16]), it is proven 
that for a non-negative square matrix A , namely: 
 

0 , 1,2,..,ij ijA a a i j n⎡ ⎤= ≥ =⎣ ⎦  
We have: 

 

1 1
( ) min max , max

n n

ij iji jj i
A a aρ

= =

⎧ ⎫
≤ ⎨ ⎬

⎩ ⎭
∑ ∑  

In particular: 
 

                                          
1

( ) max
n

iji j
A aρ

=

≤ ∑                                             (2.5.1) 

 
Therefore, if all the row sums of the matrix A  are smaller or equal to 1, and all the entries 
of A  are non-negative, then ( ) 1Aρ ≤  (this is only a sufficient condition). 
 
In addition, the following sharper result can be obtained. 
 
Proposition 2.5. 
 
Given a non-negative square matrix A  with the following properties: 

a) All the row sums of the matrix A  are smaller or equal to 1. 
b) At least in one row this sum is strictly smaller than 1. 
c) The matrix A  is irreducible (i.e. we can move from any node to any other node 

through a direct trajectory). 
Then: 

( ) 1Aρ <  
 
The proof of this sufficient condition is well known (see e.g., [16], chapter 7). 
 
In our network model, the condition that the matrix M  is irreducible requires the 
assumption that the graph that corresponds to the network is connected, namely that there 
exists a path between any pair of nodes in the network. Some additional important 
assumptions are that each node has at least one neighbor (not including the reference node) 
and that links are bidirectional (symmetric). 
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3. Related Work  
 
 
In this section, we present a review of the papers that are most closely related to our work. 
First, we review the different accepted time synchronization protocols and then we consider 
a short literature survey on decentralized estimation (essentially on decentralized Kalman 
filtering), including consensus algorithms. 
 
 
3.1 Time Synchronization Protocols 
 
An early landmark paper in computer clock synchronization is Lamport's work [23] that 
elucidates the importance of virtual clocks in systems where causality is more important 
than absolute time. A distributed algorithm is proposed for synchronizing a system of 
logical clocks that can be used to totally order the events. Although this work focused on 
giving to the events a total order rather than qualifying the time difference between them, it 
has emerged as an important influence in sensor networks.  
 
There is a large literature written on the art of synchronizing clocks in traditional 
networked systems. As we previously mentioned, the Network Time Protocol (NTP) is the 
widely accepted standard for synchronizing clocks over the Internet [28-30] and is notable 
for being scalable, self-configuring and robust to failures, in addition to being thoroughly 
tested. Nevertheless, this approach is vulnerable to sending delays and asymmetries in 
paths, and does not take advantage of the special properties of sensornet broadcasts. NTP is 
a client/server protocol used for synchronizing the internal clock of computers in standard 
networks and suggests a complete scheme for synchronizing the clocks with respect to the 
Coordinated Universal Time (UTC). NTP recommends data filtering and peer selection 
algorithms in order to reduce the offset which is the time difference between the clock and 
the UTC. Since NTP is used as a comparison benchmark in our simulation results, we 
briefly describe the procedure and more details can be found in [28-30].   
 
According to NTP, each node iΛ  computes the round trip delay for each probe packet that 
traverses the edge ije  based on the four timing fields recorded on the packet. Each node is 
sending probe packets to each one of its neighbors. Time is stamped on packet mk  by the 
sender iΛ  upon transmission ( ( )i mT k ), and by the receiver jΛ  upon reception of the packet 
( ( )j mR k ). Then, the node jΛ  retransmits the packet back to the source ( ( )j mT k ) and the 
source stamps its local time when receiving back the packet ( ( )i mR k ). The computed round 
trip delay for packet mk  is given by:  
 

( ) ( )( ) ( ) ( ) ( ) ( )ij m j m i m i m j mRTT k R k T k R k T k= − + − . 
 
The clock offset of node iΛ  relative to node jΛ 's clock is estimated as: 
 

( ) ( )1 ( ) ( ) ( ) ( )
2 j m i m i m j mR k T k R k T k⎡ ⎤− − −⎣ ⎦ . 

 
NTP suggests the "minimum filter", which selects from the n  most recent samples the 
sample with the lowest round trip delay. Each node estimates its relative clock offset with 
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respect to a selected group between its neighbors, where neighbors which are hop count 
closer to the reference node are preferred, giving NTP its hierarchical nature. Finally, the 
offsets are averaged. 
 
In 2003, the Classless Time Protocol (CTP) was proposed [14]. This protocol reduces the 
offset errors using a novel non-hierarchical approach that employs a peer to peer protocol 
in which each node sends and receives probe packets only to and from its neighbors. The 
approach exploits convex optimization theory in order to evaluate the impact of each clock 
offset on the overall objective function. In addition, the authors suggest the separation of 
the round-trip delays to one way components in order to obtain a filtered measurement and 
to increase the accuracy of the synchronization procedure. It was shown that CTP 
substantially outperforms hierarchical schemes based on NTP in terms of clock accuracy 
while preserving similar protocol complexity. 
 
Solis, Borkar and Kumar [41, 12] have proposed an approach based on the concept of 
Least-Squares method, to smooth the set of estimates obtained by a packet exchange 
procedure. The accuracy of clock synchronization was improved by exploiting global 
network-wide constraints and the use of a completely asynchronous distributed algorithm 
employing only local broadcasts. The problem that results can be formulated as a 
distributed parameter estimation problem. They provide an alternate proof of the 
connection between the LS optimal set of estimates and electrical resistances in an 
equivalent resistive network. In addition, they analyze the convergence properties of the 
distributed synchronization algorithm they proposed. In fact, one can easily show that the 
CTP algorithm and the LS method are equivalent; the mathematical procedure is similar 
but written in two different ways. 
 
In the scheme Reference-Broadcast Synchronization (RBS) described in [9, 10], an 
intermediate node transmits a reference packet and the other nodes record the time at which 
they receive it. They then exchange this recorded time to find the differences between their 
clocks. The fundamental property of this scheme is that it synchronizes a set of receivers 
with one another, as opposed to traditional protocols in which senders synchronize with 
receivers. Hence, RBS is quite accurate because it is completely insensitive to transmission 
delays and asymmetries. The most significant limitation of RBS is that it requires a 
network with a physical broadcast channel. It cannot be used, for example, in networks that 
employ point-to-point links as considered in this thesis. In [9], the authors argue that the 
time synchronization schemes, like NTP were developed for traditional networks (e.g., the 
Internet) and are not very efficient in Wireless Sensor Networks (WSNs) applications, 
where many assumptions have changed. Then, they design the requirements and the 
principles for WSN time synchronization.   
 
More recently, in [26], the Flooding Time Synchronization Protocol (FTSP) is proposed; it 
uses MAC layer time stamping capabilities to eliminate several sources of error on the time 
synchronization process, and linear regression to compensate for the possible drifts in the 
clocks. A leader is elected through message exchanges and the global time is passed from 
the root to all the other nodes via flooding.  
 
Karp, Elson, Estrin and Shenker [21] have considered the problem of minimum variance 
estimation based on global information, particularly for the RBS scheme of [9], and have 
shown that it satisfies the transitive property of offsets, i.e., the sum of optimal estimate of 
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the offsets between the node pairs ( ),i jΛ Λ  and ( ),j kΛ Λ  is the optimal estimate of the 

offset between the node pair ( ),i kΛ Λ . They have also analyzed the optimal error variance 
and related it to the resistance distance in the corresponding graph. Moreover, they show 
that the optimal pairwise synchronization and the globally consistent synchronization have 
the same technical answer and they treat clock skew and clock offset on different time 
scales. 
 
There are several proposals for synchronizing clocks within a single broadcast domain 
(e.g., [31]). These methods exploit the special properties of broadcast media and achieve 
high precision. However, nodes that do not lie within the same broadcast domain cannot be 
synchronized. Since our focus is on global clock synchronization, these local approaches 
are not an efficient solution to our problem. 
 
The most straightforward approach to synchronize clocks is to use the Global Positioning 
System (GPS), a constellation of satellites operated by the U.S. Department of Defense 
[19]. GPS provides accurate time synchronization relative to UTC [25], but its use is scarce 
in computer networks. GPS requires sensornet nodes to be equipped with special receivers, 
clear sky view and continuous reception of multiple satellites which is hard to accomplish 
inside buildings, underwater or beneath dense foliage. In addition, it may be too large, 
costly or high-power to a small and cheap sensor node. 
 
Another quite different approach is that taken in [37], which does not directly synchronize 
clocks but instead refers to events in terms of their age. When exchanging these 
timestamps, they are updated to reflect the passage of time. 
 
The last topic we present is related to time synchronization procedures using Kalman 
filtering. Two different schemes are considered. In [46], a time synchronization model on 
the Internet using Kalman filtering is proposed. The authors argue that the algorithm is 
more stable, more accurate and less sensitive to packet loss than the Simple Network Time 
Protocol (SNTP). SNTP [48] is a simplified version of NTP. The work in [20] is a heuristic 
approach based on adaptive Kalman filtering. The method is focused on a stochastic model 
of the network, which employs a KF and redundancy paths to achieve both an improved 
time and rate synchronization. The tests considered show an improvement of 
approximately two orders of magnitude in comparison to NTP. The schemes in [46, 20] are 
strongly related to our work but a number of essential differences exists. The problem 
considered in these works assumes that the network is composed of only two distinct 
computers and that just one set of measurements is available. Moreover, the proposed 
algorithms are totally centralized. On the other hand, in this research we are interested in 
large-scale systems with numerous nodes and the synchronization procedure has to be 
decentralized. Moreover, we will investigate the multiple measurement case through a 
recursive algorithm. 
 
In this review, we evoke only the main algorithms to synchronize clocks in computer 
networks, or more precisely to estimate the offsets at each node with respect to the 
universal time. We did not present the accepted techniques for adjusting the clocks 
physically, because it is a solved problem and beyond the scope of this research. 
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3.2 Decentralized Estimation 
 
In this part, we review several articles on decentralized (and distributed) estimation and 
more precisely on Decentralized Kalman Filter (DKF) algorithms. We investigate only 
dynamical state stochastic estimation and not the various literature on decentralized 
estimation of a deterministic unknown parameter corrupted by a noise. 
 
Centralized implementation of the Kalman Filter [18], although optimal, does not provide 
robustness and scalability when it comes to complex large-scale dynamical systems with 
their measurements distributed on a large geographical region. This is the reason why 
several distributed estimation algorithms using the KF framework were proposed. Much of 
the existing research on distributed Kalman Filters focuses on sensor networks monitoring 
low dimensional systems [36]. This scenario addresses the problem on how to efficiently 
incorporate the distributed observations, also referred to in the literature as 'data fusion' 
[15].  
 
Among the first works on DKF, the work in [15]  assumes the presence of a fusion center 
or a central coordinator for combining the information from the various local processors. 
Then, the algorithm in [36] does not require any form of central processing facility. Each 
sensing node implements its own local KF to arrive at a partial decision which it then 
broadcasts to every other node. This algorithm leads to the same optimal centralized KF 
solution and is highly resilient to loss of one or more sensing nodes. The main drawback of 
this method is that a fully connected network is considered, i.e., each node must talk to 
every other node and the design of a convenient communication topology is problematic. In 
[39], the authors present some results on the problem of optimally combining static 
estimates from different sensors locations when the measurement noise processes are 
correlated. The works of [7, 44] extend the previous existing theory to the entire class of 
Luenberger observers. In [7], a necessary and sufficient condition for combining local KF 
estimates into a global KF estimate is proved. It is shown that decentralized estimators 
work by combining local estimates through weighting matrices. The low-power filtering 
scheme described in [44] implements Luenberger observers. By allowing the local stations 
to communicate at the rate that the estimates are desired, instead of the faster measurement 
rate, it saves power while maintaining robustness and optimality. All the previous solutions 
require that the local filters propagate a state vector that is the size of the global state and 
the knowledge of the sensor network topology. 
 
The work in [4] explains the difference between decentralized and distibuted estimation. A 
decentralized network has no central facilities whereas a distributed network uses reduced 
order nodes operating in parallel to process local observations. Combining distribution and 
decentralization gives a new more efficient result and reduces the communication 
requirements. In [38], the DKF is applied to solve a common robotic application: 
cooperative localization. A new approach is presented where the centralized KF is 
decomposed in M modified Kalman filters each running on a separate robot. Moreover, the 
cross correlation terms between the different agents are computed in a distributed manner 
as well. A simulation example is considered where the authors show that an improvement 
in the localization accuracy is provided.  
 
In [3], the authors consider the problem of estimating vector valued variables from noisy 
relative measurements in a decentralized fashion. The time synchronization and the sensor 
localization are obtained as special cases of this more general framework. Two different 
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algorithms are proposed to compute the optimal estimate in a distributed and iterative 
manner. The case of temporary communication failures is treated and the algorithms are 
based on the Jacobi iterative method. The latter and the works performed in [14, 41, 12] 
formed the basis of the research presented in this thesis. 
 
More recently, several methods for sparsely connected large-scale networks were 
considered. For example, in [17], a computationally efficient, sub-optimal distributed KF is 
used to estimate a sparsely connected, large-scale dynamical system monitored by a 
network of N  sensors. Local Kalman Filters of much lower dimension than the global state 
are implemented at each sensor node. Shared observations and estimates across different 
local models are fused using bipartite fusion graphs and consensus averaging algorithms. 
The advantage of this scheme is that a low order KF is implemented at each sensor and the 
structure of the centralized error covariances is conserved. In other words, the proposed 
solution contrasts with existing methods for sensor networks that either replicate a KF 
(whose dimension is equal to the global state vector) at each sensor node or reduce the 
model dimension at the expense of decoupling the field dynamics into lower-dimensional 
models (non-optimal). 
 
In non-linear and non-Gaussian scenarios, the DKF becomes inapplicable. Extended 
Kalman Filters, grid-based methods and Gaussian-sum filters are possible alternatives, but 
these all have limitations and information exchange is not as simple. The class of sequential 
Monte Carlo methods (or particle filtering) is attractive because of its power and flexibility. 
In [8], distributed implementations of particle filters are proposed. Since our domain of 
interest here is focused on DKF, we are not providing more details on these methods. The 
paper in [11] investigates several estimator architectures for determining the fleet state in 
the formation flying problem. This latter is non-linear and includes correlated states. The 
analysis shows that the proposed decentralized reduced order filters (like Schmidt-Kalman 
Filter) provide near optimal estimation results without excessive communication or 
computation and are preferable when compared to centralized and full order methods. The 
work in [32] presents an efficient method of multi-sensor estimation for systems with 
asynchronous observations. The architecture proposed is totally decentralized and each 
individual loop does not need to know about the other loops in the system. The resulting 
estimates are equivalent to the optimal centralized filter when the loops incorporate all the 
information available in the system. 
 
Recently, Alriksson et al. [2] addresses the problem of distributed Kalman filtering, with 
focus on limiting the required communication bandwidth. The authors refer to a scenario 
where all the nodes desire an estimate of the full state of the observed system, there is no 
central utility and the communication takes place only between neighbors. The nodes 
merge their estimates by a weighted average of the neighbouring estimates. The weights 
are optimized off-line to yield a small estimation error covariance. This problem was 
generalized to time varying states in [42, 34] using consensus filters.  
 
Next, we present a short literature survey on consensus algorithms. 
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3.3 Consensus Algorithms 
 
We restrict the review to methods that are associated with data fusion in networks. 
Consensus problems are related to situations in which all the network members are required 
to achieve a common output value, using only local interactions and without access to a 
global coordinator. Consensus filters are distributed algorithms that allow calculation of 
average-consensus of time-varying signals. Two fundamental papers on consensus 
algorithms are given in [45, 35].  
 
Xiao and Boyd [45] consider the problem of finding a linear iteration that yields distributed 
averaging consensus over a network, i.e., that asymptotically computes the average of the 
initial values given at the nodes. This article is the basis of various works in this field. In 
[35], the authors provide a theoretical framework for analysis of consensus algorithms for 
multi-agent networked systems. This is a general overview that investigates static and 
dynamic topologies as well as the continuous and discrete time cases. In addition, it 
provides diverse applications that are related to consensus problems and presents the 
simulation results for three different applications. 
 
The work in [42] describes a dynamic consensus in order to obtain a distributed Kalman 
Filter for a network of agents. The algorithm consists of two loops: an outer loop for the 
KF and an inner loop for the weighted average consensus updating. Dynamic consensus 
allows to track in time different quantities and then to use them for distributed estimation. 
Olfati-Saber [34] solves the problem of distributed Kalman filtering for sensor networks by 
reducing it to two separate dynamic consensus problems in terms of weighted 
measurements and inverse covariance matrices. These problems were solved in a 
distributed way using a low-pass consensus filter for the fusion of the measurements and a 
band-pass consensus filter for the fusion of the inverse covariance matrices. It leads to an 
approximate distributed Kalman filtering algorithm that converges to the centralized 
optimal solution. Recently, in [6] the authors considered the problem of estimating the state 
of a scalar linear system from distributed noisy measurements. The estimation is performed 
via a two stage procedure which consists in (i) a standard decentralized Kalman-like 
measurement update and (ii) estimate fusion using consensus strategies. In order to attain 
this purpose two design parameters; the Kalman gain and the consensus matrix are 
designed by optimizing the steady state prediction error. 
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4. Model and Problem Definitions 
 
 
4.1 Clock Model 
 
We suppose that the clock drift at a node follows the linear form: ( )i i iT t tα τ= + , where iα  
and iτ  are the skew (rate deviation) and the offset parameters respectively, t  is the real 
time (or the reference time) and ( )iT t  is the local time (at node iΛ ). The above model is 
known as the two parameters linear model and is considered as a common way to model a 
clock in this context (see [41] and the references therein).  
 
The time synchronization problem relates to the task of setting the clocks in the network so 
that they all agree upon a particular epoch with respect to a Coordinated Universal Time 
(UTC). Without loss of generality, one can assume that node 1Λ  is synchronized to the 
reference time: 
 

1 0τ =  and 1 1α =  
 
In our model, the clock synchronization relates to two different aspects: the rate 
synchronization (identical iα ) and the time offset synchronization (identical iτ ). For 
simplicity, we initially assume that all the clocks run at the same speed ( 1, ,i j i jα α= = ∀ ) 
and then we will relax this assumption in Section 9. 
 
 
4.2 The Measurements 
 
Each node is sending probe packets to each one of its neighbors. Figure 4.1 depicts the 
situation for the pair of neighboring nodes iΛ  and jΛ . Time is stamped on packet mk  by 
the sender iΛ  upon transmission ( ( )i mT k ) and by the receiver jΛ  upon reception of the 
packet ( ( )j mR k ). Then, the node jΛ  is retransmitting the packet back to the source 
( ( )j mT k ) and the source stamps its local time when receiving the packet back ( ( )i mR k ). 
 

 
 

Figure 4.1. Communication between two neighboring nodes. 
 
We intend to estimate the clock offsets by using these measurements data. Let us denote by 

( )ij mT kΔ  the time difference between the transmission of probe packet mk  by node iΛ , 
according to iΛ  clock, and the receiving time of the packet at node jΛ  according to its 
own clock. This implies:  
 
                                 ( ) ( ) ( ) ( )ij m j m i m ij m i j ijT k R k T k x k τ τ εΔ = − = − + + �                          (4.2.1) 

iΛ jΛ
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Here, ( )ij mx k  is the propagation delay and ijε�  is an additive unknown noise that represents 
the random queuing delay and the other unknown influences. In other words, ( )ij mT kΔ  is 
equal to the one-way link delay experienced by probe packet mk  when traveling from node 

iΛ  to jΛ  ( ( )ij mx k ), plus the difference between the two clock offsets.  
 
Assuming that ( ) ( )ij m ji mx k x k=  (the propagation delay is symmetric) we notice that: 

 

( )1
2 ij ji j i ijT T τ τ εΔ −Δ = − +  

where:                                                  ( )1
2ij ij jiε ε ε= −� �  

 
 
4.3 Problem Formulation 
 
Our objective is to synchronize all the clocks in the network with the reference time. This is 
equivalent to estimate (using the Kalman Filter framework) iα  and iτ  at each network 
node. The algorithm is required to be decentralized and to converge to the optimal 
centralized solution. We initially assume that the offsets are time-invariant and that all the 
clocks run at the same speed (there is no skew), namely: 
 

1, ,i j i jα α= = ∀ . 
 
These assumptions are reasonable if the clock synchronization procedure is applied at small 
enough time intervals. In the extensions section, we treat the case in which the previous 
assumptions are relaxed. 
 
The first step is to find the state space model applied to our problem. Then, we will write 
the Kalman Filter equations and develop the results in a centralized form. This result will 
represent the optimal clock offset vector in the MMSE sense. Later, we proceed to develop 
a decentralized implementation of the preceding filtering algorithm. The last steps include 
extending our algorithm to the case of different clock skews and to treat several interesting 
extensions. 
 
 
4.4 State Space Model 
 
Let us define the state vector by the following column vector: 
 

( )1 2( ) 0, ,... T
Nx n τ τ τ=�  

 
Here, iτ  is the offset of the node iΛ . In this part, the offsets are assumed to be time 
invariant and we consider that all the clocks run exactly at the same speed (i.e., 1i jα α= =  
there is no skew). 
As we explained before, the measurements data for each pair of neighbor nodes is given 
by:  
  

                                   ( )1ˆ
2ij ij ij ji j i ijy O T T τ τ ε= Δ −Δ = − +�                                (4.4.1) 
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Remark: ˆ
ijO  is the conventional notation for this category of measurements. 

