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Abstract

Accurate clock synchronization is important in many distributed applications, both in wire
line and wireless computer networks. Time synchronization between the nodes of a
network was extensively treated in the literature, where several methods and algorithms
were proposed to solve this problem efficiently. In the Internet for example, the “Network
Time Protocol” (NTP) is the most widely accepted standard for clock synchronization.

In some recent work, improved algorithms that rely on Least-Squares estimation were
introduced. The accuracy of clock synchronization was improved by imposing the global
constraints for all the loops in the multihop network and the use of a distributed algorithm
employing only local broadcasts. A central characteristic of these methods is their
decentralized structure that requires only local communication with neighbors. In this
research, we will extend the Least-Squares framework by developing algorithms that
estimate the offset of the local clock at each network node, using a Kalman Filter
framework. We will present a synchronous decentralized implementation of the filtering
algorithm that employs only local broadcasts and we will prove that it converges to the
optimal centralized solution. The Kalman Filter framework allows exploiting some a-priori
knowledge and providing different weights to the measurements according to their
accuracy. The next step is to consider the multiple measurement case and to present a
recursive version of these algorithms. The recursive algorithm computes the optimal offsets
and the corresponding variances after receiving each set of measurements in a
decentralized manner. Finally, we will extend the results to the estimation of the clock
skew (i.e., rate deviation) in addition to its offset. Then, we will consider different
extensions of the basic algorithm. We will incorporate a discount factor in the objective
function and treat the case where temporary communication failures are considered.

We also present simulation results over several network topologies for evaluating and
comparing the accuracy of the proposed time synchronization schemes. We will provide
several interesting comparisons and as expected, the Kalman Filter approach outperforms
the existing algorithms.
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Reduced incidence matrix
Skew (rate deviation) of node A,

Estimated skew ratio between nodes A;and A;

Bias (constant random noise)
Bias covariance matrix
Covariance function

Forgetting factor

Deviation from the i-th data point
Kronecker's delta

Objective function in the best fitting curve problem
Bidirectional link between nodes A;and A;

Mathematical expectation

Additive noise in the measurement model between nodes A;and A

Objective function
Iteration number
Probe packet number
Matrix transpose

Number of edges in the network
Iteration matrix

Discrete time index

Number of nodes in the network
Number of elements in the set N,

Gaussian density with mean g and covariance matrix X
Gradient operator with respect to X

Measurement between the pair A; and A;

Probability

Conditional probability

Error covariance matrix at time n given observations up to and including
time N

Error covariance matrix at time n+1 given observations up to and including
time N

Spectral radius of M

Initial known covariance matrix

Row number i of the matrix P,

Variance of the measurement O

Inverse covariance matrix of the measurement noise
Node number




Real time (reference time)

Number of measurement sets in the skew estimation problem

Local time (at node A;)

Sampling interval

Transmission time of packet K,

Received time of packet ki,

Offset of node A,

Optimal centralized solution

External input at time n in the state space model

Measurement noise at time Nn+1 in the state space model

Process noise at time N in the state space model

Weight number i in the WLS problem

Initial known state vector

Sate vector at time n

State estimate at time n given observations up to and including time n
State estimate at time n+1 given observations up to and including time n
Propagation delay of packet k; between nodes A; and A
Augmented state space vector at time n

Measurement vector
Measurement vector at time n+1 in the state space model




Summary of Abbreviations
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CTP
CKF
CLS
DKF

FTSP
GM
GPS
11D
KF
LQG
LQR
LS
MAP
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NTP
OLS
PDF
PSD
RBS
RLS

SNTP
SOA
S.t
UTC
WSN

Best Linear Unbiased Estimator
Classless time Protocol

Centralized Kalman Filter
Centralized Least-Squares
Decentralized Kalman Filter
Flooding Time Synchronization Protocol
Gauss—Markov

Global Positioning System
Independent Identically Distributed
Kalman Filter
Linear-Quadratic-Gaussian
Linear-Quadratic Regulator
Least-Squares
Maximum-A-Posteriori
Maximum-Likelihood

Minimum Mean Squared-Error
Network Time Protocol

Ordinary Least-Squares

Probability Density Function
Positive Semi-Definite
Reference-Broadcast Synchronization
Recursive Least-Squares

Simple Network Time Protocol
Sub-Optimal Algorithm

Such That

Coordinated Universal Time
Wireless Sensor Network




1. Introduction

Accurate clock synchronization is required in many distributed applications in computer
networks (e.g., sleep scheduling in the case of low duty cycle [24], and tracking in wireless
sensor networks [33]). Moreover, network time synchronization is a critical component for
commercial organizations that rely on several computers, all of which have clocks that are
the source of time for the files or operations they handle. When clocks of the different
components on such systems are not synchronized, data can be lost, processes can fail, the
exposure increases and security is compromised. The task of synchronizing clocks in
distributed systems is usually accomplished via the exchange of standard messages (probe
packets) between the distributed entities in order to coordinate their time. We will assume
for simplicity that the links are bi-directional, the network topology is time-invariant and
that each node is capable of sending and receiving messages from its neighbors. There is a
large literature on how to synchronize clocks in traditional networked systems; among
these, the “Network Time Protocol” (NTP) is the most widely accepted standard for
synchronizing clocks over the Internet [28-30].

More recently, a novel approach for time synchronization termed CTP — Classless Time
Protocol [14] was proposed. This non-hierarchical approach exploits convex optimization
theory in order to evaluate the impact of each clock offset on the overall objective function.
It was shown that CTP substantially outperforms hierarchical schemes such as NTP in the
sense of clock accuracy with respect to a universal clock, without increasing complexity.
An alternative proposed approach is the well known Least-Squares Estimator in [41, 12].
The accuracy of clock synchronization was improved by exploiting global network-wide
constraints (e.g., the relative offsets are summing up to zero over loops) and the use of a
completely asynchronous, distributed algorithm employing only local broadcasts. The
central characteristic of these methods relies in their decentralized structure that requires
only local communication with neighbors.

In estimation theory, for a linear dynamic system under the Gaussian assumption the
Kalman Filter (KF) is the optimal MMSE (Minimum Mean Squared-Error) state estimator.
If the Gaussian assumption is relaxed, we will obtain the linear optimal MMSE state
estimator. The implementation of the KF in a decentralized manner was extensively treated
in the literature, as we will see in Section 3. Our objective is to develop efficient
decentralized estimation algorithms in order to synchronize the different clocks over the
network with respect to the reference time. Without loss of generality, we can assume that
Node 1 is synchronized with the universal clock, and we thus have to synchronize the other
clocks with respect to it. Firstly, we will consider the case where all the clocks run exactly
at the same rate (i.e., there is no clock skew). In this case, our objective reduces to estimate
the clock offsets at each network node relative to the clock reference.

We will extend the Least-Squares framework by developing algorithms that estimate the
offset of the local clock at each network node, using a Kalman Filter framework. The first
step is to formulate the model in the state space form where the state is the vector of biases
of the clocks in the network. Then, we will show that a single measurement vector update
can be done using a distributed iterative scheme that converges to the optimal centralized
estimator. The Kalman Filter framework allows exploiting a-priori knowledge about the
estimated quantity and providing different weights to the measurements according to their
accuracy and quality. We will make the natural assumption that the initial state covariance



matrix is diagonal, however we will observe that after the first measurement update of the
KF, the state covariance matrix does not remain diagonal. Hence, from this step the
standard KF equations cannot be decentralized and each node has to communicate with
every other node in the network. This is not a desirable situation since it is prohibitively
expensive in terms of communication time. We will solve this issue by proposing a
decentralized recursive algorithm that relies on manipulating the standard equations. We
rely on the theorem that claims the equivalence between the KF solution and the
minimizing vector of a deterministic constrained LS problem. In this way, we will be able
to obtain the existing LS solution as a special case. We find the optimal solution by a
coordinate differentiation and then we will implement the optimal equation by a
synchronous iterative algorithm that employs only local broadcasts. Then, we will prove
that it converges to the optimal centralized solution. The next step is to consider the
multiple measurement case and to present a recursive version of these algorithms. The
recursive algorithm computes the optimal offsets and the corresponding variances in a
decentralized manner after receiving each set of measurements. We also consider a simple
sub-optimal algorithm that neglects the off-diagonal terms of the inverse covariance matrix.
This method reduces significantly the complexity, but looses its optimal property. We will
see in the simulation results section that this algorithm leads to poor results.

In the extensions section we will incorporate a discount factor in the objective quadratic
function to compensate for the time-invariant offsets assumption. Then, we modify our
algorithm slightly to make it robust to temporary communication failures. We briefly
consider the extension of our results to the estimation of both the offsets and the clock
skew (i.e., rate deviation). We will show that the clock skew estimation problem reduces to
the same mathematical setup as the offset estimation problem under the appropriate
substitutions. For the clock skew estimation problem, we propose different approaches. In
the first, the clock skew estimation is performed separately from that of the clock offset. In
the second, we propose an optimal combined estimation of both the clock offset and the
clock skew.

Finally, we present simulation results over several network topologies for evaluating and
comparing the accuracy of the proposed time synchronization schemes. We provide several
interesting comparisons, where the Kalman Filter approach outperforms the existing
algorithms.

It is interesting to note that the time synchronization problem is mathematically equivalent
to any related distributed estimation problem stemming from relative additive
measurements in sensor networks [3]. For example, one can apply the same algorithms to
the sensor localization problem. We will briefly elaborate on this point in Section 7.

This thesis is organized as follows. In sections 2 and 3, we review the required scientific
background and the related work respectively. In Section 4, we describe the model and
formulate the problem. Then, in Section 5, we present the different algorithms for the case
of single measurement update (both centralized and decentralized versions). Section 6 is
devoted to show the convergence of the most general decentralized algorithm to the
optimal centralized solution. In Section 7, we provide the recursive version of our
algorithm for multiple measurements and an additional non-recursive algorithm. Sections 8
and 9 treat several extensions, like the incorporation of a discount factor and the estimation
of the clock skew. Numerical results are presented in Section 10. Finally, the conclusions
and some notes on future directions are reported in Section 11.



2. Scientific Background

2.1 Least-Squares Fit

Let us first consider the Least-Squares (LS) method in a deterministic context and then
explain its statistic interpretation. The method of Least-Squares or Ordinary Least-Squares
(OLS) is used to solve over-determined systems and can be interpreted as a method of
fitting data. This algorithm is often applied in statistical contexts, particularly in regression
analysis. The best Least-Squares fit is that instance of the model for which the sum of
squared residuals has its lowest value, a residual being the difference between an observed
value and the value given by the model. In other words, the method of Least-Squares
assumes that the best-fit curve of a given type is the curve that has the minimal sum of
deviations squared (least square error) for a given set of data. For example, we can fit the
data to a polynomial function, as presented in the following figure:

Figure 2.1. Fitting a set of data points using a quadratic function.

Suppose that the data points are:

(X5 Y1) (%05 ¥ )seees (X0 ¥i)

Here y, are the measured values (data) and X; are the independent variables (unknown).
The fitting curve f (X) has the deviation d; from each data point:

d=y,-f(x) i=L2,.n.

According to the LS method, the best fitting curve has the property that the following
expression is minimal:

11=Zn“(o|i)2=||g||2 =Zn:(yi—f(xi))2—>min 2.1.1)

i i=1

The above minimum in (2.1.1) can be found by setting the gradient to zero. Since the
model contains n parameters, we will obtain n gradient equations.



As a special case, the linear LS problem with the following over-determined system (M
linear equations in N unknown variables, with M>N) is considered:

N
Dagx; =y, i=12,.,M
j=1
In a matrix notation:
Ax=y

In order to find the optimal LS solution, we have to minimize the following quadratic
objective function:

I1= ||y— AX||2 — min

A unique optimal solution is obtained (when A" A > 0 ) by solving the normal equations:
(ATA)x=ATy
The above equation can be obtained by differentiating the objective function with respect to

the vector x and setting the result to zero.

Now, we will consider several approaches to iteratively solve the normal equations. Let us
define:

M=1-ATA
y=A"y

We note that the matrices M and | —M are the projection matrices.
Using these notations in the normal equations, we will obtain:

(I-M)x=y
This implies:
X=Mx+y

We can implement the above equation through the use of an iterative (synchronous or
asynchronous) algorithm and the convergence depends on the structural properties of the
matrix M . For example, the synchronous algorithm (all the entries are updated
simultaneously) is given by:

x*D = Mx® +y (2.1.2)

Here, k>0 is the iteration number. The initial conditions can be randomly chosen and
does not affect the convergence of the algorithm in (2.1.2).

The above method is known as the Jacobi algorithm and is very common in linear algebra.
In this thesis, we will employ this method in a synchronous way to solve the linear Least-
Squares problem.

We also mention the relaxed form of the Jacobi algorithm. This is an alternative approach
that leads to similar equations based on the gradient algorithm. Given the similar linear
equations:

Ax=y



The gradient descent method is given by:
XD = x —p.v IT=x® —n-[(l ~M)x® —7]

XV =[1-g(1-M)]x® +ny
XED = (1-7)-1x® +77(Mx(k) +7)

Here, 7 is the step size of the algorithm. One can note that if 77 =1, the gradient algorithm

reduces to the Jacobi method. Hence, the gradient algorithm is more general and can be
viewed as a relaxed Jacobi method. In the case where the Jacobi algorithm does not
converge, we can try to use the gradient algorithm and reduce the step size to achieve
convergence.

Two interesting extensions to the basic LS case are considered: the Weighted Least-
Squares (WLS) and the Recursive Least-Squares (RLS). In the WLS method, each data is
multiplied by a weighting factor. In other words, the objective function to be minimized is
a weighted sum of the form:

n
IT=> W, (d, )2 — min
=
The RLS method is the recursive version of the basic LS algorithm where data arrives
progressively. In this particular case, the minimization process is repeated for each set of
measurements. Moreover, the most useful form is RLS with exponential data weighting
(incorporation of a forgetting factor). In the latter, we consider the scenario where the most
recent data is assumed to be more informative than past data and hence we exponentially
discard old data.

The Least-Squares method also has a statistical interpretation in estimation theory. In a
linear model in which the errors have a zero expectation conditional on the independent
variables, are uncorrelated and have equal variances (IID), the Best Linear Unbiased
Estimator (BLUE) of any linear combination of the observations is its Least-Squares
estimator. This result is known as the Gauss-Markov (GM) theorem. "Best" means that the
Least-Squares parameter estimators have minimum variance. The assumption of equal
variance is valid when the errors all belong to the same distribution. Moreover, in a linear
model, if the errors belong to a Normal distribution, the Least-Squares estimators are also
the Maximum-Likelihood estimators (as we will show in Appendix B).

Aitken [1] showed that when a weighted sum of squared residuals is minimized, the
solution is the BLUE if each weight is equal to the reciprocal of the variance-covariance
matrix of the observations. This method is known as the Weighted-Least-Squares (WLS)
method. In the linear non-deterministic case, there exists a closed form solution to the RLS
algorithm that can be implemented through an iterative procedure. For more details on
RLS, see [13, 40].

It can be found in Appendix A that the Kalman-Filter algorithm can be viewed as a
deterministic LS optimization problem. Next, we present the basic background on Kalman
Filtering.



2.2 Kalman Filtering

The Kalman Filter (KF) is an efficient recursive filter that estimates the state of a linear
dynamic system from a series of noisy measurements. It is used in a wide range of
engineering applications from radar to computer vision, and is an important topic in control
theory and control systems engineering. Together with the Linear-Quadratic Regulator
(LQR), the Kalman Filter solves the Linear-Quadratic-Gaussian control problem (LQG)
[27, 13]. As seen in Figure 2.2, the KF is fed measurements from the system of interest and
produces an estimate of the system state. The system is modeled either as a set of
differential equations in the continuous-time case or as a set of difference equations in the
case of a discrete-time system. The system model is used to propagate the estimate of the
system state forward in time until a new measurement is received. At this point, the system
state attained from the measurement is compared to the estimate of the system state and
combined in an optimal (MMSE) manner.