Equation (7) states that the relative measurement ijy  for each pair of neighboring nodes is 
given by the difference between the offsets plus an additive noise ijε . 
 
According to the previous notation (see Section 2.4), the measurement equation of the state 
space model is related to the reduced incidence matrix A . Consequently, the state space 
model is given by: 
 

                                       
( 1) ( ) ( )
( ) ( ) ( )T

x n x n w n
y n A x n v n

+ = +⎧
⎨

= +⎩
                                         (4.4.2) 

 
Here, ( )w n  and ( )v n  are the system and measurement noises respectively. We assume that 
the offsets are time invariant, so we will neglect the process noise ( )w n  for the time being. 
In Section 8.2, we will consider the more general case where ( )w n  is incorporated back. 

( )v n  is the measurement noise and is assumed to be in accordance with the Kalman Filter 
assumptions (see Section 2.2). For simplicity, in all the state space representations it is 
assumed that the sampling time is uniform and equal to one. 
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5. Centralized and Decentralized Algorithms:  
    Single Measurement Update 
 
 
In this section, we first present the Kalman Filter equations applied to our problem using 
two different approaches. Then, we develop a decentralized version of this filtering 
algorithm, and we will prove its convergence to the optimal centralized solution in the next 
section. By using the KF framework, we obtain the existing results from the literature as 
special cases and extend them to a more general framework. We consider separately the 
cases where the initial inverse covariance matrix is diagonal and non-diagonal. We assume 
here that only one set of measurements is available. We will extend our results to the case 
of multiple measurement sets in Section 7 by the use of a recursive decentralized algorithm. 
 
 
5.1 Kalman Filter Equations 
 
Let us present the KF equations applied to our case. As we previously stated, the state 
vector is defined by: 
 

( )1 2( ) 0, ,... T
Nx n τ τ τ=�  

 
Here, iτ  is the offset of the node iΛ . In this part, the offsets are assumed to be time 
invariant and we consider that all the clocks run exactly at the same speed (i.e., 1i jα α= = , 
there is no skew). As we have previously explained, the state space model is given by: 
 

( 1) ( ) ( )
( ) ( ) ( )T

x n x n w n
y n A x n v n

+ = +⎧
⎨

= +⎩
 

 
In the previous notation, we have: , TI H AΦ = = . The Kalman Filter equations are 
therefore: 
 
Time update (prediction): 

 
ˆ ˆ( 1| ) ( | )

( 1| ) ( | )
x n n x n n
P n n P n n Q

+ =⎧
⎨ + = +⎩

 

 
Measurement update: 
 

1

ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1) ( 1| )

( 1) ( 1| ) ( 1| )

( 1| 1) ( 1) ( 1| )

T

T

T

x n n x n n K n y n A x n n

K n P n n A A P n n A R

P n n I K n A P n n

−

⎧ ⎡ ⎤+ + = + + + + − +⎣ ⎦⎪
⎪ ⎡ ⎤+ = + + +⎨ ⎣ ⎦
⎪

⎡ ⎤+ + = − + +⎪ ⎣ ⎦⎩

 

 
Let us substitute the time update equation into the measurement update equation: 
 

[ ] ( )

( ) ( ){ }( )

1

1

ˆ ˆ ˆ( 1| 1) ( 1| ) ( | ) ( | ) ( 1) ( 1| )

( 1| 1) ( | ) ( | ) ( | )

T T

T T

x n n x n n P n n Q A A P n n Q A R y n A x n n

P n n I P n n Q A A P n n Q A R A P n n Q

−

−

⎧ ⎡ ⎤⎡ ⎤+ + = + + + + + + − +⎣ ⎦ ⎣ ⎦⎪
⎨

⎡ ⎤+ + = − + + + +⎪ ⎣ ⎦⎩
 



   25

Then, the combined Kalman Filter equation (using the information form) is given by: 
 

( )
11 1 1ˆ ˆ ˆ( 1| 1) ( | ) ( | ) ( 1) ( | )T Tx n n x n n P n n Q AR A AR y n A x n n
−− − −⎡ ⎤ ⎡ ⎤+ + = + + + + −⎣ ⎦⎣ ⎦       (5.1.1) 

 
Next, we will obtain the above equation through the Least-Squares optimization approach. 
Afterwards, we will develop a decentralized version (requiring only local broadcast) of this 
filtering algorithm and in Section 6, we will prove its convergence to the optimal 
centralized solution. 
 
 
5.2 The LS approach 
 
We consider the single measurement update case (only one set of measurements is 
available) and later on, we will extend the algorithms to the multiple measurement case by 
proposing a recursive algorithm (Section 7). We start with the pair of parameters 0 0,x P  and 
our goal is to find ˆ optτ  by using the Kalman Filter equations in a centralized fashion. 0x  
and 0P  represent the a-priori knowledge and we want to include this information together 
with the measurements to find an optimal estimate. This is important, because this initial 
knowledge can improve the quality of the estimation.  
 
The KF solution is equivalent to the minimum of the following expression (see the proof in 
Appendix A): 
 

 min1 1
0 0 0 ˆ( ) ( ) ( ) ( ) (0)T T T TJ x x P x x y A x R y A x x− −= − − + − − ⎯⎯→            (5.2.1) 

 
The first term of the objective function is related to the initial knowledge whereas the 
second term is associated with the single set of measurements and its corresponding 
covariance matrix. 
 
It is preferable to solve the above deterministic LS problem than to solve the KF equations 
directly. The main reason is that the KF solution gives only a centralized algorithm and it is 
difficult to decentralize the procedure, as we will see in the next section. 
 
We want to find the vector ˆoptx  that minimizes the above objective  function. Hence, we 
have to compute the gradient with respect to the vector x  and set it to zero: 
 

( ) ( )
( ) ( )

1 1 1 1
0 0 0

11 1 1 1
0 0 0

0

ˆ (5.2.2)

T
x

T
opt

J AR A P x AR y P x

x AR A P AR y P x

− − − −

−− − − −

∇ = + − − =

= + +
 

 
ˆoptx  represents the optimal vector of offsets. One can note that the above equation is 

equivalent to the combined Kalman Filter equation that we obtained previously. In 
addition, the posterior error covariance matrix is as follows: 
 

                ( )( ) ( ) 11 1
0ˆ ˆ T TE x x x x AR A P

−− −⎡ ⎤− − = +⎣ ⎦                              (5.2.3) 
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In the statistical WLS case, we substitute 1
0 0P − =  in the objective function. The centralized 

optimal solution is known as the BLUE (Best Linear Unbiased Estimator) and is given by: 
 

( ) ( )11 1ˆ Tx AR A AR y
−− −=  

 
In addition, the error covariance matrix is as follows: 
 

( )( ) ( ) 11ˆ ˆ T TE x x x x AR A
−−⎡ ⎤− − =⎣ ⎦  

 
In order to compute the optimal estimate directly (in a centralized manner), one seems to 
need all the measurements associated with their error covariances and the topology of the 
entire network. For networks with a large number of measurements, doing so will be 
prohibitively expensive in terms of energy consumption, bandwidth and communication 
time. Hence, it is more preferable to compute the estimates in a decentralized fashion, 
employing only local broadcasts. By decentralized we mean that at every step, each node 
computes its own estimate and the data required are obtained through communication with 
its one-hop neighbors. 
 
 
5.3 Decentralized Algorithm: Optimality Equations 
 
Our purpose is to develop a decentralized algorithm that estimates the offsets of each node 
over the network. In this section, we consider only the single measurement case. The 
multiple measurement scenario will be considered later in Section 7. As in the previous 
section, we start with the parameters 0 0,x P  and our goal is to find ˆ optτ  by using the 
Kalman Filter in a decentralized fashion. In other words, we are looking for the minimizing 
solution ( )ˆ 0 | 0x  of the following objective function: 
 

1 1
0 0 0( ) ( ) ( ) ( )T T T TJ x x P x x y A x R y A x− −= − − + − −  

 
 
a) The Basic LS Algorithm 
 
We first demonstrate our solution approach for the simplest case where only the second 
term is present i.e., 1

0 0P − =  and all the measurements are equally weighted ( 1R R I−= = ). 
This corresponds to the Least-Squares solution presented in Section 2.1. 
 
In this case, the objective function is given by: 
 

( )2

,

ˆ( ) ( )

i

T T T
ji i j

i j
j N

J y A x y A x O τ τ
∈

= − − = − +∑  

Differentiating J  with respect to each one of the coordinates iτ  leads to: 
 

( ) ( ) ( )ˆ ˆ2 2 1 0
i i i

T
i ji i j i ji ji

j N j N j Ni

J AA x A y O Oτ τ τ τ
τ ∈ ∈ ∈

⎡ ⎤∂
= − = − − + = − − ⋅ + + =⎢ ⎥∂ ⎣ ⎦

∑ ∑ ∑  
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Let us substitute the following relations: 
 

( )
ˆ

i

i

T
i i ji

j N

i ji
j N

AA x N

A y O

τ τ
∈

∈

⎧ = −
⎪
⎨

=⎪
⎩

∑

∑
 

 

( )ˆ 0
i

i i ji j
j Ni

J N Oτ τ
τ ∈

∂
= − + =

∂ ∑  

From this, we get:                        

                                        ( )1 ˆ
i

i ji j
j Ni

O
N

τ τ
∈

= +∑                                            (5.3.1) 

 
The above equation must be satisfied by the optimal solution of the offset estimation 
problem. While this is a set of linear equations, a direct solution cannot be carried out in a 
decentralized manner. Instead, we will implement a decentralized iterative algorithm and 
show its convergence to the optimal centralized solution. This algorithm follows the Jacobi 
iteration that was described in Section 2.1. We will define the iterative procedure for the 
general case at the end of this section and we will prove its convergence in the next 
chapter. The above equation has a very simple interpretation. Each node computes its offset 
estimate as the average of all its neighbors' estimates plus the corresponding relative 
measurements. This procedure is the same as in [41, 12] and one can easily show that this 
is equivalent to the algorithm in [14]. Our objective is to extend the previous result to a 
wider framework and we will obtain this procedure as a special case of a more general 
algorithm. 
 
 
b) Weighted Least-Squares 
 
Now, we incorporate the weighting matrix while assuming that 1R−  is a diagonal and 
positive definite matrix. These assumptions are reasonable since the matrix R  represents 
the covariance of the uncorrelated measurement noise. 
 

( )

( ) ( ) ( )

( )

2
1

,

1 1

1 ˆ( ) ( )

1 ˆ2 0

1 1 ˆ 0

i

i

i i

T T T
ji i j

i j ji
j N

T
ji i ji i

j Ni ji

i ji j
j N j Nji ji

J y A x R y A x O
r

J AR A x AR y O
r

O
r r

τ τ

τ τ
τ

τ τ

−

∈

− −

∈

∈ ∈

= − − = − +

∂
= − = − − + =

∂

⋅ − + =

∑

∑

∑ ∑

 

 
 

From this, we get:                  ( )1 1 ˆ
1

i

i

i ji j
j N ji

j N ji

O
r

r

τ τ
∈

∈

= ⋅ +∑
∑

                                     (5.3.2) 
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We observe that the above formula is quite logical and consistent with our expectations 
namely, each measurement is multiplied by a weight equal to ( ) 1

jir
−

 according to its 

quality. Moreover, we can check easily that if , . ., 1 ,jk jR I i e r j k N= = ∀ ∈  the result 

reduces to the previous LS case. The coefficients ( ) 1

jir
−

 are related to the measurement ˆ
jiO , 

therefore ( ) ( )1 1

ji ijr r
− −
=  since each measurement is issued by a bidirectional exchange 

between the pair of nodes. 
 
Let us rewrite the previous equation in the following way: 
 

( )1 1 1 1ˆ ˆ
i i i i

i ji j ji j
j N j N j N j Nji ji ji ji

O O
r r r r

τ τ τ
∈ ∈ ∈ ∈

⎛ ⎞
⋅ = + = +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑  

 
The above equation can be solved iteratively using a decentralized version of the Jacobi 
method (coordinate-wise), and converges to the optimal centralized solution (see the proof 
in [3]). 
 
Next, we will consider the general framework that includes the initial covariance matrix 0P  
in the objective function. The analysis is divided in two cases: diagonal and non-diagonal 
initial covariance matrix. 
 
 
c) General Framework: Diagonal 0P  
 
Finally, let us solve the original problem where the objective function is composed of two 
distinct terms: 
 

1 1
0 0 0( ) ( ) ( ) ( )T T T TJ x x P x x y A x R y A x− −= − − + − −  

Now, 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1
0 0 0* *

1 1
0 0 0* *

0

1 1 ˆ ˆ 0
i i

T

i i i i
i

i ji j i i
j N j Nji ji

J AR A x AR y P x P x

O P x P x
r r

τ

τ τ

− − − −

− −

∈ ∈

∂
= − + − =

∂

− + + − =∑ ∑
 

 
Here, ( )1

0 *i
P −  is the i-th row of the matrix 1

0P − . 
 
One can make the logical assumption that the initial inverse covariance matrix 1

0P −  is a 
diagonal matrix. Indeed, 1

0P −  represents the initial correlation between the different clocks 
in the network, and there is no reason to have some a-priori knowledge of the cross 
correlation terms but only on the variances of each clock (diagonal terms). 
 
In the case where 1

0P −  is a diagonal matrix, we can obtain: 
  

( )1 1 1 1ˆ (0)
i i

i ji j i
j N j Nji i ji i

O
r p r p

τ τ τ
∈ ∈

⎛ ⎞
+ = + + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑  
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This implies:  
 

                  ( ) (0)1 1 ˆ
1 1 i

i

i
i ji j

j N ji i

j N ji i

O
r p

r p

ττ τ
∈

∈

⎡ ⎤
= ⋅ + +⎢ ⎥
⎛ ⎞ ⎢ ⎥⎣ ⎦+⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑

                             (5.3.3) 

 
In other words, iτ  is given by the weighting average between the adjacent measurements 
and the initial knowledge related to it. We can notice that if the matrix 1

0P −  is identically 
equal to zero, we obtain the same equation as the previous Weighted Least-Squares case 
(5.3.2). 
 
 
d)   General Framework: Non-Diagonal 0P  
 
In general, the initial covariance matrix 0P  need not be a diagonal matrix. As we will 
explain at the end of Section 6, even if the initial covariance matrix 0P  is chosen to be 
diagonal, after the first iteration of the Kalman Filter, the inverse covariance matrix will not 
preserve its diagonal structure. Hence, if we have a-priori knowledge of the system or if 
multiple sets of measurements are available, we must consider the case in which the 
covariance matrix is not assumed to be diagonal. 
 
In this more general case, we get: 
 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
0

1

1 1
0 0

1

1 1 1
0 0 0

1

1 1 ˆ (0) 0

1 1 ˆ (0) (0) 0

1 1 ˆ (0) (

i i

i i

i i

N

i ji j k kik
j N j N ki ji ji

N

i ji j k k i iik ii
j N j N kji ji

k i

N

i ji j i k kii ii ik
j N j N kji ji

k i

J O P
r r

O P P
r r

P O P P
r r

τ τ τ τ
τ

τ τ τ τ τ τ

τ τ τ τ τ

−

∈ ∈ =

− −

∈ ∈ =
≠

− − −

∈ ∈ =
≠

∂
= − + + − =

∂

− + + − + − =

⎛ ⎞
+ = + + − −⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ( )0)

 

 
This implies:     
 

     

( )
( ) ( ) ( ) ( )1 1

0 0
11

0

1 1 ˆ (0) (0)
1 i

i

N

i ji j i k kii ik
j N kji

k i
ii

j N ji

O P P
r

P
r

τ τ τ τ τ− −

∈ =−
≠

∈

⎡ ⎤
⎢ ⎥= + + − −⎢ ⎥⎛ ⎞
⎢ ⎥+ ⎣ ⎦⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑
∑

        (5.3.4) 

 
The main problem in equation (5.3.4) is that each node needs to communicate with all the 
other nodes and not only with its neighbors. Thus, in the case where the matrix 0P  is not 
diagonal, each node has to know the global topology of the entire network. As we 
previously explained, the initial covariance matrix 0P  can be assumed to be diagonal. 
However, after applying the Kalman Filter equations, the covariance matrix ( | )P k k  will 
not be diagonal anymore. 
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In summary, we have presented the optimality equations for the four different cases. In this 
section, we only considered the case with a single set of measurements. In order to 
implement the optimality equations, we propose an iterative decentralized algorithm 
presented next.  
 
 
5.4 Decentralized Algorithm: Iterative Equations 
 
The four decentralized optimality equations we previously presented can be applied to a 
network in order to estimate the clock offsets at each node with respect to the reference 
time. The suggested distributed optimization is iterative. There are many iterative methods 
that can be used [43, 22]. Each iterative algorithm can be implemented either in a 
synchronous manner or in an asynchronous way, see [5] for more details about parallel and 
distributed computations. In the remainder of this work, we focus on the synchronous 
versions of the different algorithms. Convergence can be accelerated by over-relaxation 
techniques which are standard in numerical analysis [5]. In this research thesis, we will not 
be concerned with the number of iterations and rate of convergence, as long as convergence 
is achieved after an infinite number of iterations. 
 
As we previously mentioned, if only one set of measurements is available, we can apply the 
algorithm assuming that 0P  is a diagonal matrix. The reason is that at the beginning, it is 
reasonable to assume that the a-priori covariance matrix is diagonal, i.e., the initial offsets 
are uncorrelated. In Section 7, we will present a recursive version of the previous 
algorithms for the multiple measurement case.  
 
For the single measurement case, the corresponding decentralized synchronous algorithm 
that implements the optimal equation in (5.3.3) is given by (assuming that 0P  is diagonal): 
 

( )( 1) ( ) (0)1 1 ˆˆ ˆ (5.4.1)
1 1 i

i

k k i
i ji j

j N ji i

j N ji i

O
r p

r p

ττ τ+

∈

∈

⎡ ⎤
= ⋅ + +⎢ ⎥
⎛ ⎞ ⎢ ⎥⎣ ⎦+⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑

 

  
Initialization: (0)ˆ (0) 2,3,...i i i Nτ τ= = . Here, 0k ≥  is the iteration number. 
 
In other words, we obtained in (5.3.3) the optimal equation that computes the offsets at 
each node in a decentralized fashion. In order to implement this optimal equation, we 
propose the iterative synchronous algorithm in (5.4.1). The procedure in (5.4.1) requires 
only local broadcasts (communication with neighbors) and as we will show in the next 
section, converges to the optimal centralized solution (after an infinite number of iterations 
in all the nodes). 
 
Let us summarize the procedure for applying the algorithm in (5.4.1). First of all, we 
assume that the nodes detect their neighbors and exchange bilateral packets to obtain their 
relative measurements ˆ

jiO . In addition, they exchange their relative inverse covariances 

( ) 1

jir
−

 and the inverse initial covariance ( ) 1
ip − . The initial offset (0)iτ  are known at each 

node, so the quantity 1 1

ij N ji ir p∈

+∑  can be computed at the beginning of the procedure.  



   31

After the deployment of the network, the reference node initializes its estimate to 0 and 
never changes it. Every other node in the network initializes its estimate to an arbitrary 
value. At the start of iteration 1k + , each node sends its most recent estimate ( )ˆ k

iτ  to its 
neighbors along with the corresponding iteration number. It also gathers the estimates of its 
neighbors, ( )ˆ k

j j iNτ Λ ∈  and then updates its own estimate by applying the above equation 

for ( 1)ˆ k
iτ

+ . The algorithm is summarized in Table 5.1. 
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     Name: Decentralized Synchronous Kalman Filter 
     Assumptions: - The inverse initial covariance matrix 1

0P −  is diagonal. 
      - Only one set of measurements is available. 

Goal: Compute in a decentralized manner the offsets estimates at each network node        
(except for the reference) that approach the optimal centralized estimates. 

     Initialization: ( )
1 0k kτ = ∀ , (0)

îτ  is arbitrary for { }\ 1i V∈ . 
  
After deployment, each node { }\ 1i V∈  performs: 

1. Detect its neighbors iN . 

2. Identify the inverse initial covariance 1

ip
 and the initial offset (0)iτ . 

3. Obtain one set of relative measurements ˆ
jiO  and the associated inverse covariances 

1

jir
 for every ij N∈ . Compute 1 1

ij N ji ir p∈

+∑ .    

  
At every iteration k , each node iΛ  performs: 

4. Send ( )ˆ k
iτ  and k  to its neighbors ij N∈ . Obtain ( )ˆ k

j ij Nτ ∈ . 

5. Compute ( 1)ˆ k
iτ

+  from the previous quantities, using (5.4.1). 
 

 
Table 5.1. Summary of the Decentralized Synchronous Kalman Filter Algorithm. 