: System error
1 sources
!
I

Controls

———+F——| System

System state
(desired, but
not known)

4

Measuring
devices

|

Measurement
€rror sources

Observed Optimal estimate
measurements Kalman of system state

- o

filter Iy

— o e e e e e S e e e . B B e e . S S e e . S i e e )

Figure 2.2. Typical Kalman Filter application, from Maybeck [27].

In order to use the Kalman Filter to estimate the internal state of a process given only a
sequence of noisy observations, one must model the process in accordance with the
framework of the KF, i.e., in a state space model notation. This means specifying the
matrices @, I', H for each time-step n as described below. In other words, the KF model

assumes the true state at time n+1 is evolved from the state at n according to:

x(n+1) = d(n)x(n) + L (n)w(n)
y(n) =H(m)x(n)+v(n)

The Kalman Filter is a recursive estimator. This means that only the estimated state from

the previous time step and the current measurement are needed to compute the estimate of

the current state. In contrast to batch estimation techniques, no history of observations
and/or estimates is required. The state of the filter is represented by two variables:
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e X(n|n), the state estimate at time n given observations up to and including time n.
e P(n|n), the error covariance matrix (a measure of the estimated accuracy) at time n

given observations up to and including time n.

The Kalman Filter has two distinct phases: prediction and update. The prediction phase
uses the state estimate from the previous step to produce an estimate of the state at the
current step. In the update phase, measurement information at the current time is used to
refine this prediction to arrive at a new, (hopefully) more accurate state estimate.

We will next present the equations of the Kalman Filter algorithm. We consider both the
standard form and the information form.

Consider the following state space model:

x(n+1) = d(n)x(n) +T(n)w(n)
y(n) =Hm)x(n)+v(n)

X(0) is the initial state of the system with the following first and second order statistics:
E[x(0)]=m,(0) cov[x(®)]=E[(x(0)~m, 0))(x(0)-m, 0))' |=P.0)=F,.
{W(n)} is the process noise modeled as a white Gaussian noise with zero mean and

covariance Q(n)>0.
{y(n)} is the measurement noise modeled as a white Gaussian noise with zero mean and

covariance R(n)>0.
{w(n)},{v(n)},x(0) are uncorrelated, namely:

E[v(mw' () |=E[ x(0)v" (M) ] =E[ x(O)w' (m) |=0 ¥m,n
The state estimation cycle is divided into two steps (n is the discrete time index):

e Time update (prediction):
{X(HHI n)=®(MX(n|n)
P(n+1|n)=®dM)P(n|n)®" (n)+T(n)Q(MI (n)
¢ Measurement update:
A(n+1n+1) =N +1[n)+Kn+D] y(+D)—HMO+DEM+1]n) |
K(n+1)=P(n+1[KH" (+D[HO+DPn+1[K)HT (n+1)+ R(n+1)]‘l
P(n+1|n+)=[I-K(n+DH(n+D]P(n+1|n)

The initialization is as follows:

X(010)=m,(0) ; P(0]0)=P,(0)
As we will see later, in our case, we have:

11



I'(n)=d(n)=1
Q(n)=Q;R(n)=R

Next, we will review an additional form of the Kalman Filter, called the information form.

2.3 Kalman Filter - Information Form

The information form of the Kalman Filter differs in the fact that the covariance prediction
and update equations are different. Since the prediction covariance equation is quite
complex, another option is to use the regular form of the KF with the modification in the
update covariance equation only. Under the same assumptions as those stated previously,
the Kalman Filter equations are given by the same equations as before except for the
following update inverse covariance equation:

P'(n+1|n+D)=P'(n+1|m)+H (n+DHR'(n+1HH(n+1) (2.3.1)
There exists an additional equation for the Kalman gain K(n+1) (see for example in [36]):
K(n+1)=P(+1|n+DH" (n+1)R'(n+1) (2.3.2)

For more details on the Kalman Filter, one can refer to the original article of R. E. Kalman
[18], or to any book on optimal filtering (e.g., [27, 13]).

2.4 Facts from Graph Theory

A common method of obtaining estimates of clock offsets between directly communicating
pairs of nodes is based on the exchange of time-stamped packets. Viewing the network as a
graph, this corresponds to finding estimates of clock offsets across the edges of the graph.
These quantities must then be processed by the network to obtain estimates of the clock
offsets at each node with respect to the reference clock.

Hence it is worthwhile to model the network as a directed graph G = (V,g) with |V| =N

nodes {Al,Az,...,AN} and |g| =m edges. Each edge represents the ability to transmit and

receive packets between the corresponding pair of nodes. We will focus on an underlying
network which consists of the entities that participate in the clock synchronization protocol.
Let N denote this set of nodes and let |N| be its cardinality (the number of nodes). The
edge connecting nodes A; and A; will be denoted by e; and the collection of all the edges
by ¢. We will assume throughout this thesis that all the edges are bidirectional, namely
that if e; € £, then e;; € . Let us denote by N; the set of nodes which are the neighbors of
A;, i.e., one edge away from node A,, and let |Ni| be the number of such neighbors. For

simplicity of notation, we exclude the existence of multiple edges between the same pair of
nodes and also the edges from a node to itself. We consider a model in which only one out
of the N nodes is a "reference time node" (the generalization for several reference time
nodes is straightforward). Without loss of generality, we may assume that the reference

12



time node is A,. Our objective is to construct the optimal offset estimate for every node
ueV \{l} .

The dimensions of the incidence matrix A are N (nodes number) x m (edges number). In
the row corresponding to node A,, we have an entry +1 for all edges of the form (1,*), an

entry -1 for all edges of the form (*,1), and 0 otherwise.

For a connected graph, the rank of the incidence matrix is N —1, or one less than the
number of nodes. Thus, deleting any row from the incidence matrix yields a full row rank
matrix, which is called the reduced incidence matrix. Here, we will work with the

(N —1)>< m matrix obtained by deleting the row corresponding to the reference node A,.

For notational convenience, we use A to henceforth denote the reduced incidence matrix.

We present a simple illustrative example, similar to [41]. Consider the network in Figure
2.3. Here, for the construction of the matrix A, one can randomly choose the direction of
the edges without affecting the results. In other words, the links are bidirectional but each
link has a single entry in A.

1 " 2

mm@

Loop 1 Loop 2

4 o 3
Figure 2.3. Example of a 5-node network.

The corresponding incidence matrix is given by:

(1,2) (2,3) (3,4) (1,4) (2,5) (3,5)

— |t = = = B = == —0— — 6

A 2 -1 +1 0 0 +1 0
3 0 -1 +1 0 0 +1
4 0 0 -1 -1 0 0
5 0 0 0 0 -1 -1

If node number 1 is the reference, we will delete the first line of the above matrix in order
to obtain the reduced incidence matrix A. We will use this matrix to obtain the state space
model of the system in Section 4.4.
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2.5 Matrix Analysis

In the convergence analysis (Section 6), we will show that our decentralized algorithm can

be written in the form:7*"" =M7® . This is a standard iteration equation. Further, a
sufficient and necessary condition to obtain convergence to zero from any initial guess is
one where the spectral radius (the biggest eigen-value in absolute value) of the matrix M

is strictly smaller than one:

p(M)<1

In Non-Negative Matrix Theory (see the chapter on Gersgorin discs in [16]), it is proven
that for a non-negative square matrix A, namely:

A=[aij] a;20 i,j=L2,.,n
We have:

L(A) <min {miax Zn:‘aij ,mjax Zn:‘aij ‘}
=1 =

In particular:
p(A) <max Y[ (2.5.1)
i i

Therefore, if all the row sums of the matrix A are smaller or equal to 1, and all the entries
of A are non-negative, then p(A) <1 (this is only a sufficient condition).

In addition, the following sharper result can be obtained.

Proposition 2.5.

Given a non-negative square matrix A with the following properties:
a) All the row sums of the matrix A are smaller or equal to 1.
b) At least in one row this sum is strictly smaller than 1.
c) The matrix A is irreducible (i.e. we can move from any node to any other node
through a direct trajectory).
Then:

p(A) <1
The proof of this sufficient condition is well known (see e.g., [16], chapter 7).