 
 
The end of the algorithm is determined according to a termination condition on the absolute 
difference between the estimates at two successive iterations: 
 

                            { }( 1) ( )ˆ ˆ \ 1k k
i i i Nτ τ ε+ − < ∈                            (5.4.2) 

 
In the next section, we will prove the convergence of the previous iterative decentralized 
algorithm to the optimal centralized solution. 
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6. Convergence Analysis 
 
 
Let us recall that the clock synchronization problem considered in this thesis (with a single 
set of measurements)  can be summarized into the following LS optimization problem: 
 

1 1
0 0 0( ) ( ) ( ) ( )T T T TJ x x P x x y A x R y A x− −= − − + − −  

 
In order to find the optimal solution, one has to minimize the above objective function with 
respect to the vector x . In the previous chapter, we divided the analysis into four special 
cases and we obtained the optimal solution for each case. Then, one can implement the 
optimal solution using an iterative decentralized algorithm (equivalent to the Jacobi 
method). We now prove the convergence of the previous decentralized clock 
synchronization algorithms to the optimal centralized solution. We consider the most 
general case where the initial covariance matrix 0P  is not assumed to be a diagonal matrix. 
In this case, the synchronous decentralized algorithm is given by: 
 

( )
( ) ( ) ( ) ( )( 1) ( ) 1 1 ( )

0 0
11

0

1 1 ˆˆ ˆ ˆ(0) (0)
1 i

i

N
k k k

i ji j i m mii im
j N mji

m i
ii

j N ji

O P P
r

P
r

τ τ τ τ τ+ − −

∈ =−
≠

∈

⎡ ⎤
⎢ ⎥= + + − −⎢ ⎥⎛ ⎞
⎢ ⎥+ ⎣ ⎦⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑
∑

     (6.1) 

  
Initialization: (0)ˆ (1) (0) 2,3,...i i i Nτ τ= = . Here, 0k ≥  is the iteration number. 
 
Theorem 6.1  
 
Suppose that: 

a) A single set of measurements is available. 
b) The matrix R  is diagonal and PSD, that is: ( ) 1

0 ,jir i j
−

∞ > ≥ ∀  . 
c) The offsets are time-invariant. 
d) The initial state vector 0x  is  known. 
e) The initial covariance matrix 0P  is known and is an M-matrix, namely: 
 

                                         

( )

( )
( ) ( )

1
0

1
0

1
0

0

0

0

ij
j

ii

ij

P

P

P i j

−

−

−

⎧ ≥
⎪
⎪

≥⎨
⎪

≤ ≠⎪
⎩

∑

                                          (6.2) 

f) The clock adjustment operation in (6.1) is applied synchronously by all nodes 
( 2,3,...i N= ) in all iterations. 

 
Then, the iterated estimators ( )ˆ ( ) 2,3,...k

i n i Nτ =  converge (as k →∞ ) to the optimal 
offsets that minimize the objective function: 
 

1 1
0 0 0( ) ( ) ( ) ( )T T T TJ x x P x x y A x R y A x− −= − − + − −  

 
 namely, the set of offsets that would have been obtained by performing the centralized 
optimal protocol. 
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In the remainder of this section, we present the proof of this result. For the first two special 
cases (Least-Squares and Weighted Least-Squares), the convergence can be proven in the 
following way. The first step consists of proving that the objective function to be 
minimized ( )J τ  is non-increasing in time. The second step is to show that if the clock 
adjustment operation is applied by all nodes in all iterations, the set of estimated offsets 
converges to the set of offsets that minimize the objective function i.e., the set of offsets 
that would have been obtained by performing the centralized protocol (for the LS case, see 
the proof in [14]). For the WLS algorithm the convergence condition is 
that: ( ) 1

0 ,jir i j
−

∞ > ≥ ∀  or in other words, a sufficient condition is that the matrix R  is 
diagonal and PSD (Positive Semi-Definite). 
 
Here, we will use another more convenient technique to prove the convergence of the 
proposed algorithm, in the general case. Let us recall that the general objective function is 
given by: 
 

1 1
0 0 0( ) ( ) ( ) ( )T T T TJ x x P x x y A x R y A x− −= − − + − −  

 
Let us analyze the convergence properties of the general case, where 0P   is not necessarily 
assumed to be a diagonal matrix. We note that the iteration (6.1) cannot be easily 
decentralized when 0P  is not diagonal as we explained in Section 5. However, the iteration 
is still well defined mathematically. 
 
The synchronous iteration can be written in vector form: 
 
                   ( ) ( )1( 1) ( ) 1 ( ) 1 1 1 ( )

0 0 0ˆ ˆ ˆ ˆk k T k kD P AR A AR y P x Pτ τ τ τ
−+ − − − −= − + − − +� �                 (6.3) 
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The optimal solution (equivalent to perform the centralized protocol) is the same as before: 

 
( ) ( )1* 1 1 1 1

0 0 0
TAR A P AR y P xτ

−− − − −= + +  
 

Let us define:                                      ( ) ( ) *ˆk kτ τ τ−�                                                      (6.4) 
 
Then we get: 
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We denote: 
 

                                    ( ) ( )1 1 1
0 0

TM I D P AR A P
− − −− + +� ��                                    (6.4) 

 
We have the equivalent iteration: 
 

( 1) ( )k kMτ τ+ =  
 
Thus, the convergence of the sequence ( )ˆ kτ  to *τ  is equivalent to the convergence of ( )kτ  
to the zero vector, which is determined by the matrix M  given in (6.4). The necessary and 
sufficient condition for this to happen is that the spectral radius of M  is strictly smaller 
than 1. 
 
According to proposition 2.5, the above iteration equation converges to zero if the 
sufficient conditions apply for the matrix iteration M . In other words, the row sums of the 
matrix M  are less or equal than 1 (and at least in one row this sum is strictly smaller than 
1), all the entries of the matrix M  are non-negative and that the matrix M  is irreducible; 
i.e., we can move from any node to any other node by a direct trajectory. In our network 
model, this last condition that the matrix M  is irreducible requires the assumption that the 
graph that corresponds to the network is connected, namely there exists a path between any 
pair of nodes in the network. Some additional important assumptions are that each node has 
at least one neighbor (not including the reference node) and that the links are bidirectional 
(symmetric). 
 
The structure of the matrix M  can be determined by inspection as the following: 
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In order to show that the spectral radius of the iteration matrix is strictly smaller than 1, we 
will require that the matrix M  is both non-negative and sub-stochastic (see Section 2.5). 
Let us find the conditions for the row sums of the matrix M  to be smaller or equal to 1: 
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From this we get: 

( ) ( )

( ) ( )

1 1
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1 1
0 0

1 1
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j i
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This implies:                                  ( )1
0 0

ij
j

P − ≥∑  

 
In other words, we obtained that the necessary condition is that for each node iΛ , the row 

sum of the matrix 1
0P −  has to be non-negative. In addition, the condition: ( ) 1

0 ,jir i j
−

∞ > ≥ ∀  

( ji ijr r= ) must hold too.  
 
Requiring that all the entries of the matrix M  are non-negative leads to: 
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Hence, we can write: 
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P P− −
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The above requirement can be seen as a diagonal dominance condition over the matrix 1

0P − . 
In the case that the node iΛ  is adjacent to the reference node, the corresponding row sum 
of the M  matrix is given by: 
 

( ) ( ) ( )

( )

( ) ( )

( )

1 1 1
0 0 01

1

1
0

1 1
0 0 1

1

1
0

1 1

1

1 1

11

i i

i

i

i

ij i ij
j N j Nji i

j i

ii
j N ji

ij i
j N j iji i

ii
j N ji

P P P
r r

P
r

P P
r r

P
r

− − −

∈ ∉
≠

−

∈

− −

∈ ∀ ≠

−

∈

⎡ ⎤ ⎡ ⎤
− + − − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

=
+

⎡ ⎤ ⎡ ⎤
− − −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦= <
+

∑ ∑

∑

∑ ∑

∑

 



   37

In the case that the node iΛ  is not adjacent to the reference node, the corresponding row 
sum of the M  matrix is given by: 
 

( ) ( ) ( )
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Hence, we have shown that at least in one row, the row sum of M  is strictly smaller than 
1. Actually, we proved that the iteration matrix verifies all the sufficient conditions for 
convergence. Namely, the row sums of the matrix M  are less or equal than 1 (and at least 
in one row this sum is strictly smaller than 1), the matrix M  is irreducible and all its 
entries are non-negative.                                                                                                         ■ 
 
As a result, we proved the convergence of the decentralized algorithm to the optimal 
solution performed by the centralized Kalman Filter for the most general case. Now, we 
will conclude the same for the other methods as special cases of the previous general 
framework. If the matrix 0P  is assumed to be diagonal and PSD, the decentralized 
algorithm converges. To see that, we have just to substitute 0ijp i j= ≠  and to check that 

the condition ( ) 1Mρ <  is still verified . If 0 0P = , we will obtain the Weighted-Least-
Squares case, and it is easy to check that in this case too, the convergence of the 
decentralized algorithm is achieved. The proof for the most basic case (equivalent to LS) is 
provided in the literature by Giridhar et al. [12] but all the other cases are to the best of our 
knowledge original. 
 
To sum up, the convergence conditions are given by: 
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We end this section by an additional lemma that will be of importance in the next chapter.  



   38

Lemma 6.1 
 
The convergence conditions have to be checked only once at the beginning of the 
procedure. In other words, the Kalman Filter operations preserve the convergence 
properties, that is: if 0P  is an M-matrix, then nP  is an M-matrix  for all 1n ≥ .  
 
Proof 
 
In the information form of the discrete time Kalman Filter, the measurement update 
equation of the inverse covariance matrix is given by: 
    

                                    ( ) ( )1 1 1( 1| ) ( | ) TP n n P n n H R H− − −+ = +                             (6.5) 
 
In our case TH A= , hence we obtain: ( ) ( )1 1 1( 1| ) ( | ) TP n n P n n AR A− − −+ = + . 

Recalling that the matrix 1R−  is assumed to be diagonal, let us analyze the properties of the 
matrix 1 TAR A− . For the regular incidence matrix, we have: 
 

1

1 0
. .
. .
1 0

TAR A−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
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⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
and for the reduced incidence matrix we have: 
 

1

1
.
.
1

TAR A v−
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⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
Here, v  is a vector with non-negative components. 
 
The structure of the matrix 1 TAR A−  is as follows: 
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The row sums are ( )1 0T

ij
j

AR A−

∀

=∑  for each node iΛ  that is not adjacent to the reference 

node. Besides, if the node iΛ  is adjacent to the reference node, this sum is a strictly 
positive number. Hence, we can draw the conclusion that if the a-priori inverse covariance 
matrix ( ) 1( | )P n n −  verifies the convergence conditions, the a-posteriori inverse covariance 

matrix ( ) 1( 1| )P n n −+  will verify them too. As a consequence, we have to check these 
conditions only once at the beginning of the procedure. This result will be useful in the next 
section.                                                                                                                                    ■ 
 
In the next section, we extend the analysis to the case of multiple measurement sets and we 
propose an optimal decentralized recursive algorithm. 
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7. Recursive Algorithms: Multiple Measurement Update 
 
 
In the previous sections, only the case of one measurement update was investigated. The 
next step is to consider the multiple measurement case and to present a recursive version of 
the previous decentralized algorithms. Several sets of measurements become successively 
available and our goal is to develop an algorithm that estimates the offsets after each set of 
measurements. The first alternative is to solve this problem by proposing a recursive 
algorithm. The latter is required to be decentralized and to depend only on the last 
measurement and on the previous estimates. The second option to solve the multiple 
measurement case is to wait for all the measurements and then to perform the estimation 
procedure. We will consider this case at the end of this section by proposing a 
decentralized non-recursive algorithm. 
 
In the subsequent analysis, we still focus on the case where the initial covariance matrix 0P  
is diagonal. The main problem is that after the first measurement update in the KF 
equations, the covariance matrix is not diagonal anymore. Then, each node has to 
communicate with all the other nodes over the network and not only with the one-hop 
neighbors. First, we present the centralized Kalman Filter algorithm and then we propose 
an optimal decentralized procedure that is equivalent to the KF solution. Afterward, we 
suggest a decentralized sub-optimal algorithm and a decentralized non-recursive method. 
 
 
7.1. The Centralized KF Algorithm 
 
 
In Section 5.2, we obtained that the centralized Kalman Filter optimal solution (using the 
LS approach) for a single set of measurements is given by: 
 

( ) ( )11 1 1 1
0 0 0ˆ Tx AR A P AR y P x

−− − − −= + +  
 

We will now develop the corresponding recursive version given n  sets of measurements. 
By repeating the previous derivation, we obtain: 
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This implies: 
 

     ( ) ( )( )11 1 1 1 1
0 0ˆ ˆ( ) 1 ( 1) ( )T Tx n n AR A P n AR A P x n AR y n

−− − − − −⎡ ⎤= ⋅ + − ⋅ + − +⎣ ⎦             (7.1.1) 
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Hence, we obtained a recursive relation for the estimated vector of offsets. The equation in 
(7.1.1) corresponds to the centralized version of the recursive algorithm. We can simplify 
this equation in the following way: 
 

( ) ( )( )
( ) ( )

11 1 1 1 1
0 0

11 1 1 1
0

1

ˆ ˆ( ) 1 ( 1) ( )

ˆ ˆ ˆ( ) ( 1) ( ) ( 1)

ˆ ˆ ˆ( ) ( 1) ( | ) ( ) ( 1)

T T

T T

T

x n n AR A P n AR A P x n AR y n

x n x n n AR A P AR y n AR A x n

x n x n P n n AR y n A x n

−− − − − −

−− − − −

−

⎡ ⎤= ⋅ + − ⋅ + − +⎣ ⎦

⎡ ⎤= − + ⋅ + − −⎣ ⎦
⎡ ⎤= − + − −⎣ ⎦

 

 
Let us now discuss several applications related to this centralized protocol. The centralized 
algorithm can be applied to a variety of situations. For example, one can imagine a set of 
fully intercommunicating nodes or the situation where a central unit is in charge. We can 
also apply the centralized protocol not solely on the entire network but also locally. 
Namely, we can estimate the offsets of a group of nodes that are regrouped geographically. 
For each group, we will assign a single processor that can communicate with all the group 
members. Another important application is the scenario in which a node needs to estimate 
simultaneously several different variables. For instance, in the sensor localization problem, 
each node iΛ  has to estimate his position by evaluating the three coordinate ( )ˆ ˆ ˆ, ,i i ix y z . In 
this case, each node needs to estimate a vector of several variables so it is worthwhile to 
extend our algorithm to the vector case (centralized version). 
 
Similarly to the single measurement update, applying the centralized KF algorithm for 
networks with a large number of measurements, will be prohibitively expensive in terms of 
energy consumption, bandwidth and communication time. In other words, in order to 
compute the optimal estimate directly (in a centralized manner), one seems to need all the 
measurements associated with their error covariances and the topology of the entire 
network (because the covariance matrix ( | )P n n  is non-diagonal). The solution we propose 
is a recursive decentralized algorithm based on the same LS approach as in the previous 
chapters. 
 
 
7.2 The Optimal Decentralized Algorithm 
 
We first consider the two measurements case and then extend to the general framework of 
n  sets of measurements. We start with the initial parameters ( )0 0,x P , where 0P  is chosen 
to be a diagonal matrix. When the first set of measurements, say (1)y , arrives we can 
estimate the offset vector ˆ(1)τ  and calculate the a-posteriori inverse covariance matrix 

1(1)P − . This matrix will not be diagonal in general. The next step begins when the second 
set of measurements (2)y  arrives. As before, we can estimate the offset vector ˆ(2)τ  and 
calculate the a-posteriori inverse covariance matrix 1(2)P − . But here, as the matrix 1(1)P −  
is not diagonal, the synchronization procedure is more difficult than the previous one 
because the Jacobi method does not lead to a distributed algorithm. During the second step, 
each node has to communicate with the entire network and not only with its neighbors. 
This was discussed in Section 5.2. On the other hand, we can wait that the two sets of 
measurement ( )(1), (2)y y  arrive and then estimate the offset vector ˆ(2)τ  and calculate the 

a-posteriori inverse covariance matrix 1(2)P −  by applying the Kalman Filter equations to 
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the combined measurement vector. This one step method will give the same result as the 
two steps method, but the procedure is easier because 0P  is diagonal and then the algorithm 
is decentralized. Our goal  is to develop a scheme that combines the better features of both 
methods: namely, a recursive estimation algorithm that is still decentralized. 
 
Let us solve the problem when two sets of measurements are available. Then, the objective 
function is given by: 
 

1 1 1
0 0 0( ) ( ) ( (1) ) ( (1) ) ( (2) ) ( (2) )T T T T T T TJ x x P x x y A x R y A x y A x R y A x− − −= − − + − − + − −  

  
First, we compute the optimal offset estimate of node iΛ  given the first set of 
measurements. When the matrix 0P  is assumed to be diagonal and only one set of 
measurements is considered, we have obtained previously the following clock 
synchronization algorithm: 
  

   ( )( 1) (1) ( ) (0)1 1 ˆˆ ˆ(1) (1) ; 2,3,...
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∑
∑

              (7.2.1) 

 
Initialization: (0)ˆ (1) (0) 2,3,...i i i Nτ τ= = . Here, 0k ≥  is the iteration number. 
 
Equation (7.2.1) corresponds to a synchronous decentralized iterative algorithm. As we 
previously have shown, when the above procedure is applied by all nodes in all iterations, 
the set of offset estimates converges to the optimal centralized solution (if the matrix 1

0P −  is 
chosen according to the conditions convergence). After repeating this algorithm an infinite 
number of iterations, we will obtain the optimal offset estimate ˆ (1)iτ . In other words, ˆ (1)iτ  
is the optimal offset estimate (after the convergence of the above algorithm) of the node iΛ  
given the set of measurements (1)y . 
 
The next step is to compute the optimal offset estimate of node iΛ  given the sets of 
measurement ( )(1), (2)y y . By repeating the one-measurement derivation, we obtain: 
 

     ( ) ( )( 1) (1) ( ) (2) ( )(0)1 1 1ˆ ˆˆ ˆ ˆ(2) (2) (2)1 12 i i
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            (7.2.2) 

 
Let us try to express ˆ (2)iτ as a function of ˆ (1)iτ  (recursively). In equation (7.2.1), after an 
infinite number of iterations in all the nodes, we will get the following steady-state 
equations: 
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Let us find an expression for (1)1 ˆ

i

ji
jij N

O
r∈

∑  from the above equation: 
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Now, let us replace in equation (7.2.2): 
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From this, we get: 
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which is the required expression. 
 
Now, let us generalize this idea for n  sets of measurements, i.e., to find a recursive relation 
between ( 1)ˆ ( )k

i nτ +  and ˆ ( 1)i nτ − . We consider the general case in which the matrix 1R−  may 
be different for each set of measurements. Hence, the objective function is given by: 
 

              1 1
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First, differentiate the objective function (7.2.3) with respect to the offsets and set the 
partial derivatives to zero: 
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As usual, we assume that the initial covariance matrix 0P  is diagonal and obtain the 
corresponding iterative algorithm with combined measurements: 
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Initialization: (0)ˆ ( ) (0) 2,3,...i in i Nτ τ= = . Here, 0k ≥  is the iteration number. 
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The above formula corresponds to a synchronous decentralized iterative algorithm. As we 
previously have shown, when the above procedure is applied by all nodes in all iterations, 
the set of offset estimates converges to the optimal centralized solution. 
 
The same equation holds for 1n − . After an infinite number of iterations in all the nodes, 
we will get the following steady-state equations: 
 

( )
1

( )

1 1

1

(0)1 1 ˆˆ ˆ( 1) ( 1)
( )1 1

( )
i

i

n
k i

i ji jn k j N ji i

k j N ji i

n O n
r k p

r k p

ττ τ
−

−
= ∈

= ∈

⎧ ⎫⎡ ⎤⎪ ⎪− = ⋅ + − +⎢ ⎥⎨ ⎬
⎡ ⎤ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭+⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑
∑ ∑

 

 

As before, let us find an expression for ( 1)1 ˆ
( 1)

i

n
ji

jij N
O

r n
−

∈ −∑  from the above equation: 

 

( )

1
( 1)

1

2
( )

1

(0)1 1 1ˆ ˆ ( 1)
( 1) ( )

1 1ˆ ˆ ˆ( 1) ( 1)
( ) ( 1)

i i

i i
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ji ji i ij N k j N
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ji j j
ji jik j N j N

O n
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τ τ
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−

∈ = ∈

−
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⎡ ⎤⎡ ⎤
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− ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥+ − − −

−⎢ ⎥⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
 

 
Now, replace the above expression  in the equation of ( 1)ˆ ( )k

i nτ + : 
 

( 1) ( )

1

1 1 ˆˆ ( ) {
( )1 1

( )
i

i

k k
i jin j N ji

k j N ji i
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( )

1

(0)ˆ ( )
n

k i
j

k i

n
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1
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1 1 1 ˆˆ ( 1)
( ) ( )
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i i
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n
k
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k j N j Nji i ji

n
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n O
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τ

τ

∈

−
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+ + ⋅ − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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⎡ ⎤
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( )( ) ( )1 1 ˆˆ ˆ( 1) ( ) }
( ) ( )

i i

n k
j ji j

j N j Nji ji

n O n
r k r k

τ τ
∈ ∈

− − + +∑ ∑

 

 
From this, we get: 

 

( )

( )

1
( 1) ( )

1

1

( ) ( )

1 1ˆ ˆ ˆ ˆ( ) { ( 1) ( 1) ( )
( )1 1

( )
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i i j jn k j N ji
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τ τ τ τ
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= ∈

= ∈

∈

⎛ ⎞
⎡ ⎤= ⋅ − − − + +⎜ ⎟⎣ ⎦⎜ ⎟⎡ ⎤ ⎝ ⎠+⎢ ⎥

⎢ ⎥⎣ ⎦
−

+ + +

∑ ∑
∑ ∑
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Now, let us continue to arrange the previous expression so that ( 1)ˆ ( )k
i nτ +  will be given by 

the sum of ˆ ( 1)i nτ −  and an additional term related to the last set of measurements in order 
to obtain a recursive relation. 
 