In our network model, the condition that the matrix M is irreducible requires the
assumption that the graph that corresponds to the network is connected, namely that there
exists a path between any pair of nodes in the network. Some additional important
assumptions are that each node has at least one neighbor (not including the reference node)
and that links are bidirectional (symmetric).
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3. Related Work

In this section, we present a review of the papers that are most closely related to our work.
First, we review the different accepted time synchronization protocols and then we consider
a short literature survey on decentralized estimation (essentially on decentralized Kalman
filtering), including consensus algorithms.

3.1 Time Synchronization Protocols

An early landmark paper in computer clock synchronization is Lamport's work [23] that
elucidates the importance of virtual clocks in systems where causality is more important
than absolute time. A distributed algorithm is proposed for synchronizing a system of
logical clocks that can be used to totally order the events. Although this work focused on
giving to the events a total order rather than qualifying the time difference between them, it
has emerged as an important influence in sensor networks.

There is a large literature written on the art of synchronizing clocks in traditional
networked systems. As we previously mentioned, the Network Time Protocol (NTP) is the
widely accepted standard for synchronizing clocks over the Internet [28-30] and is notable
for being scalable, self-configuring and robust to failures, in addition to being thoroughly
tested. Nevertheless, this approach is vulnerable to sending delays and asymmetries in
paths, and does not take advantage of the special properties of sensornet broadcasts. NTP is
a client/server protocol used for synchronizing the internal clock of computers in standard
networks and suggests a complete scheme for synchronizing the clocks with respect to the
Coordinated Universal Time (UTC). NTP recommends data filtering and peer selection
algorithms in order to reduce the offset which is the time difference between the clock and
the UTC. Since NTP is used as a comparison benchmark in our simulation results, we
briefly describe the procedure and more details can be found in [28-30].

According to NTP, each node A; computes the round trip delay for each probe packet that
traverses the edge €; based on the four timing fields recorded on the packet. Each node is
sending probe packets to each one of its neighbors. Time is stamped on packet Kk, by the
sender A; upon transmission (T;(k,) ), and by the receiver A; upon reception of the packet
(R;(ky)). Then, the node A; retransmits the packet back to the source (T;(k,)) and the
source stamps its local time when receiving back the packet (R, (k) ). The computed round

trip delay for packet k is given by:
RTT; (kn) = (R; (k) =Ty )+ (R (ko) =T (k)
The clock offset of node A; relative to node A;'s clock is estimated as:

1

5[(&- (ko) =Ti(k)) = (R (k) =T, (km))} '

NTP suggests the "minimum filter", which selects from the n most recent samples the
sample with the lowest round trip delay. Each node estimates its relative clock offset with
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respect to a selected group between its neighbors, where neighbors which are hop count
closer to the reference node are preferred, giving NTP its hierarchical nature. Finally, the
offsets are averaged.

In 2003, the Classless Time Protocol (CTP) was proposed [14]. This protocol reduces the
offset errors using a novel non-hierarchical approach that employs a peer to peer protocol
in which each node sends and receives probe packets only to and from its neighbors. The
approach exploits convex optimization theory in order to evaluate the impact of each clock
offset on the overall objective function. In addition, the authors suggest the separation of
the round-trip delays to one way components in order to obtain a filtered measurement and
to increase the accuracy of the synchronization procedure. It was shown that CTP
substantially outperforms hierarchical schemes based on NTP in terms of clock accuracy
while preserving similar protocol complexity.

Solis, Borkar and Kumar [41, 12] have proposed an approach based on the concept of
Least-Squares method, to smooth the set of estimates obtained by a packet exchange
procedure. The accuracy of clock synchronization was improved by exploiting global
network-wide constraints and the use of a completely asynchronous distributed algorithm
employing only local broadcasts. The problem that results can be formulated as a
distributed parameter estimation problem. They provide an alternate proof of the
connection between the LS optimal set of estimates and electrical resistances in an
equivalent resistive network. In addition, they analyze the convergence properties of the
distributed synchronization algorithm they proposed. In fact, one can easily show that the
CTP algorithm and the LS method are equivalent; the mathematical procedure is similar
but written in two different ways.

In the scheme Reference-Broadcast Synchronization (RBS) described in [9, 10], an
intermediate node transmits a reference packet and the other nodes record the time at which
they receive it. They then exchange this recorded time to find the differences between their
clocks. The fundamental property of this scheme is that it synchronizes a set of receivers
with one another, as opposed to traditional protocols in which senders synchronize with
receivers. Hence, RBS is quite accurate because it is completely insensitive to transmission
delays and asymmetries. The most significant limitation of RBS is that it requires a
network with a physical broadcast channel. It cannot be used, for example, in networks that
employ point-to-point links as considered in this thesis. In [9], the authors argue that the
time synchronization schemes, like NTP were developed for traditional networks (e.g., the
Internet) and are not very efficient in Wireless Sensor Networks (WSNs) applications,
where many assumptions have changed. Then, they design the requirements and the
principles for WSN time synchronization.

More recently, in [26], the Flooding Time Synchronization Protocol (FTSP) is proposed; it
uses MAC layer time stamping capabilities to eliminate several sources of error on the time
synchronization process, and linear regression to compensate for the possible drifts in the
clocks. A leader is elected through message exchanges and the global time is passed from
the root to all the other nodes via flooding.

Karp, Elson, Estrin and Shenker [21] have considered the problem of minimum variance

estimation based on global information, particularly for the RBS scheme of [9], and have
shown that it satisfies the transitive property of offsets, i.e., the sum of optimal estimate of

16



the offsets between the node pairs (Ai,A j) and (Aj,Ak) is the optimal estimate of the

offset between the node pair (Ai A, ) They have also analyzed the optimal error variance

and related it to the resistance distance in the corresponding graph. Moreover, they show
that the optimal pairwise synchronization and the globally consistent synchronization have
the same technical answer and they treat clock skew and clock offset on different time
scales.

There are several proposals for synchronizing clocks within a single broadcast domain
(e.g., [31]). These methods exploit the special properties of broadcast media and achieve
high precision. However, nodes that do not lie within the same broadcast domain cannot be
synchronized. Since our focus is on global clock synchronization, these local approaches
are not an efficient solution to our problem.

The most straightforward approach to synchronize clocks is to use the Global Positioning
System (GPS), a constellation of satellites operated by the U.S. Department of Defense
[19]. GPS provides accurate time synchronization relative to UTC [25], but its use is scarce
in computer networks. GPS requires sensornet nodes to be equipped with special receivers,
clear sky view and continuous reception of multiple satellites which is hard to accomplish
inside buildings, underwater or beneath dense foliage. In addition, it may be too large,
costly or high-power to a small and cheap sensor node.

Another quite different approach is that taken in [37], which does not directly synchronize
clocks but instead refers to events in terms of their age. When exchanging these
timestamps, they are updated to reflect the passage of time.

The last topic we present is related to time synchronization procedures using Kalman
filtering. Two different schemes are considered. In [46], a time synchronization model on
the Internet using Kalman filtering is proposed. The authors argue that the algorithm is
more stable, more accurate and less sensitive to packet loss than the Simple Network Time
Protocol (SNTP). SNTP [48] is a simplified version of NTP. The work in [20] is a heuristic
approach based on adaptive Kalman filtering. The method is focused on a stochastic model
of the network, which employs a KF and redundancy paths to achieve both an improved
time and rate synchronization. The tests considered show an improvement of
approximately two orders of magnitude in comparison to NTP. The schemes in [46, 20] are
strongly related to our work but a number of essential differences exists. The problem
considered in these works assumes that the network is composed of only two distinct
computers and that just one set of measurements is available. Moreover, the proposed
algorithms are totally centralized. On the other hand, in this research we are interested in
large-scale systems with numerous nodes and the synchronization procedure has to be
decentralized. Moreover, we will investigate the multiple measurement case through a
recursive algorithm.

In this review, we evoke only the main algorithms to synchronize clocks in computer
networks, or more precisely to estimate the offsets at each node with respect to the
universal time. We did not present the accepted techniques for adjusting the clocks
physically, because it is a solved problem and beyond the scope of this research.
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3.2 Decentralized Estimation

In this part, we review several articles on decentralized (and distributed) estimation and
more precisely on Decentralized Kalman Filter (DKF) algorithms. We investigate only
dynamical state stochastic estimation and not the various literature on decentralized
estimation of a deterministic unknown parameter corrupted by a noise.

Centralized implementation of the Kalman Filter [18], although optimal, does not provide
robustness and scalability when it comes to complex large-scale dynamical systems with
their measurements distributed on a large geographical region. This is the reason why
several distributed estimation algorithms using the KF framework were proposed. Much of
the existing research on distributed Kalman Filters focuses on sensor networks monitoring
low dimensional systems [36]. This scenario addresses the problem on how to efficiently
incorporate the distributed observations, also referred to in the literature as 'data fusion'
[15].

Among the first works on DKF, the work in [15] assumes the presence of a fusion center
or a central coordinator for combining the information from the various local processors.
Then, the algorithm in [36] does not require any form of central processing facility. Each
sensing node implements its own local KF to arrive at a partial decision which it then
broadcasts to every other node. This algorithm leads to the same optimal centralized KF
solution and is highly resilient to loss of one or more sensing nodes. The main drawback of
this method is that a fully connected network is considered, i.e., each node must talk to
every other node and the design of a convenient communication topology is problematic. In
[39], the authors present some results on the problem of optimally combining static
estimates from different sensors locations when the measurement noise processes are
correlated. The works of [7, 44] extend the previous existing theory to the entire class of
Luenberger observers. In [7], a necessary and sufficient condition for combining local KF
estimates into a global KF estimate is proved. It is shown that decentralized estimators
work by combining local estimates through weighting matrices. The low-power filtering
scheme described in [44] implements Luenberger observers. By allowing the local stations
to communicate at the rate that the estimates are desired, instead of the faster measurement
rate, it saves power while maintaining robustness and optimality. All the previous solutions
require that the local filters propagate a state vector that is the size of the global state and
the knowledge of the sensor network topology.

The work in [4] explains the difference between decentralized and distibuted estimation. A
decentralized network has no central facilities whereas a distributed network uses reduced
order nodes operating in parallel to process local observations. Combining distribution and
decentralization gives a new more efficient result and reduces the communication
requirements. In [38], the DKF is applied to solve a common robotic application:
cooperative localization. A new approach is presented where the centralized KF is
decomposed in M modified Kalman filters each running on a separate robot. Moreover, the
cross correlation terms between the different agents are computed in a distributed manner
as well. A simulation example is considered where the authors show that an improvement
in the localization accuracy is provided.

In [3], the authors consider the problem of estimating vector valued variables from noisy

relative measurements in a decentralized fashion. The time synchronization and the sensor
localization are obtained as special cases of this more general framework. Two different
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algorithms are proposed to compute the optimal estimate in a distributed and iterative
manner. The case of temporary communication failures is treated and the algorithms are
based on the Jacobi iterative method. The latter and the works performed in [14, 41, 12]
formed the basis of the research presented in this thesis.

More recently, several methods for sparsely connected large-scale networks were
considered. For example, in [17], a computationally efficient, sub-optimal distributed KF is
used to estimate a sparsely connected, large-scale dynamical system monitored by a
network of N sensors. Local Kalman Filters of much lower dimension than the global state
are implemented at each sensor node. Shared observations and estimates across different
local models are fused using bipartite fusion graphs and consensus averaging algorithms.
The advantage of this scheme is that a low order KF is implemented at each sensor and the
structure of the centralized error covariances is conserved. In other words, the proposed
solution contrasts with existing methods for sensor networks that either replicate a KF
(whose dimension is equal to the global state vector) at each sensor node or reduce the
model dimension at the expense of decoupling the field dynamics into lower-dimensional
models (non-optimal).

In non-linear and non-Gaussian scenarios, the DKF becomes inapplicable. Extended
Kalman Filters, grid-based methods and Gaussian-sum filters are possible alternatives, but
these all have limitations and information exchange is not as simple. The class of sequential
Monte Carlo methods (or particle filtering) is attractive because of its power and flexibility.
In [8], distributed implementations of particle filters are proposed. Since our domain of
interest here is focused on DKF, we are not providing more details on these methods. The
paper in [11] investigates several estimator architectures for determining the fleet state in
the formation flying problem. This latter is non-linear and includes correlated states. The
analysis shows that the proposed decentralized reduced order filters (like Schmidt-Kalman
Filter) provide near optimal estimation results without excessive communication or
computation and are preferable when compared to centralized and full order methods. The
work in [32] presents an efficient method of multi-sensor estimation for systems with
asynchronous observations. The architecture proposed is totally decentralized and each
individual loop does not need to know about the other loops in the system. The resulting
estimates are equivalent to the optimal centralized filter when the loops incorporate all the
information available in the system.

Recently, Alriksson et al. [2] addresses the problem of distributed Kalman filtering, with
focus on limiting the required communication bandwidth. The authors refer to a scenario
where all the nodes desire an estimate of the full state of the observed system, there is no
central utility and the communication takes place only between neighbors. The nodes
merge their estimates by a weighted average of the neighbouring estimates. The weights
are optimized off-line to yield a small estimation error covariance. This problem was
generalized to time varying states in [42, 34] using consensus filters.

Next, we present a short literature survey on consensus algorithms.
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3.3 Consensus Algorithms

We restrict the review to methods that are associated with data fusion in networks.
Consensus problems are related to situations in which all the network members are required
to achieve a common output value, using only local interactions and without access to a
global coordinator. Consensus filters are distributed algorithms that allow calculation of
average-consensus of time-varying signals. Two fundamental papers on consensus
algorithms are given in [45, 35].

Xiao and Boyd [45] consider the problem of finding a linear iteration that yields distributed
averaging consensus over a network, i.e., that asymptotically computes the average of the
initial values given at the nodes. This article is the basis of various works in this field. In
[35], the authors provide a theoretical framework for analysis of consensus algorithms for
multi-agent networked systems. This is a general overview that investigates static and
dynamic topologies as well as the continuous and discrete time cases. In addition, it
provides diverse applications that are related to consensus problems and presents the
simulation results for three different applications.

The work in [42] describes a dynamic consensus in order to obtain a distributed Kalman
Filter for a network of agents. The algorithm consists of two loops: an outer loop for the
KF and an inner loop for the weighted average consensus updating. Dynamic consensus
allows to track in time different quantities and then to use them for distributed estimation.
Olfati-Saber [34] solves the problem of distributed Kalman filtering for sensor networks by
reducing it to two separate dynamic consensus problems in terms of weighted
measurements and inverse covariance matrices. These problems were solved in a
distributed way using a low-pass consensus filter for the fusion of the measurements and a
band-pass consensus filter for the fusion of the inverse covariance matrices. It leads to an
approximate distributed Kalman filtering algorithm that converges to the centralized
optimal solution. Recently, in [6] the authors considered the problem of estimating the state
of a scalar linear system from distributed noisy measurements. The estimation is performed
via a two stage procedure which consists in (i) a standard decentralized Kalman-like
measurement update and (i) estimate fusion using consensus strategies. In order to attain
this purpose two design parameters; the Kalman gain and the consensus matrix are
designed by optimizing the steady state prediction error.
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4. Model and Problem Definitions

4.1 Clock Model

We suppose that the clock drift at a node follows the linear form: T, (t) = a;t + 7;, where ¢,
and 7; are the skew (rate deviation) and the offset parameters respectively, t is the real
time (or the reference time) and T,(t) is the local time (at node A;). The above model is

known as the two parameters linear model and is considered as a common way to model a
clock in this context (see [41] and the references therein).

The time synchronization problem relates to the task of setting the clocks in the network so
that they all agree upon a particular epoch with respect to a Coordinated Universal Time
(UTC). Without loss of generality, one can assume that node A, is synchronized to the

reference time:
7,=0and ¢, =1

In our model, the clock synchronization relates to two different aspects: the rate
synchronization (identical «;) and the time offset synchronization (identical zj). For
simplicity, we initially assume that all the clocks run at the same speed (¢ =a; =1,Vi, )

and then we will relax this assumption in Section 9.