( )

( )

( 1) ( ) ( )

1

1
( )

1

1 1 ˆˆ ˆ ˆ ˆ( ) ( 1) { ( 1) ( )
( )1 1

( )

1 ˆ ˆ( ) ( 1) }
( )

i

i

i

k n k
i i ji i jn j N ji

k j N ji i

n
k

j j
k j N ji

n n O n n
r n

r k p

n n
r k

τ τ τ τ

τ τ

+

∈

= ∈

−

= ∈

⎡ ⎤= − + − − − +⎣ ⎦⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

+ − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑ ∑

∑ ∑
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( )

( 1) ( )

1
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1

1 1 ˆˆ ˆ ˆ ˆ( ) ( 1) { ( 1) ( 1)
( )1 1
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τ τ τ τ
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+

∈

∈ =

∈ =

⎡ ⎤
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⎢ ⎥⎣ ⎦
⎡ ⎤
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For the special case where the matrix 1R−  is similar for each set of measurements, we 
obtain: 
  

( ) ( )( 1) ( ) ( )1 1 ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( 1) ( ) ( 1)1 1
i

i

k n k
i i ji i j j j

j N ji

j N ji i
the estimated measurement

n n O n n n n n
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r p

τ τ τ τ τ τ+

∈

∈

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥= − + ⋅ − − − − + − −⎨ ⎬⎢ ⎥
⎪ ⎪+ ⎢ ⎥⎣ ⎦⎩ ⎭

∑
∑ ����	���


 
The above algorithm is decentralized, recursive and iterative. For each set of 
measurements, it performs an infinite number of iterations in order to converge to the 
optimal solution. Moreover, ( 1)ˆ ( )k

i nτ +  depends only on the last measurement and on the 
previous estimates. We point out that the last equation slightly deviates from the standard 
structure of a recursive algorithm due to the term n  (time explicit index) in the 
denominator and in the internal term. 
 
Let us define the following quantity: 
 

[ ] 1

1

1 1( )
( )

i

n

i
j N ki ji

I n
p r k

−

∈ =

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑  

 
Hence, the following recursive relation holds: 
 

                                          
[ ] [ ]

[ ] [ ]

1 1

1 1

1( ) ( 1)
( )

1(0) (0)

i

i i
j N ji

i i
i

I n I n
r n

I P
p

− −

∈

− −

⎧ = − +⎪
⎪
⎨
⎪ = =
⎪⎩

∑
                             (7.2.4) 
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We note that the elements of  [ ] 1( )iI n −  in (7.2.4) are the diagonal entries of the inverse 
covariance matrix in the Kalman Filter equations. Thus, the error estimation variances of 
the estimates at each step are obtained. This is a desirable property since it gives 
information on the estimation quality. Observe however that we do not compute the non-
diagonal elements of the inverse covariance matrix. 
 
Using this notation, the recursive version of the decentralized algorithm in its final form is 
given by: 
 

[ ]
( ) ( ) ( )

[ ] [ ]

( 1) ( ) ( ) ( )
1

1 1

1 1 1ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ) 1 ( ) ( 1)
( ) (7.2.5)

1 1 1( ) ( 1) 2,...,

i i

i i

k n k k
i i ji i j j j

j N j Nji jii

i i
j N j Nji i ji

n n O n n n n n
r rI n

I n I n n i N
r p r

τ τ τ τ τ τ+
−

∈ ∈

− −

∈ ∈

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤= − + ⋅ ⋅ − − − + − ⋅ ⋅ − −⎢ ⎥⎨ ⎬⎣ ⎦ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

= − + = + ⋅ =

∑ ∑

∑ ∑

where: [ ] [ ]1 1 1(0) (0)i i
i

I P
p

− −= = . 

 
We consider the case where the matrix 1R−  is similar for each set of measurements for 
notation simplicity. Moreover, this assumption is quite logical and this scenario can be 
considered as the most representative case. The above set of equations in (7.2.5) 
correspond to our main algorithm that is summarized in Table 7.1. It is a decentralized, 
synchronous and recursive algorithm that computes at each step, the estimated offsets in 
addition to the corresponding error variances. The main advantage of this algorithm is its 
local nature; each network node needs to communicate only with its neighbors.  
 
We now describe in words the iterative procedure in (7.2.5). At time n , we assume that the 
estimate of ˆ ( 1)i nτ −  is given. Then, ( )ˆ ( ) 1, 2,...k

i n kτ =  is computed based on ˆ ( 1)i nτ −  and 
the last measurement set ( )y n . We assume that a sufficient number of iterations is 
performed at each time n , so that the estimate ˆ ( )i nτ  is accurate.   
 
The proposed algorithm in (7.2.5) may be derived in two ways, which lead to the same 
optimal equations: 
1. Differentiate ( 1)J n −  and ( )J n  with respect to the offsets vector x  and set the partial 

derivatives to zero.  
2. Algebraic manipulations of the standard recursive extension of (5.3.4), with the 

following  KF update inverse covariance equation: 
 

                                        ( ) ( )1 1 1
1

T
k kP P AR A− − −
+ = +                                                 (7.2.6) 

 
In other words, the set of iterative equations in (7.2.5) is mathematically equivalent to 
perform (5.3.4) separately for each measurement set in addition to (7.2.6). This result will 
be useful in the proof of Theorem 7.1. This can be shown easily by some appropriate 
mathematical manipulations and is not presented.  
Now, let us show the convergence of the set of equations in (7.2.5) to the optimal 
centralized solution. 
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Theorem 7.1. 
 
Suppose that: 

a) The matrix R  is diagonal and Positive Semi-Definite, that is: ( ) 1
0 ,jir i j

−
≤ < ∞ ∀  . 

b) The initial covariance matrix 0P  is an M-matrix, namely: 

( )

( ) ( ) ( )

1
0

1 1
0 0

0

0 0

ij
j

ii ij

P

P and P i j

−

− −

⎧ ≥
⎪
⎨
⎪ ≥ ≤ ≠
⎩

∑
 

c) The clock adjustment operation in (7.2.5) is applied synchronously by all nodes 
( 2,3,...i N= ) in all iterations, recursively for n  sets of measurements . 

d) A sufficient number of iterations is performed after each measurement set n , so that 
( )ˆ ( )k

i nτ  converges to ˆ ( )i nτ . 
Then, for each 1n ≥ , the iterated estimators ( )ˆ ( ) 2,3,...k

i n i Nτ =  converge (as k →∞ ) to 
the optimal offsets that minimize the objective function in (7.2.3). 
 
We next present the proof of Theorem 7.1. Our proof relies on Lemma 6.1. 
 
Lemma 6.1 immediately implies the convergence of the recursive extension (for several 
measurement sets) of equation (5.3.4) to the optimal solution, where at each step, the new 
covariance matrix is computed according to (7.2.6). Since the iterations in (7.2.5) are 
equivalent to the procedure in (5.3.4), we obtain the claimed convergence in Theorem 7.1.■ 
 
Remarks: 
 

- We can also apply the recursive procedure to the case where at each stage, just 
some of the pair-wise offsets are measured (e.g., ( )1y  is only the measurement of 

34Ô ). In this case, the matrix TA  for that stage will have a structure in accordance 
with the measurements. 

 
- The main advantage of this recursive method is that we have the same diagonal 

matrix 1
0P −  during the whole procedure, thus it is easier to prove convergence. 

Moreover, we do not need that each node communicates with all the other nodes but 
only with its neighbors. In fact, when a new set of measurement arrives, we exploit 
the estimate of the previous iteration and add only the information contained in the 
new measurement. 
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     Name: Decentralized Synchronous Recursive Kalman Filter 
     Assumptions: - The inverse initial covariance matrix 1

0P −  is diagonal. 
- n  sets of measurements are available. 
- The matrix 1R−  is the same for each set of measurements. 

Goal: Compute in a decentralized manner the offsets estimates at each network node        
(except for the reference) that approach the optimal centralized estimates. 

     Initialization: ( )
1 0k kτ = ∀ , (0)

îτ  is arbitrary for { }\ 1i V∈ . 
  
After deployment, each node { }\ 1i V∈  performs: 

6. Detect its neighbors iN . 

7. Identify the inverse initial covariance 1

ip
 and the initial offset (0)iτ . 

8. Obtain the first set of relative measurements (1)ˆ
jiO  and the associated inverse 

covariances 1

jir
 for every ij N∈ . Compute [ ] 1 1 1(1)

i

i
j N ji i

I
r p

−

∈

= +∑ . 

9. Send (0)iτ  to its neighbors ij N∈ . Obtain (0)j ij Nτ ∈  and keep in memory (0)iτ . 
  
At every time n  that a new set of measurement arrives: 

10. Compute recursively [ ] [ ]1 1 1( ) ( 1)
i

i i
j N ji

I n I n
r

− −

∈

= − + ∑  and send n  to every node. 

      11. At every iteration k , each node iΛ  performs: 
a. Send ( )ˆ ( )k

i nτ  and k  to its neighbors ij N∈ . Obtain ( )ˆ ( )k
j in j Nτ ∈ . 

b. Compute ( 1)ˆ ( )k
i nτ +  from the previous quantities, using (7.2.5). 

      12. Send the final values of ˆ ( )i nτ  to its neighbors ij N∈ . Obtain ˆ ( )j in j Nτ ∈  and  
keep in memory ˆ ( )i nτ . 

 
 
 
Table 7.1. Summary of the Decentralized Synchronous Recursive KF Algorithm. 
 
 
So far, we developed the recursive decentralized algorithm for multiple sets of 
measurements using the Least-Squares approach. Next, we will show that one can obtain 
the same algorithm through the Kalman Filter equations. 
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7.3 Equivalence with the KF Equations 
 
We will show that the previous recursive algorithm can be obtained by applying the 
Kalman Filter equations through appropriate manipulations. By applying the information 
form of the Kalman Filter in our context, we obtained the following recursive equation (see 
in Section 5.1): 
 

( )
11 1 1ˆ ˆ ˆ( | ) ( 1| 1) ( 1| 1) ( ) ( 1| 1)T Tx n n x n n P n n Q AR A AR y n A x n n
−− − −⎡ ⎤ ⎡ ⎤= − − + − − + + − − −⎣ ⎦⎣ ⎦  

 
Now, we will develop a decentralized version of the above equation and as expected, we 
will show that this approach leads to the same recursive algorithm that we obtained in the 
last section. 
 
Let us recall that ( )1 2( ) 0, ,... T

Nx n τ τ τ=�  (where iτ  is the offset of the node iΛ ) and that 

[ ] 1 1(0)i
i

P
p

− =  (the initial inverse covariance matrix is diagonal). Moreover, we assume as 

usual that the matrix R  is diagonal. For the case where 0Q =  (there is no process noise), 
due to the special structure of the matrices 1 TAR A−  and 1AR− , one can write the previous 
equation for each node separately and obtain the following decentralized estimates: 
 

( )( )1 1 1ˆˆ ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ) ( 1) 2,...,1 1
i i

i

n
i i ji i j j

j N j Nji ji

j Ni ji

n n O n n n n i N
r rn

p r

τ τ τ τ τ
∈ ∈

∈

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤= − + ⋅ ⋅ − − + ⋅ ⋅ − − =⎢ ⎥⎨ ⎬⎣ ⎦ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭+ ⋅
∑ ∑

∑
 

As before, we can define: 
 

[ ] [ ]

[ ] [ ]

1 1

1 1

1 1 1( ) ( 1)
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i i

i i
j N j Nji i ji
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∑ ∑
 

 
and then the recursive algorithm is given by: 
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( ) ( ) ( )
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( 1) ( ) ( ) ( )
1

1 1

1 1 1ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ) 1 ( ) ( 1)
( )

1 1 1( ) ( 1) 2,...,

i i

i i

k n k k
i i ji i j j j

j N j Nji jii

i i
j N j Nji i ji

n n O n n n n n
r rI n

I n I n n i N
r p r

τ τ τ τ τ τ+
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∈ ∈

− −

∈ ∈

⎧ ⎫⎡ ⎤⎪ ⎪⎡ ⎤= − + ⋅ ⋅ − − − + − ⋅ ⋅ − −⎢ ⎥⎨ ⎬⎣ ⎦ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

= − + = + ⋅ =

∑ ∑

∑ ∑

where: [ ] [ ]1 1 1(0) (0)i i
i

I P
p

− −= = . 

 
This is an iterative (synchronous) algorithm that computes recursively the estimated offset 
for each node iΛ  ( 0k ≥  is the iteration number) in a decentralized manner. The above 
algorithm is exactly similar to the procedure that we obtained in (7.2.5). 
 
In summary, we have shown as expected that the decentralized recursive algorithm we 
developed is exactly equivalent to the Kalman Filter. Indeed, we solve the problem of 
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finding an optimal decentralized algorithm by two different approaches that lead to the 
same optimal solution. This is not a surprise because in the different derivations we are 
looking for the linear optimal estimate in the MMSE sense and the optimal solution is 
given by the Kalman Filter. The special structure of the centralized version of the Kalman 
Filter equations enables us to derive a decentralized version just with some mathematical 
manipulations. This is not always possible, as we will see for the case where a white noise 
process is incorporated in the equations. The problem of the Kalman Filter equations was 
the fact that the covariance matrix does not keep its diagonal initial structure. Hence, each 
node has to communicate with the entire network (or equivalently to make use of a central 
unit). In the decentralized version, the requirement is that each node communicates only 
with its one-hop neighbors. In addition, the terms [ ] 1( )iI n −  are equal to the diagonal terms 
of the inverse covariance matrix. In other words, this algorithm computes the variance of 
each estimate, so we can know the quality of the estimation at each node. 
 
Next, we propose a simple sub-optimal algorithm that computes the offsets for the case 
where multiple sets of measurements are available. 
 
 
7.4 A Sub-Optimal Decentralized Algorithm 
 
Another approach to solving the decentralized estimation problem can be considered. At 
the end of the section 5, we obtained a general decentralized equation in the case of a non-
diagonal initial covariance matrix (for a single set of measurements): 

( )
( ) ( ) ( ) ( )( 1) ( ) 1 1 ( )

0 0
11

0

1 1 ˆˆ ˆ ˆ(0) (0) (7.4.1)
1 i
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i ji j i m mii im
j N mji

m i
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≠
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⎝ ⎠

∑ ∑
∑

 
As expected, the estimated offset of node iΛ  depends on all the other offsets and not only 
those of its neighbors. One can think about the naïve sub-optimal algorithm that neglects 
the off-diagonal terms of the inverse covariance matrix: 

( )
( ) ( )( 1) ( ) 1

0
1

0

1 1 ˆˆ ˆ (0)
1 i

i

k k
i ji j iii

j N ji

ii
j N ji

O P
r

P
r

τ τ τ+ −

∈−

∈

⎡ ⎤
= + +⎢ ⎥
⎛ ⎞ ⎢ ⎥⎣ ⎦+⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑

  
We obtained a decentralized sub-optimal algorithm for the case where a single set of 
measurements is available. Let us generalize for the multiple measurement scenario. In this 
case, the centralized optimal algorithm is given by: 
 

11 1 1ˆ ˆ ˆ( | ) ( 1| 1) ( 1| 1) ( ) ( 1| 1)T Tx n n x n n P n n AR A AR y n A x n n
−− − −⎡ ⎤ ⎡ ⎤= − − + − − + − − −⎣ ⎦ ⎣ ⎦   

If we neglect the off-diagonal terms of the inverse covariance matrix at time 1n − , we have 
(as usual, we assumed that the initial covariance matrix is diagonal): 
 

( ) 11 1 1ˆ ˆ ˆ( | ) ( 1| 1) ( 1| 1) ( ) ( 1| 1)T Tx n n x n n diag P n n AR A AR y n A x n n
−

− − −⎡ ⎤ ⎡ ⎤= − − + − − + − − −⎣ ⎦⎣ ⎦

( ) ( ) ( ) ( ) [ ] 11 1
0

1 1 1( 1| 1) 1 1 ( 1)
i i

iii
j N j Nji i ji

diag P n n P n n I n
r p r

−− −

∈ ∈

− − = + − ⋅ = + − ⋅ = −∑ ∑  
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Here, we neglect the off-diagonal terms before inverting the information matrix ( ) 1
1nP −
− , in 

the goal to improve the complexity. In this case, we will invert a diagonal matrix and hence 
the time computation will significantly decrease.   
 
Therefore, the decentralized sub-optimal algorithm is given by: 
 

( )
( )( 1) ( ) ( )

1
0

1 1 ˆˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ) (7.4.2)1
i

i

k n k
i i ji i j

j N ji
ii

j N ji

n n O n n
rP n

r

τ τ τ τ+

− ∈

∈

⎧ ⎫⎪ ⎪⎡ ⎤= − + − − −⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭+ ⋅
∑

∑
 

 
We can interpret equation (7.4.2) in a very logical manner. The new estimate is given by 
the sum of the previous estimate and a correction term. This correction term is composed of 
the latest measurement minus the estimated measurement multiplied by the measurement 
variance and the total is normalized by the accumulative variance.  
 
In the numerical results section, we will compare the decentralized recursive algorithm that 
converges to the optimal solution to the above sub-optimal scheme. The sub-optimal 
algorithm is summarized in Table 7.2. 
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     Name: Decentralized (recursive) Sub-Optimal Algorithm 
     Assumptions: - The inverse initial covariance matrix 1

0P −  is diagonal. 
- n  sets of measurements are available. 
- The matrix 1R−  is the same for each set of measurements. 

Goal: Compute in a decentralized manner the offsets estimates at each network node        
(except for the reference) in a logical sub-optimal manner. 

     Initialization: ( )
1 0k kτ = ∀ , (0)

îτ  is arbitrary for { }\ 1i V∈ . 
  
After deployment, each node { }\ 1i V∈  performs: 

1. Detect its neighbors iN . 

2. Identify the inverse initial covariance 1

ip
 and the initial offset (0)iτ . 

3. Obtain the first set of relative measurements (1)ˆ
jiO  and the associated inverse 

covariances 1

jir
 for every ij N∈ . Compute [ ] 1 1 1(1)

i

i
j N ji i

I
r p

−

∈

= +∑ . 

4. Send (0)iτ  to its neighbors ij N∈ . Obtain (0)j ij Nτ ∈  and keep in memory (0)iτ .  
  
At every time n  that a new set of measurement arrives: 

5. Compute recursively [ ] [ ]1 1 1( ) ( 1)
i

i i
j N ji

I n I n
r

− −

∈

= − + ∑ . 

6. At every iteration k , each node iΛ  performs: 
a. Send ( )ˆ ( )k

i nτ  and k  to its neighbors ij N∈ . Obtain ( )ˆ ( )k
j in j Nτ ∈ . 

b. Compute ( 1)ˆ ( )k
i nτ +  from the previous quantities, using (7.4.2). 

      7. Send the final values of ˆ ( )i nτ  to its neighbors ij N∈ . Obtain ˆ ( )j in j Nτ ∈ and  
keep in memory ˆ ( )i nτ . 

 
 

Table 7.2. Summary of the Decentralized Sub-Optimal Algorithm. 
 
 
Next, we will present a decentralized non-recursive algorithm that solves the time 
synchronization problem in the multiple measurement update case. 
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7.5 Decentralized Non-Recursive Algorithm 
 
Let us present an alternative method for the estimation algorithm in the multiple 
measurement case. The objective function is the same as before with the usual assumptions. 
Namely, the matrices 0P  and R  are assumed to be diagonal and we suppose that the matrix 

1R−  is similar for all the measurement sets. 
 

1 1
0 0 0

1
( ) ( ) ( ( ) ) ( ( ) )

n
T T T T

k
J x x P x x y k A x R y k A x− −

=

= − − + − −∑  

 
In Section 5, we have obtained the following synchronous decentralized iterative clock 
synchronization algorithm (for a single set of measurements): 
 

              ( )( 1) (1) ( ) (0)1 1 ˆˆ ˆ 2,3,...
1 1 i

i

k k i
i ji j

j N ji i

j N ji i

O i N
r p

r p

ττ τ+

∈

∈

⎡ ⎤
= ⋅ + + =⎢ ⎥
⎛ ⎞ ⎢ ⎥⎣ ⎦+⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑

 (7.5.1) 

 
Initialization:  (0)ˆ (0) 2,3,...i i i Nτ τ= = . Here, 0k ≥  is the iteration number. 
 