4.2 The Measurements

Each node is sending probe packets to each one of its neighbors. Figure 4.1 depicts the
situation for the pair of neighboring nodes A; and A;. Time is stamped on packet k by

the sender A; upon transmission (T;(k,)) and by the receiver A; upon reception of the
packet (R;(k,)). Then, the node A; is retransmitting the packet back to the source
(T;(k,)) and the source stamps its local time when receiving the packet back (R;(k)).

Figure 4.1. Communication between two neighboring nodes.

We intend to estimate the clock offsets by using these measurements data. Let us denote by
AT;(k,) the time difference between the transmission of probe packet k, by node A;,

according to A; clock, and the receiving time of the packet at node A; according to its
own clock. This implies:

AT, (k) =R (k) —Ti(k,) =X (k) —7,+7; +& (4.2.1)
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Here, X;(k,) is the propagation delay and &; is an additive unknown noise that represents
the random queuing delay and the other unknown influences. In other words, AT, (k) is
equal to the one-way link delay experienced by probe packet k when traveling from node
A; to A (%;(k;,)), plus the difference between the two clock offsets.

Assuming that x; (k) = X;;(k;) (the propagation delay is symmetric) we notice that:

%(AT“ —ATji ) =T, -7, +&
where: & :%(gij _§ji)

4.3 Problem Formulation

Our objective is to synchronize all the clocks in the network with the reference time. This is
equivalent to estimate (using the Kalman Filter framework) «; and 7; at each network
node. The algorithm is required to be decentralized and to converge to the optimal
centralized solution. We initially assume that the offsets are time-invariant and that all the
clocks run at the same speed (there is no skew), namely:

o =a;=1,Vi,].

These assumptions are reasonable if the clock synchronization procedure is applied at small
enough time intervals. In the extensions section, we treat the case in which the previous
assumptions are relaxed.

The first step is to find the state space model applied to our problem. Then, we will write
the Kalman Filter equations and develop the results in a centralized form. This result will
represent the optimal clock offset vector in the MMSE sense. Later, we proceed to develop
a decentralized implementation of the preceding filtering algorithm. The last steps include
extending our algorithm to the case of different clock skews and to treat several interesting
extensions.

4.4 State Space Model

Let us define the state vector by the following column vector:
A T
x(n)£(7,=0,7,,..7y )
Here, 7, is the offset of the node A;. In this part, the offsets are assumed to be time
invariant and we consider that all the clocks run exactly at the same speed (i.e.,; = ; =1

there is no skew).
As we explained before, the measurements data for each pair of neighbor nodes is given
by:

NN |
Yy =0y 2= (AT, - AT, ) =1, -7, +¢ (4.4.1)

[\
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Remark: éij is the conventional notation for this category of measurements.
Equation (7) states that the relative measurement Y, for each pair of neighboring nodes is

given by the difference between the offsets plus an additive noiseg;; .

According to the previous notation (see Section 2.4), the measurement equation of the state
space model is related to the reduced incidence matrix A. Consequently, the state space
model is given by:

{MH+D=ZUD+WW) (4.4.2)

y(n) = A" x(n)+v(n)

Here, w(n) and v(n) are the system and measurement noises respectively. We assume that
the offsets are time invariant, so we will neglect the process noise w(n) for the time being.
In Section 8.2, we will consider the more general case where W(n) is incorporated back.

v(n) is the measurement noise and is assumed to be in accordance with the Kalman Filter

assumptions (see Section 2.2). For simplicity, in all the state space representations it is
assumed that the sampling time is uniform and equal to one.
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5. Centralized and Decentralized Algorithms:
Single Measurement Update

In this section, we first present the Kalman Filter equations applied to our problem using
two different approaches. Then, we develop a decentralized version of this filtering
algorithm, and we will prove its convergence to the optimal centralized solution in the next
section. By using the KF framework, we obtain the existing results from the literature as
special cases and extend them to a more general framework. We consider separately the
cases where the initial inverse covariance matrix is diagonal and non-diagonal. We assume
here that only one set of measurements is available. We will extend our results to the case
of multiple measurement sets in Section 7 by the use of a recursive decentralized algorithm.

5.1 Kalman Filter Equations

Let us present the KF equations applied to our case. As we previously stated, the state
vector is defined by:

x(N) £(7, =0,7,,..7 )T

Here, 7, is the offset of the node A,;. In this part, the offsets are assumed to be time
invariant and we consider that all the clocks run exactly at the same speed (i.e.,; =a; =1,

there is no skew). As we have previously explained, the state space model is given by:

x(n+1) = x(n)+w(n)

y(n) = A" x(n)+v(n)
In the previous notation, we have:® =1, H=A". The Kalman Filter equations are
therefore:

Time update (prediction):

X(n+1[n)=X(n|n)
P(n+1|n)=P(n|n)+Q

Measurement update:

A(n+1[n+1)=RN+1[n)+ KN+ y(n+1)— ATX(n+1n) |
K(n+1)=P(n+1[nA[ ATP(n+1|n)A+ RT
P(n+1[n+1)=[1-K(n+D)A" |P(n+1|n)

Let us substitute the time update equation into the measurement update equation:

A(n+1[n+1)=&M+1[n+[P(n|m+Q]A[ A" (P(n|n)+Q) A+ R]" [y(n+D=A"(n+1]m) |

P(n+1|n+1):{l —(P(IM+Q)A[ A" (P(N|M+Q) A+R]" AT}(P(nyn)+Q)
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Then, the combined Kalman Filter equation (using the information form) is given by:

RN+1|n+1)= (| n)+[(P(n In)+Q)’ +AR’1ATT AR [y(n+D-Ax([M)]  (5.1.1)

Next, we will obtain the above equation through the Least-Squares optimization approach.
Afterwards, we will develop a decentralized version (requiring only local broadcast) of this
filtering algorithm and in Section 6, we will prove its convergence to the optimal
centralized solution.

5.2 The LS approach

We consider the single measurement update case (only one set of measurements is
available) and later on, we will extend the algorithms to the multiple measurement case by
proposing a recursive algorithm (Section 7). We start with the pair of parameters X,, P, and

our goal is to find 7, by using the Kalman Filter equations in a centralized fashion. X,

opt
and P, represent the a-priori knowledge and we want to include this information together

with the measurements to find an optimal estimate. This is important, because this initial
knowledge can improve the quality of the estimation.

The KF solution is equivalent to the minimum of the following expression (see the proof in
Appendix A):

J=(x=%)" R (X=%)+(y-A'X) R (y - A"x) —=—>X(0) (5.2.1)

The first term of the objective function is related to the initial knowledge whereas the
second term is associated with the single set of measurements and its corresponding
covariance matrix.

It is preferable to solve the above deterministic LS problem than to solve the KF equations
directly. The main reason is that the KF solution gives only a centralized algorithm and it is
difficult to decentralize the procedure, as we will see in the next section.

We want to find the vector X

X, that minimizes the above objective function. Hence, we

have to compute the gradient with respect to the vector x and set it to zero:

v, J=(ARTAT+P ) x -

(AR)y-R, "%, =0

R =(ARTAT+P) 7 (AR Y+ PR, (5.2.2)

A

lopt

equivalent to the combined Kalman Filter equation that we obtained previously. In
addition, the posterior error covariance matrix is as follows:

represents the optimal vector of offsets. One can note that the above equation is

E[(x-2)(x-2)" |=(ARTAT+R,") (5.23)
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In the statistical WLS case, we substitute P,”' =0 in the objective function. The centralized
optimal solution is known as the BLUE (Best Linear Unbiased Estimator) and is given by:

2=(ARAT) " (ARY)
In addition, the error covariance matrix is as follows:

E[(l_z)(Z_X)T } = (ARflAT )—1

In order to compute the optimal estimate directly (in a centralized manner), one seems to
need all the measurements associated with their error covariances and the topology of the
entire network. For networks with a large number of measurements, doing so will be
prohibitively expensive in terms of energy consumption, bandwidth and communication
time. Hence, it is more preferable to compute the estimates in a decentralized fashion,
employing only local broadcasts. By decentralized we mean that at every step, each node
computes its own estimate and the data required are obtained through communication with
its one-hop neighbors.