Our goal is to develop a new non-recursive estimation method (batch algorithm) for the 
multiple measurement case. In the latter, we will define the equivalent measurement and 
the corresponding equivalent covariance. In fact, we wait for all the measurement sets and 
then, we compute the equivalent measurement and its corresponding covariance as follows 
(we recall that the different measurement sets have independent noises): 
 

n

l

( )

1 ( )

1

1

1

1 ˆ
( ) 1ˆ ˆ

1
( )

1 1 1
( )

n
k
ji n

k ji k
ji jin

k

k ji

n

k ji jiji

O
r k

O O
n

r k

n
r k rr

=

=

=

=

⎧
⎪
⎪ = =
⎪⎪
⎨
⎪
⎪

= =⎪
⎪⎩

∑
∑

∑

∑

 

 
Now, we can consider that we have just a single set of measurements and we can use the 
decentralized clock synchronization procedure in (7.5.1). 

Let us replace the term: (1)1 ˆ
i

ji
j N ji

O
r∈

∑ by the above equivalent expressions and then we obtain: 

l

l
m

l
( 1) ( )

( 1) ( ) ( )

1

(0)1 1 1ˆˆ ˆ
1 1

(0)1 1 ˆˆ ˆ 2,3,... (7.5.2)
1 1

i i

i

i

i

k k i
i ji j

j N j N iji ji

j N iji

n
k k k i

i ji j
j N kji i
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O
pr r

pr

O n i N
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n
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ττ τ

ττ τ

+

∈ ∈

∈

+

∈ =

∈

⎡ ⎤
= ⋅ + +⎢ ⎥
⎛ ⎞ ⎢ ⎥⎣ ⎦⎜ ⎟+
⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞= ⋅ + ⋅ + =⎢ ⎥⎜ ⎟⎛ ⎞ ⎝ ⎠⎢ ⎥⎣ ⎦+⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑
∑

∑ ∑
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The equation given in (7.5.2) is an additional decentralized algorithm for estimating the 
offset at each network node with respect to the reference time, using a Kalman Filter 
framework. In fact, instead of using the first measurement in the synchronization 
procedure, we employ the sum of all the measurements normalized by the number of sets. 
One can also extend the previous procedure to the case in which the matrix 1R−  is different 
for each set of measurements. Actually, the equivalent measurement is given by the 
weighting average of all the measurements pre-multiplied by their variances.  
 
In summary, we have developed several algorithms in order to compute the optimal 
estimated offsets in a network, including in the multiple measurement case. The first option 
is to apply the centralized Kalman Filter equations but in this case, each node is required to 
communicate with every other node and not only with its neighbors. The second option is 
to wait for all the sets of measurements and to apply the non-recursive algorithm we have 
presented in the last section. In this case, the estimates are optimal and the communication 
is only between neighbors but it cannot be implemented in real-time applications. The third 
possibility is the algorithm that we developed; it requires only local communication and 
gives an on-line optimal solution but we need to know the parameter n  (the number of 
measurement sets) and to run an iterative procedure. The fourth and last option is to apply 
the sub-optimal algorithm (by neglecting the off-diagonal terms of the inverse covariance 
matrix). This solution is the simplest in the sense that it does not require an iterative 
algorithm and require local communication however, the solution is only sub-optimal. 
 
In the next section, we will extend our results to several interesting directions: the 
incorporation of a discount factor (in order to compensate for the time-invariance 
assumption), the addition of a process noise to the state space equations and the extension 
to temporary communication failures environment. 
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8. Extensions 
 
 
8.1 Incorporating a Discount Factor 
 
In this case, the objective function to be minimized is given by ( n  represents the number of 
measurement sets): 
 

min1 1
0 0 0

1

ˆ( ) ( ) ( ( ) ) ( ( ) ) ( ) (8.1.1)
n

n T n k T T T
n opt

k

J x x P x x y k A x R y k A x x nγ γ− − −

=

⎡ ⎤= − − + − − ⎯⎯→⎣ ⎦∑
 

Here, 0 1γ< <  is the discount factor that gives a higher weight to the more recent 
measurements. In other words, this factor can compensate for the assumption that the 
offsets are time-invariant. An additional point of view consists of incorporating the 
discount factor to the state space model or to the measurement noise covariance matrix. 
The corresponding state space model in this case is given by: 
 

( )
2

( 1) ( )
( ) 0,

( ) ( ) ( )
n

T

x n x n
v n N R

y n A x n v nγ

+ =⎧⎪
⎨
⎪ = +⎩

∼  

 
The second alternative is to consider the standard state space model and to incorporate the 
discount factor in the measurement noise covariance matrix. In this case: 

 
( )( ) 0, n

n
n

v n N R

R R γ= ⋅

∼
 

 
In other words, the measurement noise decreases in time. 
 
Our goal is to find the optimal offsets. Hence, we compute the derivative of the objective 
function with respect to the offsets vector and set it to zero. As usual, we assume that the 
initial inverse covariance matrix 1

0P −  is diagonal. 
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1
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n
j i
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=

⎡ ⎤
+ ⋅ =⎢ ⎥
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This implies: 
 

( )( )

1

1

1 1 1ˆ( ) ( ) (0) 2,3,... (8.1.2)
1 1 i

i

n
n k k n

i ji j in k j N ji in k n

j N kji i

n O n i N
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Equation (8.1.2) represents the optimal offset of node iΛ  given n  sets of measurements. 
We notice that the case 1γ =  coincides with the case we studied in the previous section 
(without discount factor). The above equation can be implemented by a synchronous 
iterative algorithm, as in the previous cases:  
 

( )( 1) ( ) ( )

1

1

1 1 1ˆˆ ˆ( ) ( ) (0) (8.1.3)
1 1 i

i

n
k n m m k n

i ji j in m j N ji in m n
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⎛ ⎞ ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭⋅ + ⋅⎜ ⎟⎜ ⎟
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∑ ∑
∑ ∑

 
Next, we will develop a recursive version of this synchronous iterative algorithm in a 
similar way to the basic case. 
 
The synchronous iterative algorithm that computes the optimal offset at node iΛ  given 

1n −  sets of measurements is given by: 
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After an infinite number of iterations in all the nodes, we will obtain the following steady-
state equations:  
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Let us find the expression for ( 1)1 ˆ

i

n
ji

jij N
O

r
−

∈
∑  from the above equation:  
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Now, let us replace the last expression in the equation of ( 1)ˆ ( )k
i nτ +  and after some simple 

algebraic operations, we will obtain the following decentralized recursive algorithm (the 
steps are very similar to the previous case, hence are not detailed here): 
 

[ ]
( ) ( )

[ ] [ ]

1
( 1) ( ) ( ) ( )

1
1

1 1

1 1 1ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ) ( ) ( 1)
( ) (8.1.4)
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i i

i

n
k n k n m k
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= ⋅ − + =

∑ ∑ ∑

∑

where: [ ] [ ]1 1 1(0) (0)i i
i

I P
p

− −= = . 

 
As expected, the algorithm in (8.1.4) reduces to the previous one when 1γ =  (without 
discount factor). The above algorithm is optimal (in the MMSE sense) given the previous 
model measurements, since we proved that it is equivalent to the Kalman Filter algorithm. 
Moreover, this algorithm is easy to implement as it requires communication only with 
neighbors, allowing us to implement it locally.  
 
In the equation of [ ] 1( )iI n − , the interpretation of the discount factor is clear. Since [ ] 1( )iI n −  
is a measure of the inverse covariance matrix of the error estimate, it is logical that the new 
information depends on the previous information multiplied by γ  (like a forgetting factor) 
and on the inverse covariance of the measurements. We note that it is straightforward to 
obtain the above algorithm in the case where the matrix 1R−  is different for each set of 
measurements. 
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8.2 Addition of  Process White Noise 
 
Now, we will include a white noise ( )w n  to the clocks readings. In this case, the state 
space model will be given by: 
 

                                               
( 1) ( ) ( )
( ) ( ) ( )T

x n x n w n
y n A x n v n

+ = +⎧
⎨

= +⎩
                                          (8.2.1) 

 
We can interpret the noise ( )w n  as a measure of the unknown difference between two 
successive offsets or as a compensation of the uniform skew assumption and the time-
invariant offsets. This is different from the incorporation of a discount factor because it 
gives more flexibility through the choice of the noise statistics parameters. 
 
We assume that ( )w n  is modeled as a white Gaussian noise with zero mean and covariance 

( ) 0Q n ≥ . Namely: 
 

[ ] [ ]( ) 0 ( ), ( ) ( ) klE w n Cov w k w l Q k δ= = ⋅  
 
Moreover, we assume that the process noise and the measurement noise are statistically 
independent: 

 
[ ]( ), ( ) 0 ,Cov w k v l k l= ∀  

 
In this case, the optimal estimate obtained by applying the Kalman Filter is equivalent to 
the constrained minimization of the deterministic objective function (see the proof in 
Appendix A): 
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We note that this is the same objective function as before, with the addition of the last term. 
By using the constraint, we can write this last term in the following way: 
 

( ) ( )1 1 1

1 1

( ) ( 1) ( ) ( 1)
n n

TT
k k k k

k k

w Q w w Q w x k x k Q x k x k− − −

= =
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As usual, we will assume that the initial inverse covariance matrix 1

0P −  is diagonal. In 
addition, we will assume that the covariance matrix of the process noise is diagonal and 
time invariant, i.e., ( ) 1,...,Q k Q k n= ∀ = . 
 
In this new case, the offsets are time varying and the optimal solution is time dependent: 
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The preceding method cannot be applied to obtain the optimal solution in this case; the 
time dependency makes the estimation problem more difficult. 
 
With the purpose of finding these optimal time varying offsets, we may compute the 
derivatives of the objective function with respect to the offsets vectors at time 0,1,...,n  and 
to set them to zero: 
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∂⎪⎩

 
One can observe that the solution is not simple since each vector depends on the estimates 
at different times. Indeed, we see that the estimate at time 0 depends on that at time 1, the 
estimate at time k  ( 1,..., 1k n∀ = − ) depends on its adjacent estimates (at times k+1  and 
k-1 ), and finally the one at time n  depends on that at time n-1 . 
 
Our goal is to develop a recursive relation of the following form: 
 

( )1| 1 |ˆ ˆ , ( 1)n n n nx f x y n+ + = +  
 

The method described above is not efficient to solve this problem. Hence, we choose to 
write the Kalman Filter equations.  In the previous notation, we have: , TI H AΦ = = .  
The KF equations are therefore: 
 

Time update (prediction):     
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Measurement update:            
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The recursive combined Kalman Filter equations are given by:  
 

         
( )

1

11 1 1 1

ˆ ˆ ˆ( 1| 1) ( | ) ( 1| 1) ( 1) ( | )

( 1| 1) ( 1| ) ( | )

T

T T

x n n x n n P n n AR y n A x n n

P n n P n n AR A P n n Q AR A

−

−− − − −

⎧ ⎡ ⎤+ + = + + + + −⎪ ⎣ ⎦
⎨

+ + = + + = + +⎪⎩
             (8.2.2) 

 
We can see that if 0Q =  (there is no process noise), we achieve the same result as in the 
basic case. As we previously mentioned, the inverse covariance matrix is not diagonal after 
one step (due to the addition of the term 1 TAR A− ). Combining these two equations leads to 
the following recursive centralized algorithm: 
 

( )
11 1 1ˆ ˆ ˆ( 1| 1) ( | ) ( | ) ( 1) ( | ) (8.2.3)T Tx n n x n n P n n Q AR A AR y n A x n n
−− − −⎡ ⎤ ⎡ ⎤+ + = + + + + −⎣ ⎦⎣ ⎦

 
 
The only difference with the previous case is the presence of the covariance matrix Q . In 
the case without process noise, we succeeded in developing a decentralized version of this 
recursive centralized algorithm. However, when a process noise is incorporated to the state 
space model, the new structure of the inverse covariance matrix 1( 1| 1)P n n− + +  does not 
enable the application of the same procedure. Moreover, a decentralized non-recursive 
(batch) algorithm is not an option, as there is a correlation between the different 
measurements, so we cannot compute the equivalent measurement easily. The single 
solution we propose is to apply the recursive centralized Kalman Filter algorithm given in 
(8.2.3). It will lead to an optimal on-line solution, but requires communication between all 
the nodes over the network (or the existence of a central unit). 
 
In summary, in the case of the presence in the system of a process white noise, we have not 
developed a recursive decentralized algorithm to optimally estimate the offsets at each 
network node. The approaches that we employed in the previous case are not applicable 
here, and this problem is still unsolved. On the other hand, the addition of a process noise 
in our model is not compulsory since the offsets and the skew can be assumed to be 
constant over some known time intervals. Moreover, this assumption can be compensated 
through the incorporation of a discount factor as explained in the previous section. 
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8.3 Faulty Communication Environment 
 
One desirable attribute of any decentralized algorithm is robustness to communication 
failures, such failures being unavoidable in practice. So far, we considered several 
algorithms that iteratively compute the optimal estimates, assuming perfect communication 
channels (no failures). In this section, we improve the algorithms to handle with dynamic 
changes in the communication topology by considering temporary link failures. We slightly 
modify our algorithm to become robust to temporary communication failures. Since a 
neighbor may become unavailable at any time, every node stores in its local memory the 
estimates of its neighbors' variables recorded from the last successful communication 
exchange. We denote by ( ) ( )ˆ k

i j
τ  the estimate of iΛ 's clock offset kept in jΛ 's local 

memory at the end of the k -th iteration. If the last successful communication between iΛ  

and jΛ  took place during the l -th iteration, while l k< , then ( ) ( ) ( )ˆ ˆk l
i ij
τ τ= .  

Let ( )k
i iN N⊆  be the subset of iΛ 's neighbors that send and receive data successfully 

during the k -th iteration. In other words, node iΛ  gets from every ( )k
j iNΛ ∈  the most 

recent estimates and updates its copy of its neighbors' estimates. For the rest of the 
neighbors, the communication fails, so the local copies remain unchanged. 
 
In mathematical notation: 
 

                                 ( )
( ) ( )

( )

( 1) ( )

ˆ ;
ˆ

ˆ ; \

k k
i i jk

i j k k
i i j j

N

N N

τ
τ

τ −

⎧ ∀Λ ∈⎪= ⎨
∀Λ ∈⎪⎩

                               (8.3.1) 

 
Then, node iΛ  computes its own estimate at the 1k +  iteration by one of the algorithms 
developed in the previous sections. The only difference is that the estimates of the 
neighbors are taken according to the above formula and depend on the failures in the 
communication links. 
 
This extension was inspired by [3], where the authors apply this method for solving the 
time synchronization problem in a faulty communication environment for the WLS case 
( 1

0 0P − = ). They also show its convergence to the optimal estimates when certain mild 
conditions on the failure rate are satisfied. Namely, they consider that there exists a positive 
integer p < ∞  such that the number of consecutive communication failures between every 
pair of neighboring nodes is less than p . One can apparently extend the result for the 
general Kalman Filter framework, but a convergence analysis must be investigated. In this 
research, we did not consider the latter analysis. Moreover, in [3] the authors propose an 
initialization scheme that improves the accuracy of the estimates. The corresponding details 
are omitted here.   
 
In summary, we propose a modification to our algorithm so it may work even in the 
presence of faulty communication. In fact, the WLS algorithm is proved (in [3]) to 
converge to the optimal solution even in the presence of link failures, whereas for the 
decentralized KF, such a proof was not investigated here and can be considered as a future 
research direction. 
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9. Clock Skew Estimation 
 
 
In the previous analysis, we considered a simple model where all the clocks progress at the 
same rate ( 1i jα α= = , i.e., there is no skew), but have arbitrary offsets. In other words, the 
estimation problem was reduced to the estimation of the clock offsets. In this section, we 
extend the results to the case of general clock skew, when the clock offset parameters are 
still assumed to be time-invariant and our objective is to estimate both the clock offsets and 
the rate offsets at each network node. Naturally, the importance of estimating the clock 
skew increases as the measurements (and estimates) are conducted over longer time 
intervals. If all the measurements are obtained simultaneously, the skew parameter is 
irrelevant. We still suppose that the clock drift at a node follows the linear form: 

( )i i iT t tα τ= + , where iα  and iτ  are the skew (rate offset) and the offset parameters 
respectively, t  is the real time (or the reference time) and iT  is the local time (at node iΛ ). 
Our goal is to estimate the parameters iα  that describe the rate of the local clocks relative 
to the reference clock ( 1 1α = ) in addition to the offsets iτ . If one knew the constants iα , 
then one could estimate iτ  as in the previous sections by first dividing all the local clocks 
readings by iα . Thus, we must now describe how to obtain estimates of these skew values 

iα , and do so without prior knowledge of the offsets iτ  or to propose an algorithm that 
estimates both parameters simultaneously. 
 
In this section, we will divide the analysis into two different approaches. The first approach 
estimates the time offsets and the rate offsets simultaneously, whereas the second is based 
on a separate estimation of both parameters. The latter treats the clock offset and the clock 
skew on different time scales like the scheme in [21]. First, we will describe a procedure to 
estimate simultaneously both the offsets and the skews using a combined Kalman Filter 
algorithm. We will consider a centralized optimal algorithm and describe briefly its 
decentralized implementation. Second, we treat the case of separate skew and offset 
estimation problem. We propose three different algorithms in order to estimate the skew 
parameter at each node over the network with respect to the reference clock. The procedure 
of each method will be detailed, before comparing their characteristics with respect to one 
another. The first method was introduced in the literature (see [41] and [21]) and is 
characterized by the application of the logarithmic function on the skew parameters. The 
second method is mathematically equivalent to the first one, but does not require the 
application of the logarithm. The latter is named the multiplicative method due to its 
multiplicative nature. Both these methods are based on Least-Squares minimization of 
appropriate cost functions. The third method uses the same measurement model as the 
offset estimation problem and in opposition to the two other methods, is only sub-optimal. 
The second and the third method are to the best of our knowledge original.  
 
We note that the exposition in this chapter is relatively brief, and we avoid repeating details 
that are similar to previous chapters. 
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9.1 Combined Skew and Offset Estimation 
 
Our purpose is to develop a unified algorithm in order to estimate the clock parameters 
(both clock offset and skew) simultaneously. First, we write the state space model of our 
problem that includes the clock skew influence. Then, we will optimally solve the 
estimation problem by applying the Kalman Filter algorithm to the state space vector that 
contains all the clock parameters (both clock offset and skew) at each network node. In this 
part, we consider the same measurement model as in the offset estimation problem (see 
Figure 4.1). 
 
In our clock model, the local time (at node iΛ ) is given by: ( )i i iT t tα τ= + , where iα  and 

iτ  are the skew (rate deviation) and the clock offset parameters respectively and t  is the 
real time (or the reference time). Let us define the state vector ( )x t  with its i-th element 
given by:  
 

( )( ) ( ) 1i i i ix t T t t tα τ= − = − +  
 
Let us now perform a uniform discretization of the previous continuous-time equation (for 
simplicity, we assumed that the sampling interval is uniform and denoted by ST  ): 
 

                                   ( ) ( )( ) 1 (0) 1i i S i i S ix n T n x T nα τ α= − + = + ⋅ −                           (9.1.1) 
 
We define: ( )1i ib α −�  as a constant random bias at node iΛ  and ( )1 20, ,..., T

Nb b b b= = . 
In other words, the bias b  is equivalent to the skew parameter minus 1. In vector form, we 
obtain: 
 

( ) (0) Sx n x nT b= + ⋅  
 

or, equivalently:                               
( ) ( 1)
(0)

Sx n x n T b
x τ

= − + ⋅
=

 

 
Namely, we have incorporated a constant random bias to the state space dynamical 
equation. Then, the state space model that includes the clock skew is given by: 
 

                                                
( 1) ( )

( ) ( ) ( )
S

T

x n x n T b

y n A x n v n

+ = + ⋅⎧
⎨

= +⎩
                                            (9.1.2) 

 
Here, we assume that (0, )b N B∼  where B  is the bias covariance matrix and is assumed to 
be diagonal. Moreover, ( )0x  and b  are assumed to be statistically independent. 
 
In brief, we showed that incorporating an additive bias to the dynamical equation of the 
state space model is equivalent to add a multiplicative skew parameter to the clock model.  
 
Let us define the augmented state space vector by: 
 

                                                      
( )

( )
x n

X n
b

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

                                                 (9.1.3) 
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For this augmented state space vector, we will have the following state space model: 
 

                      

( )

( 1) ( )
( 1) ( )

0

( ) 0 ( ) ( )

S

T

x n I T I x n
X n X n

b I b

y n A X n v n

⎧ +⎛ ⎞ ⎛ ⎞⎛ ⎞
+ = = = Φ⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎨
⎪ = +⎩

                  (9.1.4) 

 
It is now possible to apply the standard KF equations in order to obtain a centralized 
optimal estimate of both skew b  and offset ( )x n . Our objective is to estimate the entire 
augmented vector given in (9.1.3) (that is, the offset and the skew at each node over the 
network) in an optimal way. In addition, we will attempt to develop a decentralized version 
that hopefully converges to the optimal centralized solution. 
 