5.3 Decentralized Algorithm: Optimality Equations

Our purpose is to develop a decentralized algorithm that estimates the offsets of each node
over the network. In this section, we consider only the single measurement case. The
multiple measurement scenario will be considered later in Section 7. As in the previous

section, we start with the parameters X,,F, and our goal is to find 7, by using the

Kalman Filter in a decentralized fashion. In other words, we are looking for the minimizing
solution %(0]0) of the following objective function:

J=(x-%)" P (x-%)+(y-A"X) R (y—A"X)

a) The Basic LS Algorithm

We first demonstrate our solution approach for the simplest case where only the second
term is present i.e.,P,” =0 and all the measurements are equally weighted (R=R™" =1).
This corresponds to the Least-Squares solution presented in Section 2.1.

In this case, the objective function is given by:

I=(y- AN (Y- A0 = (0,7 +7,)
ij
jeN,

Differentiating J with respect to each one of the coordinates z; leads to:

ﬂ:(AAT)ig—Ay:—zz(éji—Ti+rj):—2 —5- > 1+ (O +17,) =0

ot N, N e,
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Let us substitute the following relations:

(AAT) x=|Nj|7 =D 7,

jeN;

Ay = z éji
jeN;
0J
G_ri_|N'|T' _jeZNi(Oji +TJ)=0
From this, we get:
1 .
Z, =W;N(oji+rj) (5.3.1)

The above equation must be satisfied by the optimal solution of the offset estimation
problem. While this is a set of linear equations, a direct solution cannot be carried out in a
decentralized manner. Instead, we will implement a decentralized iterative algorithm and
show its convergence to the optimal centralized solution. This algorithm follows the Jacobi
iteration that was described in Section 2.1. We will define the iterative procedure for the
general case at the end of this section and we will prove its convergence in the next
chapter. The above equation has a very simple interpretation. Each node computes its offset
estimate as the average of all its neighbors' estimates plus the corresponding relative
measurements. This procedure is the same as in [41, 12] and one can easily show that this
is equivalent to the algorithm in [14]. Our objective is to extend the previous result to a
wider framework and we will obtain this procedure as a special case of a more general
algorithm.

b) Weighted Least-Squares

Now, we incorporate the weighting matrix while assuming that R™ is a diagonal and
positive definite matrix. These assumptions are reasonable since the matrix R represents
the covariance of the uncorrelated measurement noise.

2
J= (AR (Y- A0 = Y (O -+
i,]

ji
ieN; :

0J _ _ l /A
o =(ARA") x-(AR™) y:_2§u,r_ji(o“ 1, +7;)=0
1 1 /4
From this, we get: T. =;zi(é+7) (5.3.2)
, : , ] it 3.
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We observe that the above formula is quite logical and consistent with our expectations
. L . -1 . .
namely, each measurement is multiplied by a weight equal to (rji) according to its

quality. Moreover, we can check easily that if R=1, ie, r, =1 Vj,keN; the result
-1 A
reduces to the previous LS case. The coefficients (rji) are related to the measurementO;,

therefore ( i )_1 = ( I

_1 . . . . . .
ij) since each measurement is issued by a bidirectional exchange

between the pair of nodes.

Let us rewrite the previous equation in the following way:

[zij.q =Y L(6,+7)=316,+ ¥ 1,

jeN; rji jeN; Yii jeN; rji jeN; rji

The above equation can be solved iteratively using a decentralized version of the Jacobi
method (coordinate-wise), and converges to the optimal centralized solution (see the proof
in [3]).

Next, we will consider the general framework that includes the initial covariance matrix P,

in the objective function. The analysis is divided in two cases: diagonal and non-diagonal
initial covariance matrix.

c) General Framework: Diagonal P,

Finally, let us solve the original problem where the objective function is composed of two
distinct terms:

J=(x-%)" P (x-%)+(y-A"X) R (y—A"X)

Now,
g_ji B (ARilAT )i é_(ARil)i y+(P°71)i* l_(Poil)i* X, = 0
fi ZL_ zi(é“ +TJ')+(P071)'* )2_(P071)'* Y0 =0
i T e i i

Here, (PO"l ) is the i-th row of the matrix P,”".
I*

One can make the logical assumption that the initial inverse covariance matrix P, is a

diagonal matrix. Indeed, P, represents the initial correlation between the different clocks
in the network, and there is no reason to have some a-priori knowledge of the cross

correlation terms but only on the variances of each clock (diagonal terms).

-1

In the case where P, is a diagonal matrix, we can obtain:



This implies:

7, =;-[Zi(éji +rj)+ﬂ (5.3.3)
1 1 jeN; T
P

jeN; rjl pi

In other words, 7; is given by the weighting average between the adjacent measurements

and the initial knowledge related to it. We can notice that if the matrix P,™ is identically

equal to zero, we obtain the same equation as the previous Weighted Least-Squares case
(5.3.2).

d) General Framework: Non-Diagonal P,

In general, the initial covariance matrix P, need not be a diagonal matrix. As we will
explain at the end of Section 6, even if the initial covariance matrix P, is chosen to be

diagonal, after the first iteration of the Kalman Filter, the inverse covariance matrix will not
preserve its diagonal structure. Hence, if we have a-priori knowledge of the system or if
multiple sets of measurements are available, we must consider the case in which the
covariance matrix is not assumed to be diagonal.

In this more general case, we get:

Dy Ly L6, 3R, (-n ) -0

jen D jen T k=1
1 1 N
Y, =% (0547, )+ 2 (R7), (n -5 ) +(R ), (7 ~5(0) =0
jeN ji jENI ji

~(6, z-J')-’-(I:)Oil)ii 7(0)- N (PO?I )ik (7~

jen; T P

Ti[zi+

jeN; rji

—_—
<Y
—
N
1l
™M
1
:O)

+
™M
)
~
=2
N—

This implies:
= S (G4 +(R ), 50 -2 (R ), (7 -5©) | (34
3o | 2
jeN; Ui

The main problem in equation (5.3.4) is that each node needs to communicate with all the
other nodes and not only with its neighbors. Thus, in the case where the matrix P, is not

diagonal, each node has to know the global topology of the entire network. As we
previously explained, the initial covariance matrix P, can be assumed to be diagonal.

However, after applying the Kalman Filter equations, the covariance matrix P(k|k) will
not be diagonal anymore.

29



In summary, we have presented the optimality equations for the four different cases. In this
section, we only considered the case with a single set of measurements. In order to
implement the optimality equations, we propose an iterative decentralized algorithm
presented next.

5.4 Decentralized Algorithm: Iterative Equations

The four decentralized optimality equations we previously presented can be applied to a
network in order to estimate the clock offsets at each node with respect to the reference
time. The suggested distributed optimization is iterative. There are many iterative methods
that can be used [43, 22]. Each iterative algorithm can be implemented either in a
synchronous manner or in an asynchronous way, see [5] for more details about parallel and
distributed computations. In the remainder of this work, we focus on the synchronous
versions of the different algorithms. Convergence can be accelerated by over-relaxation
techniques which are standard in numerical analysis [5]. In this research thesis, we will not
be concerned with the number of iterations and rate of convergence, as long as convergence
is achieved after an infinite number of iterations.

As we previously mentioned, if only one set of measurements is available, we can apply the
algorithm assuming that P, is a diagonal matrix. The reason is that at the beginning, it is
reasonable to assume that the a-priori covariance matrix is diagonal, i.e., the initial offsets
are uncorrelated. In Section 7, we will present a recursive version of the previous
algorithms for the multiple measurement case.

For the single measurement case, the corresponding decentralized synchronous algorithm
that implements the optimal equation in (5.3.3) is given by (assuming that P, is diagonal):

et DI R (5:4.1)
1 1 jeN; rji pi
> Ll
jeny i B
Initialization: 7, =7,(0) i=2,3,..N. Here, k >0 is the iteration number.

In other words, we obtained in (5.3.3) the optimal equation that computes the offsets at
each node in a decentralized fashion. In order to implement this optimal equation, we
propose the iterative synchronous algorithm in (5.4.1). The procedure in (5.4.1) requires
only local broadcasts (communication with neighbors) and as we will show in the next
section, converges to the optimal centralized solution (after an infinite number of iterations
in all the nodes).