Remark 

An alternative easier method is to estimate the vector 
(0)x
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

. This is exactly equivalent 

because if one knows the vector 
(0)x
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

, one can easily compute the general vector 
( )x n
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

using the relation:  
 

( ) (0) Sx n x nT b= + ⋅  
 
 
a)   Centralized Kalman Filter Algorithm 
 
In order to find the optimal parameters, we define the corresponding objective function 
(Least-Squares approach) and we set its gradients with respect to τ  and b  to zero. An 
additional alternative is to write the Kalman Filter equations for the augmented state space 
vector. Then, we will obtain a vector equation for estimating the optimal offsets together 
with the optimal skew parameters at each node over the network. The details are hereby 
omitted for the simple reason that the procedure is very similar to the basic case, and the 
mathematical manipulations are of no particular interest.  
 
 
b)   Decentralized Implementation 
 
We briefly discuss the decentralized implementation of the optimal centralized solution. 
Proceeding similarly to Section 5, it is possible to develop a decentralized Jacobi-like 
iteration for this problem. Unfortunately, this algorithm generally diverges (the spectral 
radius of the iteration matrix is bigger than 1). Actually, we obtained a decentralized 
algorithm that allows us to estimate both the skew and the offset and we have shown (by a 
simple numerical example) that this algorithm does not converge. We omit the details here, 
as they do not contain any insights. As a future research direction, it can be interesting to 
check if the decentralized iterative algorithm converges to the optimal centralized solution 
in the case of a reduced step size. Namely, if instead of the Jacobi iterative procedure, we 
try to employ a relaxed Jacobi algorithm (or equivalently, the gradient method) with small 
step size (see Section 2.1).  
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As it stands, the problem is better solved by estimating the offsets and the skews 
simultaneously by the centralized optimal algorithm. The main advantage of this approach 
relies in that it will lead to the optimal solution; however its central drawback is that each 
node has to communicate with every other node. So far, a decentralized optimal algorithm 
for the combined estimation problem was not obtained. Therefore, we may consider the 
separate skew and offset estimation for which several decentralized methods are proposed 
in the next section. 
 
 



   65

9.2 Separate Skew and Offset Estimation 
 
In this section, we propose to solve the time synchronization problem by estimating 
separately the clock offset and the clock skew (rate offset) at each network node. The clock 
offset estimation problem can be solved by one of the preceding algorithms (see sections 5 
and 7 for the single measurement and the multiple measurement cases respectively). Three 
different methods are presented in order to solve the clock skew estimation problem. 
 
 
a)   The Logarithmic Method 

 
In the subsequent analysis, the measurements are obtained in a different way than in the 
offset estimation problem. Namely, each node is sending a pair of probe packets located at 
significant time intervals (i.e., large compared to the variances of the individual 
measurements) to each one of its neighbors. Figure 9.1 depicts the situation for the pair of 
neighboring nodes iΛ  and jΛ . Time is stamped on the packets 1k  and 2k  by the sender iΛ  
upon transmissions ( 1 2 1( ), ( ) ( )i i iT k T k T k� ) and by the receiver jΛ  upon receiving the 
packets ( 1 2( ), ( )j jR k R k ). Indeed, in order to obtain an accurate estimate of the skew 
parameter, we need to take a pair of probe packets well spaced in time. In other words, iα  
can be regarded as the slope of the local time as a function of the reference time. 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 9.1. Communication between two neighboring nodes for the skew estimation 
problem. 

 

Let mt  denote the transmission time of packet 1, 2mk m =  according to the reference time. 
Then, up to the time-stamping error (assuming that at time 0t = , the offset was iτ ): 
 

( )i m i m iT k tα τ= +  
 
Similarly, let mt�  denote the received time of packet 1, 2mk m = . Then: 
 

( )
( )

( ) ( )

m m ij m

j m j m ij m j

t t x k

R k t x kα τ

= +

= + +

�
 

  

iΛ jΛ

2 1( ) ( )i iT k T k�

1( )iT k

2( )jR k

1( )jR k
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Here, ( )ij mx k  is the propagation delay of the packet mk  over the corresponding link. In the 

above equations, both ( )1 2 1 2, , ,t t t t� �  and ( ),i jτ τ  are unknown, in addition to the skew 

parameters of interest ( ),i jα α . We now manipulate our measurements so that these extra 
unknowns are cancelled.   
 
Let jRΔ  denote the time difference between the reception of probe packet 2k  by node jΛ  
and the receiving time of  packet 1k  at node jΛ  according to jΛ ’s clock, namely: 
 

2 1( ) ( )j j jR R k R kΔ = −  
 
Let iTΔ  denote the time difference between the transmission of probe packet 2k  by 
node iΛ  and the transmission time of packet 1k  at node iΛ  according to iΛ ’s clock, 
namely: 
 

2 1( ) ( )i i iT T k T kΔ = −  
 

 If we divide iTΔ  by jRΔ , we obtain an estimate of the relative skew i
ji

j

α
α

α
=  (assuming 

that the transmission delay and the offsets remain constant for the different probe packets ):    
 

                        22 1

2 1

( ) ( )
( ) ( )

i ii i i

j j j

tT T k T k
R R k R k

α τ+Δ −
= ≅

Δ −
( ) 1i itα τ− +( )

2j jtα τ+( ) 1j jtα τ− +( )
i

j

α
α

=                   (9.2.1) 

 
It is natural to divide the above quantities in order to cancel the influence of both the offsets 

and the time interval. If we apply the logarithm function to the quantity i

j

T
R
Δ
Δ

, we will 

obtain a relative measurement of the skew logarithm: 
 

                                        ( ) ( )log log logi
ji i j

j

Tz
R

α αΔ
≅ −

Δ
�                                    (9.2.2) 

 
The term jiz  in (9.2.2) corresponds to the measurement of the node pair iΛ  and jΛ . 
 
Then, one can employ the previous methodology of Section 5 in order to estimate the skew 
logarithm at each node. In other words, if we substitute jiz  for ˆ

jiO  and ( )logi iβ α�  for 

iτ , we obtain the same mathematical problem as the previous offset estimation problem. 
For example, let us develop the optimal decentralized algorithm for the basic statistical LS 
case, namely: 1R R I−= =  and 1

0 0P − = . The state vector and the objective function to be 
minimized are given by: 
 

                  ( ) ( ) ( )( )1 1 2 2( ) log 0, log ,... log
T

N Nx n β α β α β α= = = =�                 (9.2.3)  
 

( )2

,
( ) ( )

i

T T T
ji i j

i j
j N

J y A x y A x z β β
∈

= − − = − +∑  
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In order to minimize J , we may compute the partial derivatives with respect to iβ  and set 
them to zero (the procedure is very similar to the one performed in Section 5):  
 

( ) ( )

( )

2

2 1 0

i

i i

T
i ji i ji

j Ni

i ji j
j N j N

J AA x A y z

z

β β
β

β β

∈

∈ ∈

∂
= − = − − + =

∂

⎡ ⎤
= − − ⋅ + + =⎢ ⎥

⎣ ⎦

∑

∑ ∑
 

 
( )

i

i

T
i i ji

j N

i ji
j N

AA x N

A y z

β β
∈

∈

⎧ = −
⎪
⎨

=⎪
⎩

∑

∑
 

 
Substituting into the partial derivatives leads to: 
 

( ) 0
i

i i ji j
j Ni

J N zβ β
β ∈

∂
= − + =

∂ ∑  

 
From this, we can as usual employ an iterative (synchronous) algorithm in order to 
implement the above optimal equation:  

        

                                             l m( )( 1) ( )1

i

k k

i ji j
j Ni

z
N

β β
+

∈

= +∑                                   (9.2.4) 

 
Initialization: l ( )

(0)
log (0) 2,3,...i i i Nβ α= = . Here, 0k ≥  is the iteration number. 

 
The procedure in (9.2.4) represents the decentralized synchronous algorithm that 
implements the optimal equation in order to estimate the rate offset logarithm at each 
network node given a single pair of measurements. One can easily generalize for the 
general Kalman Filter framework in a similar manner. The procedure is exactly the same; 
we have just to perform the following substitutions: 
 

                                              

( )

ˆ log

log

i
ji ji

j

i i i

TO z
R

τ β α

⎧ ⎛ ⎞Δ
→⎪ ⎜ ⎟⎪ ⎜ ⎟Δ⎨ ⎝ ⎠

⎪
→ =⎪⎩

�
                                     (9.2.5) 

 
After applying the above procedure, one can optimally estimate the rate offset logarithm at 
each node over the network with respect to the reference node. Consequently, we have 
shown that the clock skew estimation problem reduces to the same mathematical setup as 
the offset estimation problem under the appropriate substitutions in (9.2.5).  
 
Next, we propose an alternative method in order to estimate the skew parameters without 
requiring the application of the logarithm function on the measurement sets. 
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b)   The Multiplicative Method  
 
Now, we will develop an additional method to estimate the skew parameters without 
requiring the application of the logarithm function on the sets of measurements. As we 
previously explained, the estimation of the skew values iα  has to be done without the prior 
knowledge of the offsets iτ . We note that the only way to get rid of the dependence of the 
real time t  is to divide iTΔ  by jRΔ : 
 

                                     2 1

2 1

( ) ( )
( ) ( )

i i i i
ji

j j j j

T T k T k
R R k R k

ας
α

Δ −
= ≅

Δ −
�                                 (9.2.6) 

 
The term jiς  in (9.2.6) corresponds to the measurement of the node pair iΛ  and jΛ . 
 
In this case, we do not apply the logarithm function but instead we define the following 
objective function which is to be minimized: 
 

( )
2

, i

i
ji

ji j N
J αα ς

α∈

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
We considered here the basic LS case, but one can easily generalize to the WLS case. Let 
us now differentiate ( )J α  according to kα  and set the partial derivatives to zero: 
 

2
k

J
α
∂

= −
∂

1 2
k

k
jk

j jj N

α
ς

α α∈

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
∑

( )2
0

1

k

i i
ki

kj N k

j

α α
ς

αα

α

∈

⎛ ⎞
− =⎜ ⎟

⎝ ⎠

−

∑

( ) 2
i

i i
ji

jj N j

α α
ς

α α∈

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
∑

( ) ( )

0

1 0

0 0

i

i

i

i
ji

jj N

i i
ji

j jj N

i j i j ji
j N

α
ς

α

α ας
α α

α α α α ς

∈

∈

∈

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞
− − =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

≠ ≠ − ⋅ =

∑

∑

∑

 

 
From this, we can employ an iterative (synchronous) algorithm in order to implement the 
above optimal equation: 
 

                                       ( 1) ( )1ˆ ˆ
i

k k
jii j

i j NN
α ς α+

∈
= ⋅∑                                  (9.2.7) 

 
We can note that the synchronous decentralized algorithm in (9.2.7) has exactly the same 
form as the previous algorithm with the logarithm function in (9.2.4). The difference is that 
in this case, the update is multiplicative and in the other case the update was additive. 
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The main drawback of the two previous methods is that the measurements for the offset 
estimation and for the skew estimation are not similar. Namely, the measurement model for 
the offset estimation problem is composed of a fast bilateral exchange (see Figure 4.1). In 
the measurement model of the skew estimation problem, node iΛ  sends a pair of probe 
packets located at significant time intervals to node jΛ  (see Figure 9.1). Since we are 
interested in performing both the offset and the skew synchronizations, it is valuable to 
develop an algorithm that employs the same measurement format in the different 
procedures. 
 
Next, we propose an additional sub-optimal method for skew estimation that requires the 
same measurements format as the offset estimation problem. 
 
 
c)   State-Space based Solution 
 
Now, we consider the same measurement model as in the offset estimation problem (see 
Figure 4.1). For this measurement model, it was previously shown that the measurement 
equation of the state space model is given by: 
 

( ) ( ) ( )Ty n A x n v n= +  
 
The entries of the vector ( )x n  are defined by the offsets at each node at time t : 
 

( )( ) ( ) 1i i i ix n T n n nα τ= − = − +  
 
Here, 0n ≥  is the discrete time index and ( )y n  is the measurement set of every pair of 
neighboring nodes at time n . We note that n  need not refer to the actual time, but rather 
corresponds to the epoch when the n-th measurement set ( )y n  become available. The 
initial state of the system (0)x  has the following first and second order statistics: 
[ ] [ ]0 0(0) cov (0)E x x x P= = . { }( )v n  is the measurement noise modeled as a white noise with 

zero mean and covariance ( ) 0R n R= > . We assume that { }( )v n  is uncorrelated and therefore 
the matrix R  is diagonal and Positive Semi-Definite (PSD). Its i-j element corresponds to 
the pair of neighboring nodes iΛ  and jΛ : 
 

( ) jiij
R r=  

{ }( ) , (0)v n x  are uncorrelated, that is: (0) ( ) 0TE x v n n⎡ ⎤ = ∀⎣ ⎦ . 

 
Let us denote:  
 

( )
( )1 2

1

0, ,...,
i i

T
N

b

b b b b

α −

= =

�
 

 
Then: 
 

( )
( )
( ) ( )T

x n b n
y n A b n v n

τ

τ

= ⋅ +

= ⋅ + +
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We consider the multiple measurement case and  we propose a decentralized sub-optimal 
algorithm that estimates the offset and the skew separately. The offsets are estimated after 
each set of measurements in a recursive way (for more details, see Section 7), and the skew 
parameters are estimated after bn T=  sets of measurements only (according to the pair of 
farthest measurements). This is a sub-optimal scheme since the estimate of b  is not 
performed in accordance with all the sets of measurements, and we are not taking into 
account the dependence between τ  and b . We would like to emphasize the fact that this 
algorithm is a heuristic method (non-optimal) in opposition to the majority of the previous 
algorithms that were optimal in the sense that they achieve the minimal value of an 
objective function.  
 
We will now present in more details this decentralized algorithm that estimates the skew 
parameter at each node over the network. As we explained in the beginning of the present 
section, it is logical to estimate the skew parameter according to a pair of measurements 
well spaced in time (because it is like a slope estimation problem), whereas the offsets can 
be estimated after each set of measurements. Let us compute the difference between ( )by T  

and ( )0y  (assuming that the offsets iτ  are time-invariant): 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
0 0

0 0
(9.2.8)

T
b b b

T

b bT

b b

y T A b T v T

y A v

y T y v T v
A b

T T

τ

τ

⎧ = ⋅ + +⎪
⎨

= +⎪⎩
− −

= ⋅ +

 

 
One can easily note that we have obtained in (9.2.8) an equation that is similar to the 
measurement equation of the offset estimation problem (see Section 4.4). The only 
difference is that the measurements and the noises are divided by the number of 
measurement sets bT . The consequence is that now, the covariance matrix of the noise will 

be equal to 
( )2

2

b
R

T
⋅ , i.e., the measurement noise distribution is given by: 

 
( ) ( )

( )2
0 20,b

b b

v T v
v N R

T T

⎛ ⎞− ⎜ ⎟=
⎜ ⎟
⎝ ⎠

� ∼ . 

 
In other words, we showed that the skew estimation problem considered here reduces to the 
basic offset estimation problem of Section 5 under the following substitutions: 
 

                                      ( ) ( )0b

b

x b
y T y

y
T

v v

→⎧
⎪ −⎪ →⎨
⎪
⎪ →⎩ �

                                  (9.2.9) 
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For example, the synchronous decentralized algorithm that estimates ib  in the most basic 
case (Least-Squares estimation) is given by: 
 

                     ( )( )( 1) (0) ( )1ˆ ˆˆ ˆb

i

Tk k
i ji ji b j

j Nb i

b O O T b
T N

+

∈

= − + ⋅
⋅ ∑                            (9.2.10) 

 
In the general case (DKF), we will obtain the following synchronization procedure: 
 

( )( )( 1) (0) ( ) (0)1 1ˆ ˆˆ ˆ (9.2.11)
21 1

2

b

i

i

Tk k i
i ji ji b j b

j N ji i
b

j N ji i

bb O O T b T
r B

T
r B

+

∈

∈

⎡ ⎤
= − + ⋅ + ⋅⎢ ⎥

⎛ ⎞ ⎢ ⎥⎣ ⎦⋅ +⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑

 

 
Here, we assume as usual that (0, )b N B∼  where B  is the bias covariance matrix and is 
assumed to be diagonal. 
 
In practice, we will estimate the offsets according to one of the previous developed 
algorithms in a recursive way (after each set of measurements). After that enough sets of 
measurements, say bT  arrived, one can estimate îb  at each node over the network 

according to one of the previous algorithms. While we estimate îb  at each node over the 
network, we can easily compute the skew parameter using the relation: 
 

ˆˆ 1i ibα = + . 
 
Then, we will assume that the skew parameter remains constant during a known constant 
time bτ , so we have just to normalize the measurements by the estimated skew: 

 

,
ˆ ˆ
i i

i i

T R
α α

. 

 
In order to determine the correct value of the constant time bτ , we have to know how much 
time the skew can be assumed to stay constant in our model. This can be done according to 
the literature on how to model a clock and is beyond the scope of this research. After bτ  

time units, one can estimate once more the new parameters îb  at each node over the 
network according to the first and the last measurements of this new time period. In other 
words, after each set of measurements we will estimate ( )ˆ 2,...,i i Nτ = , whereas 

( )ˆ 2,...,ib i N=  is estimated according to ( )by T  and ( )0y  at the first cycle, ( )2 by T  and 

( )1by T +  at the second cycle, etc. 
 
Remark: The number bT  can be different for each node namely; each node can update the 
skew of its own clock at his most appropriate time. 
 
This approach is similar to the scheme in [21], where the authors treat skew 
synchronization and offset synchronization on different time scales. That is, the parameters 

iα  are adjusted every skewτ  time units, whereas the parameters iτ  are adjusted every 

offsetτ  time units, with:  

skew offsetτ τ� . 
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So far, we have obtained several decentralized algorithms for estimating the skew 
parameters b  with no dependence on the offsets τ .  
 
In summary, we have developed several decentralized algorithms for clock synchronization 
that can deal with general clocks, including both offsets and skews. The first option is to 
estimate the clock offset and skew simultaneously whereas the second alternative estimates 
them separately. Concerning the combined estimation problem, only a brief description was 
considered and no concrete results were presented. For the separate estimation method, 
three algorithms were proposed in order to estimate the skew parameter. The sub-optimal 
solution is the only one that uses the same measurement format as that of the offset 
estimation procedure. Nevertheless, the parameter bT  must be known, and the result is only 
sub-optimal considering that only two sets of measurements are used. In the two other 
optimal methods, there is no such requirement on bT  (because 2 1t t−  is cancelled), yet the 
algorithms are based on measurements that are not similar to the offset estimation problem.  
 
In the next section, we present simulation results over several network topologies for 
evaluating and comparing the accuracy of the proposed time synchronization schemes. 
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10. Numerical Results 
 
 
In this section, we implement some of the algorithms that we previously developed for 
typical problems and we compare the results with the existing algorithms. First of all, let us 
describe in a concise way the different algorithms that we chose to implement. 
 
 
10.1 Algorithms Description 
 
CTP: (“Classless Time Protocol” [14]). This algorithm computes each offset by calculating 
the average of the relative offsets of all the adjacent nodes and is equivalent to performing 
the Least-Squares statistical method. For example, if one node has two neighbors with 
relative offsets of (+1) and (–2) respectively, the node adjusts its own clock by: 

1 2 0.5
2

+ −
= − . In [14], the authors used a measurement filter in order to obtain less noisy 

measurements (low queuing delay). The procedure is repeated at each node and for each set 
of measurements until convergence. In simulations, both the centralized and the 
decentralized versions are considered. 
 
WLS: Similar to CTP, but now the offsets are calculated using the Weighted Least-Squares 
method. Namely, each offset is estimated as the average over the neighbors' relative 
measurements, but each measurement is multiplied by a weight according to its accuracy. 
For example, in the simulations we made the logical assumption that the links with a 
smaller queuing delay (i.e., there is a light load) have a smaller variance in their 
measurements. As a consequence, links with small queuing delays are associated to a 
bigger weight when evaluating the offsets. 
 
DKF: An additional decentralized algorithm based on the Kalman Filter framework. This 
algorithm is related to the following state space equations: 
 

( 1) ( )
( ) ( ) ( )T

x n x n
y n A x n v n

+ =⎧
⎨

= +⎩
 

 
Here, ( )1 2( ) 0, ,... T

Nx n τ τ τ=�  ( iτ  is the offset of the node iΛ ), ( )y n  is the measurement at 
time n  and A  is the reduced incidence matrix (for more details, see the problem 
formulation and the scientific background sections). Moreover, we assume the following 
usual assumptions: 
  
- (0)x  is the initial Gaussian state of the system with the following first and second order 
statistics: 

[ ] [ ] ( )( ) 0(0) (0) cov (0) (0) (0) (0) (0) (0)T
x x x xE x m x E x m x m P P⎡ ⎤= = − − = =⎣ ⎦  

 
- { }( )v n  is the measurement white Gaussian noise with zero mean and covariance 

( ) 0R n R= > . 
 
-  { }( ), (0)v n x  are uncorrelated for any n . 
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As we previously show, the decentralized Kalman Filter algorithm that we developed 
converges to the optimal centralized solution under the appropriate conditions. We chose to 
implement the DKF algorithm in a synchronous way, with only one set of measurements, 
but we will examine several different values of the covariance matrices 0P  and R . 
 
CKF and CLS: The centralized Kalman Filter and the centralized Least-Squares 
algorithms in their standard form. For more details, see Section 5.2. 
 
SOA: The sub-optimal algorithm that neglects the off-diagonal terms of the inverse 
covariance matrix. For more details, see Section 7.4.     
 
As we previously mentioned, NTP is the most widely accepted standard for synchronizing 
clocks over the internet [28-30]. The three following algorithms are different hierarchical 
versions of the Network Time Protocol (NTP) and are used in this section as a benchmark. 
These three NTP-based hierarchical schemes were inspired by [14]. 
 
NTP-1: In this first scheme, each node arbitrarily selects a single neighbor which is one 
hop closer to the reference node than itself. Node iΛ  adjusted his clock by: 
 

2
ij ji

i

T T
τ

Δ −Δ
= . 

 
We start with nodes that are one hop away from the reference node, move to nodes that are 
two hops away from it, etc. 
 
NTP-2: This second scheme is similar to NTP-1, but in this case ijTΔ  and jiTΔ  are selected 
separately on each directed link. In other words, it tends to find the smallest possible 
queuing delays for each link. For example, if the queuing delays from node iΛ  to node kΛ  
are (2, 3, 6, 5, 3, 4, 5, 6) and back from kΛ  to  iΛ  (6, 5, 4, 6, 4, 5, 3, 7), it will select the 
minimal value on each direction separately, i.e., (2, 3) and calculate the offset based on this 
modified measurement. 
 
NTP-3: This third scheme is a multi-parent scheme. Each node computes its clock offsets 
using the average of all its neighbors which are one hop closer to the reference node than 
itself. This can be interpreted as the CTP algorithm where only the parent nodes are used 
for calculations. 
 
 
10.2 Network Topologies 
 
In order to evaluate the results of the different algorithms, we need first to construct the 
network topology setup. The network topology we choose to implement is based on the 
random model of [47]. We start with a single root node (also called the “Reference Time 
Node") and restrict the hop distance of each node to the root to be at most a certain number 
of hops. The connectivity between the nodes in the network is randomly selected. The 
propagation delay of each edge is chosen once for both directions (assumed to be 
symmetric) of any existing edge based on the uniform distribution [ ]0,10U . The queuing 
delay of each edge is chosen as Erlang (or Gamma) distribution where the number of 
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exponentials (α ) and the mean time between events (θ ) are randomly selected [ ]1,10U  

and [ ]0.1,1U  respectively. The parameters are sampled once for each edge. The clock 
offsets with respect to the “Reference Time Node” are randomly selected based on a 
uniform distribution [ ]10,10U − . The offset of the reference node ( 1Λ ) is set to zero since it 
is assumed to be synchronized with the UTC. 
 
As suggested by NTP in [30], eight round-trip packets are transmitted over each edge and 

ijTΔ  are measured based on these packets. Then, we have to pick up the best measurement 
among the eight (the one with the smallest transmission delay). To be compliant with the 
NTP message format, we suggest using four time stamps in each bilateral transmission. We 
constrained each node to have at least one neighbor. 
 
In this numerical example, we naturally assumed that all the clocks run at the same speed, 
i.e., 1, ,i j i jα α= = ∀  and that the offsets are time invariant. 
 
In all the subsequent simulations, we consider a general network as depicted in Figure 10.1, 
where internal loops are allowed. This is important because the Least-Squares approach 
improves the estimates by imposing the global constraints for all the loops in the multihop 
network. 
 

 

 

Figure 10.1. A general network with internal loops. 

 
Three different networks are considered: 

• Network 1: a 400 node network with relatively high connectivity of 1798 edges. 

• Network 2: a 400 node network with 997 edges. 

• Network 3: a 170 node network with 1200 edges. 
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10.3 Graphical Results 

In this section, we compare CTP to the WLS and to the DKF algorithms in several 
interesting cases. Finally, we perform the recursive centralized Kalman Filter (with 50 
measurement sets) and compare its performance to the centralized Least-Squares method 
and to the Sub-Optimal Algorithm (SOA) that neglects the off-diagonal terms of the 
inverse covariance matrix.     

In Appendix C, one can find a performance comparison between the CTP algorithm and 
three hierarchical versions of NTP, and a convergence analysis of the decentralized version 
of CTP (see Figures C.1 to C.4). All those simulation results are similar to the work 
performed by O. Gurewitz et al. in [14] and were repeated in order to constitute the starting 
point of the subsequent results. The next step consists of implementing the Weighted Least-
Squares algorithm in a decentralized manner and to compare the results to the decentralized 
CTP algorithm. In the WLS algorithm, we decide to take several different values of the 
weighting matrix R . Then, we will model the queuing delay according to this weighting 
matrix. For example, we can choose the queuing delay according to the Gamma 
distribution where the number of exponentials (α ) is equal to the upper integer value of R  
and the mean time between events (θ ) is equal to R . The other option is to take a normal 
distribution with zero mean and covariance matrix equal to the matrix R . 

Figure 10.2 presents the comparison between the decentralized CTP and WLS algorithms 
for the case where the weighting matrix R  is randomly distributed [ ]0.1,12U . The network 
topology is the same as before (400 nodes with 997 edges) and the queuing delay is 
randomly chosen according to the Gamma distribution relative to R .  
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Figure 10.2. Comparison between the decentralized CTP and WLS algorithms in Network 2. 

 

As expected, the WLS method outperforms the CTP (or LS) algorithm. The reason is that 
in the WLS version, each measurement is multiplied by a weight according to its accuracy 
that depends on the queuing delay. Since the weights are equal to the variance of the 
queuing delay; it outperforms the case where the weights are identically equal to one. This 
scenario is not very realistic and is more theoretic, because in practice we do not know the 
exact covariance matrix of the delay. 

Unsurprisingly, if the weighting matrix R  is taken as the identity matrix, we return to the 
Least-Squares case, equivalent as it is to the CTP algorithm. As we can see in the next 
figure, the graphs perfectly coincide. 
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Figure 10.3. Comparison between the decentralized CTP and WLS algorithms in Network 2, 
with R I= . 

 

The next scenario corresponds to the case where half the nodes have a certain value ijr  and 
the remaining have twice that value, i.e., half the nodes are smarter than the others. For 
example, we chose the values 4.5 and 9. In this case too, the WLS method is more accurate 
than the CTP algorithm as we can see in the next figure. 

 
We note that in all the relevant figures, the curve describing the CTP algorithm is not 
exactly the same. Indeed, it slightly depends on the noise realization and each figure was 
plotted for a random realization. However, this fact does not compromise the comparison 
between the different algorithms. No matter what the noise realization is, the insight 
presented by the results remains correct. 
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Figure 10.4. Comparison between the decentralized CTP and WLS algorithms in Network 2, 
with different ijr . 

 
As previously pointed out, we cannot know exactly the covariance matrix R . Hence, we 
check several cases, where instead of R , we may employ as an example 2R  or the matrix 
R  plus an additive Gaussian Noise (with different variances). In other words, the matrix R  
is not known exactly, but we can use an approximation.  

Figure 10.5 shows that the WLS method with the exact R  gives the best results and the 
CTP algorithm (with R I= ) achieves the worst results. Interestingly, the WLS algorithm 
with 2R  gives intermediate results (between LS and WLS). We can infer that even if the 
exact R  is not employed, we can still outperform the results of the basic CTP protocol by 
using a good approximation of the matrix R . We will see in Figure 10.10 that if the 
approximation is not quite accurate, the regular LS outperforms the WLS algorithm. 
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Figure 10.5. Comparison between the decentralized CTP and WLS algorithms (with R  
and 2R ) in Network 2. 

 

Next, let us analyze the robustness of the matrix R  in the WLS algorithm. Since the exact 
R  is not known, we implement the WLS algorithm with a weighting matrix equal to R  
plus an additive Gaussian noise with zero mean and two different standard deviations. We 
chose the following model: 

1
ij

ij

n
r
+ � . 

Here, ijn�  is a Gaussian noise with zero mean and standard deviation equal to 0.05 in the 
first case and to 0.2 in the second. The results are summarized in the next figure. 



   81

  

 

 

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value clock offset

Fr
ac

tio
n 

of
 n

od
es

WLS Vs. Distributed CTP 400 Nodes

 

 
Distributed CTP
WLS CTP

Figure 10.6a. Small noise variance 
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Figure 10.6b. Higher noise variance 
 

 

Figure 10.6. Comparison between the decentralized CTP and WLS algorithms (with 
additive Gaussian noises in R ) in Network 2. 

 

As we can see from the previous figure, the results depend on the noise intensity. In the 
first case (Figure 10.6a), the variance of the Gaussian noise is relatively small and the WLS 
method outperforms the CTP algorithm. In the second case (Figure 10.6b), the variance 
noise is increased and as a consequence, the WLS is not anymore better than CTP. 
Therefore, we partially investigate the robustness properties of the exact covariance matrix 
R , and obtain as expected that if the intensity of the additive Gaussian noise is too high, 
the WLS method is not appropriate, whereas when the noise variance is relatively low, the 
WLS algorithm gives better results than CTP.  
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The next part of our numerical analysis is dedicated to the DKF algorithm. In the latter, we 
can incorporate some a-priori knowledge of the initial offsets and we compare it to the 
decentralized CTP algorithm. In Section 6, we showed that the DKF algorithm converges 
to the optimal solution obtained by performing the centralized Kalman Filter. In addition, 
the DKF algorithm has the same mathematical structure as the decentralized CTP with the 
incorporation of a supplementary term related to the a-priori knowledge. First, we check 
the DKF algorithm in the case where the initial covariance matrix 0P  is an infinite diagonal 
matrix and R  is equal to the identity matrix. As expected, this case reduces to the basic LS 
case (CTP algorithm) and the graphs are plotted in Figure 10.7. 
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Figure 10.7. Comparison between the decentralized CTP and DKF algorithms (with 
( )1

0P diag− → ∞  and R I= ) in Network 2. 
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The next scenario considered is related to the case where half the network nodes are smart 
(i.e., small initial variances in the main diagonal of 0P ), and the remaining are unintelligent 
(i.e., bigger initial variances in the main diagonal of 0P ). In all the cases, the initial 
covariance matrix 0P  is assumed to be diagonal and the initial offsets vector 0x  is supposed 
to be equal to zero. According to the Kalman Filter requirements, the initial offsets have a 
Gaussian distribution: 

( ) ( )0 00 ,x N x P∼ . 

We present the results in Figure 10.8 in the case where R I=  and 0P  is given by:  

( )
( )
( )0

0.01,0.19 ;

5,10 ;ii

U half the nodes
P

U the remainder

⎧⎪= ⎨
⎪⎩

∼
∼

. 

The case where the matrix R   takes different values is straightforward and the results are 
not presented here because we want to focus on the influence of the a-priori knowledge. 
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Figure 10.8. Comparison between the decentralized CTP and DKF algorithms (with 
different ( )0 ii

P  and R I= ) in Network 2. 
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The last case we analyze in the DKF context is the one where 10% of the nodes are 
perfectly synchronized to the UTC (through a GPS for example), and the remainder is not 
synchronized at all. Namely, for these arbitrary 40 nodes we take the initial variances very 
small (0.01) and the offsets equal to zero, and for the rest of the nodes, the variances tend to 
infinity and the offsets are randomly chosen according to a uniform distribution. The 
graphical comparison between the decentralized CTP algorithm and DKF is presented in 
Figure 10.9. As expected in this case too, the DKF algorithm outperforms the decentralized 
CTP method in terms of clock accuracy. 
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Figure 10.9. Comparison between the decentralized CTP and DKF algorithms (with 10% 
of nodes synchronized via GPS) in Network 2. 

 

In all the previous simulations, the results we obtained agree with our expectations. 
Namely, the CTP algorithm is more accurate than all the NTP schemes and the 
corresponding decentralized version converges to the optimal centralized solution (see the 
proof in [14]). Moreover, the WLS algorithm is more accurate than the basic CTP (LS) 
method and the DKF outperforms the CTP algorithm in some suitable scenarios. These 
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results are expected from the theory because in the WLS algorithm, we provide the best 
weighting factors to the measurements and in the DKF method, some a-priori knowledge is 
included in the right manner. Hence, in several appropriate scenarios (if some a-priori 
knowledge is available or the variance of the measurements can be approximated), the 
DKF and the WLS algorithms are preferable. As expected from the theory, this typical 
application shows that all the algorithms give satisfactory results. In many cases, the 
Kalman Filter is the best algorithm, followed by the Weighted Least-Squares and the 
regular Least-Squares methods and the NTP based protocols.    

In this section, we are not comparing the convergence rate of the different algorithms and 
this can be also an important factor in the choice of the appropriate protocol. 

The last part of this section is devoted to the comparison of the recursive Centralized 
Kalman Filter (CKF) algorithm to the Sub-Optimal Algorithm (SOA) that neglects the off-
diagonal terms of the inverse covariance matrix (for more details, see Section 7.4). The 
latter is only a sub-optimal procedure and there is no need to know the parameter n . We 
check several values of n  (the number of measurement sets) and 0P  (the initial covariance 
matrix). In this part, we consider the topology of Network 3 (170 nodes with 1200 edges). 
Our objective is to compare the accuracy of the estimated offsets obtained by both the 
optimal and sub-optimal algorithms and to compare the variances. 

In this case, the queuing delay is randomized in accordance with the Kalman Filter 
assumptions, namely normally distributed with zero mean and covariance matrix R . The 
first situation we considered is the basic case where 0P R I= = . The following figure 
presents the results obtained by applying both the optimal CKF method and the SOA for 
different values of n . As expected, in all the cases the optimal algorithm gives the best 
results. The sub-optimal algorithm gives relatively poor results but reduces the complexity 
and is not diverging. If the important criterion is the accuracy of the clock synchronization, 
it is obvious that the optimal CKF is preferable, but if the accuracy is less important than 
the complexity and the computation time, the sub-optimal algorithm can be valuable. We 
are also interested in comparing the variances of the different algorithms. We compute the 
following expression: 

                                                    
( ) ( )

( )
CKF SOAii ii

CKF ii

P P
P
−

                                          (10.3.1) 

at each node over the network and present the results in a graphical form in Figure 10.11. 
As we can note from the figure, the variances of the CKF method are always bigger than 
the variances of the SOA algorithm and the normalized deviation is quite elevated (from 
45% to 75 %). In other words, the sub-optimal algorithm underestimates the variances and 
consequently is not a good method. Since the variances are small, it will give a wrong 
estimation and will not correct the results. In brief, we can infer that the simple sub-optimal 
algorithm does not solve the problem efficiently and it is preferable to employ the Kalman 
Filter algorithm. 
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Figure 10.10. Comparison between CKF and SOA (with 0P R I= = ) in Network 3 for 
different values of  n . 
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Figure 10.11. Variance comparison between CKF and SOA (with 0P R I= = ) in Network 3.  

 
 

The next step extends the preceding analysis to a more general framework where the 
measurement covariance matrix R  is uniformly distributed and the queuing delays are 
normally distributed with zero mean and covariance matrix R . In other words: 
 

[ ]
( )

0.01,12

0,delay

R U

Q N R

∼

∼
 

 
In addition, we consider that 10% of the nodes are perfectly synchronized to the UTC 
(through a GPS for example), and the remainder is not synchronized at all. Namely, for 
these arbitrary 17 nodes we will take the initial variances very small (0.01) and the offsets 
equal to zero, and for the rest of the nodes, the variances tend to infinity and the offsets are 
randomly chosen according to a uniform distribution. In this analysis, we also compare the 
results to the Centralized Least-Squares (CLS) algorithm. 
 
In fact, as we previously mentioned, the SOA gives relatively poor results in comparison to 
the CKF algorithm. We thus want to determine if the basic LS algorithm is more accurate 
than SOA. In other words, is it preferable to totally neglect the a-priori knowledge (i.e., 
take 1

0 0P − = ) or to consider this a-priori knowledge and then to neglect a part of its 
influence? 
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Figure 10.12 presents the results for the offsets obtained by applying the optimal CKF 
method, the SOA and the CLS algorithms for the same different values of n  as in the 
previous case. Figure 10.13 compares the variances between CKF and SOA. We can draw 
the same conclusions as in the previous case, with the exception of a normalized variance 
dispersion between 4% to 78%.  
 
Moreover, we obtained that the sub-optimal algorithm is even worse (in terms of clock 
accuracy) than the basic centralized Least-Squares method (that does not take into account 
the initial covariance matrix). From the two subsequent figures, we may conclude that 
despite the fact that the sub-optimal algorithm is valuable for complexity and computation 
time reasons, the results are relatively far from the optimal ones. Hence, we do not consider 
it as an efficient algorithm to solve the time network synchronization problem considered 
in this thesis. In order to solve this problem in an efficient way, we propose several 
alternatives. The first option is to apply the recursive version of the DKF algorithm that we 
developed in this report because it leads to the optimal solution and requires only local 
communication. A second alternative is to investigate another sub-optimal solution, such as 
the method proposed in [17]. This recent work presents a distributed Kalman Filter that 
estimates sparsely connected, large scale systems (L-banded matrix algorithm). Actually, a 
smart approximation of the covariance matrix is employed and the authors prove that the 
solution converges to the global Kalman Filter as the number of bands increases.  
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Figure 10.12. Comparison between CKF, SOA and CLS (with [ ]0.01,12R U∼  and 0P I≠ ) 
in Network 3 for different values of  n . 
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Figure 10.13. Variance comparison between CKF and SOA (with [ ]0.01,12R U∼  and 

0P I≠ ) in Network 3. 

 
In summary, we performed several clock synchronization algorithms over different 
network topologies and compare the results. We obtained that the algorithms based on the 
Kalman Filter framework give the best results in terms of clock accuracy. The basic Least-
Squares algorithm (equivalent to CTP in [14]) outperforms the three hierarchical NTP 
schemes considered and we have extended the results to some more general situations. We 
can provide different weights to the measurements according to their accuracy and 
incorporate a-priori knowledge of the problem. As seen in the simulation results, the 
decentralized Kalman Filter algorithm constitutes the most appropriate and the most 
general method for clock synchronization among the proposed algorithms. The clock 
accuracy is the most precise, it requires only local communication between neighbors and 
the complexity is not increased. In the last part of this section, we compared the centralized 
Kalman Filter solution to a simple sub-optimal algorithm that neglects the off-diagonal 
terms of the inverse covariance matrix 1

0P − . As expected, the optimal algorithm gives 
improved results with respect to the sub-optimal method, and this is why we needed to 
develop a decentralized version of the Kalman Filter. 
 
Simulation results on the skew estimation problem are not considered in this thesis. As a 
future work, one may envisage the comparison of the different algorithms of Section 9.  
In the next section, we present the conclusions and several directions for future research.
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11. Conclusion and Future Work 
 
 
We developed several decentralized algorithms for estimating the offset at each node in a 
network with respect to the reference time, using a Kalman Filter framework. These 
algorithms can be either synchronous or asynchronous, some of which being recursive. In 
addition, we showed that these decentralized filtering algorithms converge to the optimal 
centralized solution. The essential characteristic of these algorithms is their decentralized 
nature; each node can estimate its clock offset only by exchanging packets with its one-hop 
neighbors. We considered the case where all the clocks run at the same speed, i.e., 

1i jα α= =  (there is no skew) as well as the case where i jα α≠ . In the latter case, we 
developed several different estimation algorithms: one for estimating the clock skews 
(without knowledge of the offsets) and one for estimating the clock offsets. In practice, we 
will treat skew synchronization and offset synchronization on different time scales. We 
obtained that the offset and the skew estimation problems reduce to the same mathematical 
setup. Hence, we developed several decentralized algorithms for clock synchronization that 
can treat general clocks with both offsets and skews. We investigate two different 
approaches. In the first, time offsets and rate offsets are estimated simultaneously, whereas 
the second is based on a separate estimation of both parameters. 
 
In summary, we extended the existing Least-Squares results using the Kalman Filter 
framework. Namely, we can give different weights to the measurements according to their 
accuracy and include a-priori knowledge. The main algorithm is both decentralized 
(requires only local broadcasts), recursive (works in real-time applications) and converges 
to the optimal centralized solution. As expected, under some appropriate assumptions, we 
showed that our optimal estimated offsets correspond to the Maximum A-Posteriori 
estimator (or to the Maximum-Likelihood estimator in the statistical Least-Squares case).  
 
We also considered several extensions to the basic case, like the incorporation of a discount 
factor and the exposure to temporary communication failures. We tested the different 
algorithms on typical networks and compared the results with several versions of the 
Network Time Protocol. In most of the cases, the proposed algorithms outperform the NTP 
schemes and the LS method. In addition, we compared the recursive CKF algorithm to a 
simple sub-optimal algorithm that neglects the off-diagonal terms of the inverse covariance 
matrix. 
 
Several directions may continue the work performed in this research thesis. Among these, 
we suggest the following: 
 

• The general clock problem that includes both offset and skew was not solved in an 
optimal way. It can be interesting to find a decentralized optimal algorithm that 
converges to the optimal solution and makes use of all the measurements. 

 
• There exist several approaches to performing heuristics that approximate the 

Kalman Filter solution. For example, [17] presents a distributed Kalman Filter to 
estimate sparsely connected, large scale systems (L-banded matrix algorithm). It 
can be worthwhile to use the same approach to solve the clock synchronization 
problem. 
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• In this thesis, we gave more importance to theoretical analysis than to numerical 
simulations.  Extending the simulation results to the case where a general clock is 
considered (including skew estimation), and implementing the algorithm with 
temporary communication failures could provide fruitful. Moreover, it can be 
valuable to compare the convergence rate of the different algorithms in a numerical 
analysis.  

 
• In the general state space problem that includes process noise, we did not achieve 

an optimal decentralized algorithm. A further possible direction for future research 
may be to solve this problem optimally. 

 
• So far, the offsets were considered to be time-invariant and the network topology 

static. The next step involves solving the same problem when these assumptions are 
relaxed, that is, dynamic topologies with time-varying offsets. In the time-varying 
case, the advantageous properties of the Kalman Filter structure can be exploited. 

  
• As we previously noted, the problem that we considered in this thesis can be viewed 

as a general problem related to distributed estimation based on relative 
measurements in sensor networks. The time synchronization and the sensor 
localization problems are only special cases. An additional question of interest is to 
consider a general framework in order to estimate the distances between several 
cooperative agents. An interesting example is that of a group of aircraft flying in 
formation, where we seek to estimate the distance to the leader. This problem seems 
to be very interesting albeit more difficult due to its non-linear nature.   
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Appendix A – Equivalence between KF and LS 
 
 
We intend to prove the following general theorem about the equivalence between the 
Kalman Filter and the Least-Squares problem. 
 
Assuming the Gaussian linear (time varying) state space model given by: 
 

0( 1) ( ) ( ) ( ) ( ) (0) ( , )
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Let us assume that the measurement noise ( )v n  and the system noise ( )w n  are white, 
uncorrelated and statistically independent of 0x .   
 
We denote the state vector that maximizes the Maximum A-Posteriori (MAP) probability 

by ( )( ) ( )
0 ,...,

Tn n
MAP kx x x= . Let us recall that for the Gaussian case, this is equivalent to the 

MMSE estimator, i.e., the state vector obtained by applying the Kalman Filter ( ( )ˆ |x n n ). 
 
Additionally, consider the following deterministic optimization problem: 
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Here, 0x  and { }
0

n

k k
y

=
 are given vectors, and 1 1

0 , ,k kP R Q− −  are symmetric positive-definite 

matrices.  
 
The previous constrained optimization problem is by definition a Least-Squares problem. 
Let us denote its optimal solution by LSx .  
  
 
Theorem 
 
The minimizing solution of the above LS  problem is equal to the MAP estimator (and to the 
MMSE solution), i.e., under the above conditions: 
 

                                           LS MAP MMSEx x x= =                                  (A.2) 
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Proof  
 
Let us write the expression of 0 0( ,..., , ,..., )n nP x x y y : 
 

0 0 0 0 1( ,..., , ,..., ) ( , , , 0,..., 1, 0,..., )n n i i i i i j j j jP x x y y P x x x x G w y H x v i n j n+= = −Φ = − = = − =
 

Without loss of generality, we can assume that kG I= . Recalling that each term is 
Gaussian and that all the terms are independent, we can obtain: 
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On the other hand, we can compute the MAP estimator: 
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Appendix B - Maximum-Likelihood and Maximum A-Posteriori                
        Estimators 
 
 
Consider the Weighted Least-Squares case, i.e., the objective function is given by: 
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As we have shown previously, the optimal decentralized solution for estimating the offset 
at each network node according to a single set of measurements is given by: 
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We will now compute the Maximum-Likelihood Estimator of the offsets and under some 
basic assumptions; we will obtain the same expression as in (B.1).  
 
As usual, the measurements model we used is:  
 

( ) ( )1ˆ
2ji ij ji i j ij
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Here, ijε  is the estimation error of the relative offset between node iΛ  and node jΛ  (by 

definition ij jiε ε= ) .We will further assume that these random variables are independent 
for any , 1,... ( )i j N i j= ≠ .  
 
Let us write the expression for the probability of the estimated offset ˆ

ijO  given the values 

of the vector τ  under the assumption that the errors ijε  are Gaussian random variables 

with mean zero and variance ijr : 
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The joint probability of the estimated offsets ˆ

ijO  given the values of the vector τ   

( ,i j∀ such that ij N∈ ) is given by (assuming that ijε  are independent): 
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Taking the logarithm function on P , differentiating it with respect to iτ  and setting it to 
zero will lead to the same solution as in the Weighted-Least-Squares case. Under the 
assumptions that the estimation errors are both Gaussian (with zero mean) and independent 
random variables, our previous optimal estimated offsets (for the WLS case) also 
correspond to the maximally likely set of offset assignments. Moreover, it was proved in 
[21] that the Maximum-Likelihood estimated offsets are similar to the minimum-variance 
unbiased estimated offsets. 
 
The next step is to compute the Maximum A-Posteriori estimator for the general problem 
where the objective function is composed of two distinct terms: 
 

1 1
0 0 0( ) ( ) ( ) ( )T T T TJ x x P x x y A x R y A x− −= − − + − −  

 
We notice that this case is a Bayesian case and thus the Maximum-Likelihood estimator is 
irrelevant, but we may compute the MAP estimator instead. 
 
We consider the general case, where the matrix 0P  is not assumed to be diagonal. The joint 

probability of the estimated vector τ  given the values of the estimated offsets ˆ
ijO  

( ,i j∀ such that ij N∈ ) is given by (assuming that ijε  are independent): 
 

( ) ( ) ( )

( )

( )
( )

( )

( )
( ) ( ){ }

2ˆ

2

,

0 0

1 1
0 0 02

ˆ |
ˆ|

ˆ

1ˆ |
2

,

ij
ij

ij

Oij i j
rji

ij
i j N jii

Tx P x

Bayes

P O P
P P O

P O

P O e
r

N x P

P e

τ τ

τ τ

τ τ
τ

τ
π

τ

τ

− − +

∈

−− − −

↑

⋅
= =

=

∝

∏

∼

 

 
This implies: 

( )
( )

( ) ( ) ( ) ( )1 1
0 0

11
0

1 1 ˆ (0) (0) ( .3)
1

N

i ji j i k kMAP ii ik
j N kjii

k i
ii

j N jii

O P P B
r

P
r

τ τ τ τ τ− −

∈ =−
≠

∈

⎡ ⎤
⎢ ⎥= + + − −⎢ ⎥⎛ ⎞
⎢ ⎥+ ⎣ ⎦⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑
∑

 
In this case, we assumed that each offset is a Gaussian random variable that is independent 
of the other offsets. Moreover, we used the fact that ( )ˆ

ijP O  is independent of τ  (it comes 

directly from the measurements: ( )1ˆ
2ij ij jiO T T= Δ −Δ ) and then, does not affect the 

differentiation. Under these assumptions, we obtain that the Maximum A-Posteriori 
estimator in (B.3) is the same as the optimal estimator computed previously. 
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Appendix C – CTP Numerical Results 
 
We compare the CTP algorithm to three different hierarchical versions of NTP and then 
analyze the convergence rate of the decentralized CTP algorithm.   
First, we consider Network 1 (400 nodes with relatively high connectivity of 1798 edges). 
Figure C.1 shows the fraction of nodes with clock offset with respect to the reference time 
node that is not grater than t  for the 4 different algorithms. In other words, the y-axis 
represents the fraction of nodes with clock offset, with respect to the UTC, not greater than 
the value described by the x-axis. Figure C.1 clearly demonstrates the significant 
improvement of CTP (Least-Squares approach) over all the hierarchical NTP schemes 
considered here, in terms of clock accuracy. 
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Figure C.1. Distribution of the clock offsets for each algorithm in Network 1. 
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Figure C.2 presents the results for the same network topology, but in a different way. The y 
axis shows the Probability Density Function (PDF) with clock offsets described by the x-
axis. 
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Figure C.2. Probability Density Function of the clock offsets for each algorithm in 
Network 1. 

 

The next figure depicts the clock offset dispersion around the UTC clock in the same 400 
node network. The x-axis corresponds to the node ID, whereas the y-axis corresponds to 
the clock offset with respect to the UTC clock after performing each one of the different 
algorithms. It can be seen that as expected, the CTP algorithm keeps all the estimated 
offsets in a very narrow region which means small errors and small dispersions in the 
clocks. The other schemes are characterized by a much wider domain. Furthermore, the 
thickness of the region in CTP is the same for all the nodes over the network, whereas in 
the NTP schemes it slightly depends on the ID. This can be explained by the fact that the 
NTP schemes are hierarchical and, as a consequence, the closest the nodes are from the 
reference (small ID), the most accurate are the offsets. 
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Figure C.3. The clock offsets dispersion in Network 1. 

 

The next part of this section is dedicated to the convergence analysis of the distributed CTP 
algorithm. From now, we consider  Network 2 (400 nodes with 997 edges). 

We examined the clock offsets after 0, 1, 3, 5 and 10 iterations with respect to the optimal 
centralized solution. Figure C.4 describes the fraction of nodes with clock offset relating to 
the set of optimal values not greater than t  in Network 2. We start with clock offsets that 
are uniformly distributed (0 iteration). It can be seen in the graph that before we start, we 
have very few nodes (less than 10%) that are synchronized, but 32%, 55%, 77% and 84% 
of the nodes are within one time unit of the optimal solution after the first, third, fifth and 
tenth iteration respectively.  
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Figure C.4. Rate convergence analysis of the decentralized CTP algorithm in Network 2. 
 



 



 I

  תקציר
  
  

 פתרונות יעילים לבעיית סנכרון שעונים ברשת עיצ באלגוריתמי שערוך על מנת להעבודה זו דנה
רמת .  מדויק מהווה דרישה בסיסית עבור רוב מערכות המחשבים המבוזרותון שעוניםסנכר .מחשבים

ק הסנכרון בין הביצועים של יישומים רבים המבוססים על תאום בין ישויות שונות תלויה במידה רבה בדיו
. ים אלחוטייםחיישנ בעיית עקיבה בעזרת רשת דוגמא לכך היא. השעונים השונים הנמצאים במערכת

המרוחקים האחד , ששעונים ברשת התקשורתהמטרה של פרוטוקול שמסנכרן שעונים היא להבטיח 
חשבים הינה מהדרך המקובלת לסנכרן שעונים ברשת .  בצורה אחידה ככל הניתןשעהימדדו את ה, מהשני

 בין הישויות המבוזרות על מנת לתאם בין )Probe Packets( באמצעות החלפת הודעות סטנדרטיות
 , טופולוגית קבועה בזמןה ש, סימטריים ברשתנניח לשם פשטות שהקשרים, בעבודה זו. הזמנים שלהם

בספרות קיימות גישות רבות  .ושכל צומת ברשת מסוגל לשלוח ולקבל הודעות מהצמתים השכנים
הסטנדרט המקובל היום לסנכרון . פתרונות יעילים לבעיית סנכרון שעונים ברשתות מסורתיותהמציעות 

  .NTP (Network Time Protocol) [Mills, 1991, 92 and 1995]- הוא ה, למשלשעונים באינטרנט
   

 CTP (Classless Time Protocol) [Gurewitz, Cidon- האלגוריתם : גישה חדשהההוצע, לאחרונה
and Sidi, 2003 .[ היררכית ומפחית את שגיאות השעונים מבלי להגדיל את הפרוטוקול פועל בצורה לא

 תורת האופטימיזציה הקמורה על מנת להעריך את ההשפעה  את גישה זו מנצלת.NTP- ביחס להסבוכיות
 מבוססת על משערך גישה נוספת. על פונקצית המטרה הכללית) Clock Offsets(של כל התזוזות בזמן 
 דיוק. Least-Squares Estimator( [Solis, Borkar and Kumar, 2006](הריבועים הפחותים 

 העובדה דהיינו( אילוצים הקשורים לטופולוגית הרשת התחשבותי " עמושג של סנכרון השעונים משופר
סינכרוני הדורש -א ושימוש באלגוריתם מבוזר)  מתאפס סגוריםסכום תזוזות השעונים לאורך מעגליםש

ל הינו המבנה המבוזר הדורש תקשורת מקומית " המאפיין המרכזי של השיטות הנ.תקשורת מקומית בלבד
 והאלגוריתם שמבוסס על שיטת הריבועים CTP-ניתן להראות שאלגוריתם ה .עם השכנים בלבד

  .ים לחלוטיןשקולהפחותים 
  

מסנן קלמן הינו משערך המצב , הנחה הגאוסית תחת התמערכת דינמית ליניאריעבור , בתורת השערוך
הפתרון יוביל , ללא ההנחה הגאוסיתMMSE).  (ת במובן שגיאה ריבועית ממוצעת מינימאלייהאופטימאל

  מבוזרת נחקרה היישום של מסנן קלמן בצורMMSE. האופטימאלי במובן י הליניארלמשערך מצב
 לפתח אלגוריתמי שערוך יעילים על מנת לסנכרן מטרתנו הינה. 3 שנראה בפרק פיב בספרות כרחבאופן נ

 ללא.  שיפור הביצועים בהשוואה לאלגוריתמים הקיימיםךאת כל השעונים ברשת ביחס לשעון הייחוס תו
 ולכן מספיק לסנכרן את י מסונכרן עם השעון האוניברסאל1נוכל להניח שצומת מספר , הגבלת הכלליות

כלומר אין ,  זההקצבאנו נניח שכל השעונים רצים ב, ראשון בשלב .כל יתר הצמתים ברשת ביחס אליו
 של כל השעונים ברשת ביחס  הזמן ואז המטרה שלנו היא לשערך את תזוזות)Clock Skew (קצב הבדלי

   .לשעון הייחוס
  

אנו נרחיב את גישת הריבועים הפחותים בעזרת פיתוח אלגוריתמי שערוך של תזוזת השעון , במחקר זה
השלב הראשון יהיה לייצג את המערכת במודל מישור . רשת המבוססים על סינון קלמןשל כל צומת ב

אנו נראה שניתן לבצע  ,בנוסף.  שעון של כל צומת ברשתתזוזותי " וקטור המצב נתון עמצב כאשרה
המסגרת  .המתכנסת למשערך האופטימלי המרוכז, עדכון מדידה בודדת בעזרת סכימה מבוזרת איטרטיבית

 ולהעניק משקלים שונים למדידות ביחס ,למן מאפשרת לנצל את הידע האפריורי על המערכתשל מסנן ק
 נשים לב כי ,ולם א.הקווריאנס ההתחלתית הינה אלכסוניתנניח באופן טבעי שמטריצת . ן ולדיוקןלאיכות

מטריצת הקווריאנס מאבדת את המבנה ,  של המסנן קלמן הראשונהאחרי השלב של עדכון המדידה
לא יהיו מבוזרות ואז כל צומת  החל משלב זה המשוואות של המסנן קלמן, חרותבמילים א.  שלהוניהאלכס
עבור רשתות גדולות זמן התקשורת כי ,  כמובן מצב לא רצויוזה.  לתקשר עם כל צומת אחרחמוכרברשת 

יה של  המבוסס על מניפולצאנו נפתור בעיה זו בעזרת אלגוריתם רקורסיבי מבוזר. יהיה בלתי נסבל
נסתמך על משפט שטוען שהפתרון של המסנן קלמן שקול לפתרון של  .המשוואות הסטנדרטיות

 )LS (קבל את המקרה הקיים בספרותנוכל למינימיזציה מאולצת על פונקצית מטרה דטרמיניסטית ואז 
המטרה לפי כל יש לגזור את פונקצית , על מנת למצוא את הפתרון האופטימאלי. כמקרה פרטי

 כדי לממש .)נשווה את הגרדיאנט לאפס, יבמקרה המרכז (קואורדינאטה במקרה המבוזר ולהשוות לאפס



 II

סינכרוני ונראה התכנסותו  איטרטיבי אלגוריתםב נבחראנו  ,את המשוואה האופטימאלית המתקבלת
של אלגוריתם  משמעותה. אי שליליותה בעזרת כלים מתורת המטריצות לפתרון האופטימאלי המרוכז

, עד כה. ן שלו באמצעות תקשורת עם השכנים בלבדשעומבוזר הינה שכל צומת ברשת מחשב את תזוזת ה
שבו קיימות מספר  למקרה  את הטיפולרחיבנשלב הבא ב. יחסנו למקרה שרק מדידה אחת זמינההתי

בן על המבנה שומר כמוה תםנציג גרסה רקורסיבית של האלגורי ו,קבוצות של מדידות בזמנים שונים
וון שהוא מבוזר ומתכנס לפתרון י של העבודה מכת המרכזיהסכימהזה מהווה את אלגוריתם . המבוזר שלו

 תחשוב לציין שהפתרון זהה לפתרון של המסנן קלמן בצור. MMSEהאופטימאלי המרוכז במובן 
וזות הזמן בנוסף לחישוב של תז.  אך המבנים של שתי השיטות שונים בצורה מהותית,אינפורמציה

נותן לנו ה דבר ,ת השערוךוהאלגוריתם מניב את השונויות של שגיא, המשוערכות לכל צומת ברשת
אופטימאלי הפשוט שמזניח את -אנו נתייחס לאלגוריתם התת,  בנוסף.אינדיקציה על טיב השערוך

ניכרת את ה בצורה ורידשיטה זו מ. האיברים מחוץ לאלכסון של המטריצה ההפוכה למטריצת הקווריאנס
תוצאות הסימולציה באנו נראה בפרק שדן . הסיבוכיות אך מאבדת את תכונת האופטימאליות

  . ולא מהווה פתרון יעיל לבעיהחלשיםשהאלגוריתם האחרון משיג ביצועים 
  

 לפונקציית המחיר  הוספה של מקדם היווןהכוללות, נדון במספר הרחבות של האלגוריתם הבסיסי
 נתאים את האלגוריתם כך שיהיה עמיד ,כמו כן. עש מערכת במשוואת הדינאמיקהשל רהוספה  והריבועית

 ביחד עםזוזה בזמן  התשלשערוך בעיית הלנתייחס בקצרה  ,בנוסף. בפני שגיאות זמניות בתקשורת
רת המתמטית תחת  לאותה המסגמצטמצמותשתי הבעיות נראה ש ואנ(Clock Skew).  קצבהתזוזה ב

שערוך הקצב , בגישה אחת .ות שונותגישנציע , קצב בעיית שערוך תזוזת העבור. ההצבות המתאימות
נציע שערוך אופטימלי משולב של תזוזות הקצב והזמן , בגישה השנייה. מתבצע בנפרד לשערוך התזוזה

  .בעזרת מסנן קלמן
  

ת  טופולוגיות רשת שונות על מנת להעריך ולהשוות אבורנציג מספר תוצאות סימולציה ע, לאחר מכן
ועים מבחינת דיוק  משפרת את הביצ מסנן קלמןה שלגישהנקבל כי , כצפוי.  השונותמותיהסכהדיוק של 

מסנן קלמן מניב תוצאות משופרות בהשוואה האלגוריתם שמבוסס על , לים אחרותבמי. סנכרון השעונים
  השוואות נבצע.CTP- ואלגוריתם הNTP גרסאות שונות של :כגון, לשיטות האחרות הקיימות בספרות

הכללה של ידע התחלתי ומימוש של האלגוריתם ,  הוספת מטריצת משקול למדידות: הכוללותשונות
 אנו נסיק שהשיטה המוצעת הינה הרחבה של האלגוריתם . מדידות שלקבוצות הרקורסיבי עבור מספר

מולציה נציין כי תוצאות הסי.  ותחת התנאים המתאימים נותנת את הביצועים הטובים ביותר,הקיים
  . שכל השעונים ברשת רצים במהירות זההמתבצעות תחת ההנחה

  
 שערוך מבוזר  כללית שלבעיית סנכרון שעונים ברשת הינה שקולה מבחינה מתמטית לבעיה  כינציין
ניתן ליישם את אותם האלגוריתמים , לדוגמה.  אדיטיביות ברשתות סנסוריםזרת מדידות יחסיותבע

 בעזרת הרחבה וקטורית , במישור או במרחב)Sensor Localization Problem(  סנסוריםכוןלבעיית אי
  .7 אנו נפרט על כך בקצרה בפרק .פשוטה

  
נבחן את הרקע  המדעי הנחוץ ונביא סקירה מקיפה של , 3- ו2 יםבפרק. מבנה העבודה הזו הוא כדלקמן

את האלגוריתמים השונים נציג , 5 בפרק . הבעיה אתנסחנתאר את המודל ונ, 4בפרק . הספרות בהתאמה
מוקדש להוכחת  6פרק ). הן בגרסה המרוכזת והן בגרסה המבוזרת (בודדתמקרה של מדידה עבור ה

אנו נספק את הגרסה , 7בפרק  .לפתרון האופטימאלי המרוכז המבוזרהתכנסות של האלגוריתם ה
 דנים 9-ו 8 פרקים . ואלגוריתם נוסף לא רקורסיבי עבור מדידות מרובותרסיבית של האלגוריתםהרקו

תוצאות . קצב הוספת מקדם היוון והשערוך של תזוזת הגוןכ, מקרה הבסיסישל הבמספר הרחבות 
  .11 בפרק צוינות מחקר עתידי מאודות הערות מספרמסקנות ו, בסוףל. 10סימולציה מוצגות בפרק 
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. על התמיכה ועל האווירה המצויינת בכל שלבי המחקר, נחום שימקין על הנחייתו' ברצוני להודות לפרופ
 יתודה מיוחדת להורי. הזאתזהי שלהם על התרבות הערךתובנות העבור ברצוני להודות לבוחנים , בנוסף

 .עצום על מצוינות אקדמיתהדגש בפרט על ה,  ליהעניקועל האהבה שלהם ועל החינוך ש
  
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

אני מודה לטכניון על התמיכה הכספית הנדיבה בהשתלמותי
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