Let us summarize the procedure for applying the algorithm in (5.4.1). First of all, we
assume that the nodes detect their neighbors and exchange bilateral packets to obtain their

relative measurements O;;. In addition, they exchange their relative inverse covariances

-1 -
(rji) and the inverse initial covariance (p,) ' The initial offset 7,(0) are known at each

node, so the quantity z 1 +L can be computed at the beginning of the procedure.
jeN; ji pi
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After the deployment of the network, the reference node initializes its estimate to 0 and
never changes it. Every other node in the network initializes its estimate to an arbitrary

A

value. At the start of iteration k+1, each node sends its most recent estimate 7*’ to its

neighbors along with the corresponding iteration number. It also gathers the estimates of its

neighbors, 7 j(k) A € N; and then updates its own estimate by applying the above equation

for V. The algorithm is summarized in Table 5.1.
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Name: Decentralized Synchronous Kalman Filter
Assumptions: - The inverse initial covariance matrix P, is diagonal.
- Only one set of measurements is available.

Goal: Compute in a decentralized manner the offsets estimates at each network node
(except for the reference) that approach the optimal centralized estimates.

Initialization: 7,* =0 Vk, ' is arbitrary for i eV \{1}.

After deployment, each node i eV \{1} performs:
1. Detect its neighbors N;.

2. Identify the inverse initial covariance — and the initial offset z;(0).

Pi
3. Obtain one set of relative measurements Oj; and the associated inverse covariances

L for every j € N,. Compute Zi+i

ji ieN; rji Pi

At every iteration k, each node A, performs:
4. Send £ and k to its neighbors j e N;. Obtain 7, jeN;.

5. Compute 7,“"" from the previous quantities, using (5.4.1).

Table 5.1. Summary of the Decentralized Synchronous Kalman Filter Algorithm.

The end of the algorithm is determined according to a termination condition on the absolute
difference between the estimates at two successive iterations:

£ —20l<e ieN\{1 (54.2)

In the next section, we will prove the convergence of the previous iterative decentralized
algorithm to the optimal centralized solution.
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6. Convergence Analysis

Let us recall that the clock synchronization problem considered in this thesis (with a single
set of measurements) can be summarized into the following LS optimization problem:

J=(x-%)" P (x-%)+(y-A"X) R (y—A"X)

In order to find the optimal solution, one has to minimize the above objective function with
respect to the vector X. In the previous chapter, we divided the analysis into four special
cases and we obtained the optimal solution for each case. Then, one can implement the
optimal solution using an iterative decentralized algorithm (equivalent to the Jacobi
method). We now prove the convergence of the previous decentralized clock
synchronization algorithms to the optimal centralized solution. We consider the most
general case where the initial covariance matrix P, is not assumed to be a diagonal matrix.

In this case, the synchronous decentralized algorithm is given by:

R N
A0 = 1 > (6, +4%)+(R7), 5@~ (R7), (2 ~r, @) | (6D
1 _ jen, Tii . m=1 m
(Z+(P°l)iiJ o e
[T

Initialization: 7"’ (1) = 7;(0) 1=2,3,...N . Here, k >0 is the iteration number.

Theorem 6.1

Suppose that:

a) A single set of measurements is available.

b) The matrix R is diagonal and PSD, that is: o > (rji )_1 >0 Vi,j .

c) The offsets are time-invariant.

d) The initial state vector X, is known.

e) The initial covariance matrix P, is known and is an M-matrix, namely:

> (p), 20

]

(R™), 20 (6.2)
(R), <0 (i#])

f) The clock adjustment operation in (6.1) is applied synchronously by all nodes
(i=2,3,...N ) inall iterations.

A

Then, the iterated estimators 7*(n) i=2,3,..N converge (as k — o) to the optimal
offsets that minimize the objective function:

J=(x-%)" P (x-%)+(y-A"X) R (y—A"X)

namely, the set of offsets that would have been obtained by performing the centralized
optimal protocol.
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In the remainder of this section, we present the proof of this result. For the first two special
cases (Least-Squares and Weighted Least-Squares), the convergence can be proven in the
following way. The first step consists of proving that the objective function to be

minimized J (g) is non-increasing in time. The second step is to show that if the clock

adjustment operation is applied by all nodes in all iterations, the set of estimated offsets
converges to the set of offsets that minimize the objective function i.e., the set of offsets
that would have been obtained by performing the centralized protocol (for the LS case, see
the proof in [14]). For the WLS algorithm the convergence condition is

that: oo > (rji )_1 >0 Vi, ] or in other words, a sufficient condition is that the matrix R is
diagonal and PSD (Positive Semi-Definite).

Here, we will use another more convenient technique to prove the convergence of the
proposed algorithm, in the general case. Let us recall that the general objective function is
given by:

J=(x-%)" B (x-%)+(y-A'X) R (y—A"X)

Let us analyze the convergence properties of the general case, where P, is not necessarily

assumed to be a diagonal matrix. We note that the iteration (6.1) cannot be easily
decentralized when P, is not diagonal as we explained in Section 5. However, the iteration

is still well defined mathematically.

The synchronous iteration can be written in vector form:

A _ 200 —(f) B )71 (ARflATZA'(k) ~AR'Y-P'X, + Poflz‘-(k)) (6.3)
L
e e, i
Here: D) = zi and N
( )Ij jeN; rji ( O)” {0 otherwise
0 otherwise

The optimal solution (equivalent to perform the centralized protocol) is the same as before:
7 =(ARTAT+R) (ARY+RX,)
Let us define: T 2200 ¢ (6.4)
Then we get:
Tl 20— =20 (D4R, )’1 (ARTATZ® — ARy~ B7'X, + B 1ER ) -
~(ARTAT+R ) (AR Y+ P, 'X,)
T = [I -(D+F, T (ARTAT 4 Po‘l)J 79— (ARTAT+P) (ARY+PIR, )+

)
+(D+B) (ARTAT+R)(ARTAT+P 1) (AR Y + PR, )

*
T

Tk = [I -(D+F, )’1 (ARTAT + POI)} z®
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We denote:
M21-(D+R) (AR'A +R) (6.4)

We have the equivalent iteration:

7 — 7o

Thus, the convergence of the sequence 7 to 7~ is equivalent to the convergence of 7
to the zero vector, which is determined by the matrix M given in (6.4). The necessary and
sufficient condition for this to happen is that the spectral radius of M 1is strictly smaller
than 1.

According to proposition 2.5, the above iteration equation converges to zero if the
sufficient conditions apply for the matrix iteration M . In other words, the row sums of the
matrix M are less or equal than 1 (and at least in one row this sum is strictly smaller than
1), all the entries of the matrix M are non-negative and that the matrix M 1is irreducible;
i.e., we can move from any node to any other node by a direct trajectory. In our network
model, this last condition that the matrix M 1is irreducible requires the assumption that the
graph that corresponds to the network is connected, namely there exists a path between any
pair of nodes in the network. Some additional important assumptions are that each node has
at least one neighbor (not including the reference node) and that the links are bidirectional
(symmetric).

The structure of the matrix M can be determined by inspection as the following:

I i = jand i, j areneighbors

otherwise

In order to show that the spectral radius of the iteration matrix is strictly smaller than 1, we
will require that the matrix M is both non-negative and sub-stochastic (see Section 2.5).
Let us find the conditions for the row sums of the matrix M to be smaller or equal to 1:

ZMU = - =
: Zi+(P0_l)ii

jen; Tii

ZI_Z(POI)U

_ e T v <1

ZL—F(P‘;I)H _

jen; T
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From this we get:

This implies: > ( P )ij >0

In other words, we obtained that the necessary condition is that for each node A,, the row
sum of the matrix P,”" has to be non-negative. In addition, the condition: oo > (rji )71 >0 Vi, j

(r; =r;) must hold too.

Requiring that all the entries of the matrix M are non-negative leads to:

Hence, we can write:
(R"),2-2(R"),20

Vj#i

The above requirement can be seen as a diagonal dominance condition over the matrix P,™".
In the case that the node A; is adjacent to the reference node, the corresponding row sum
of the M matrix is given by:

36



In the case that the node A, is not adjacent to the reference node, the corresponding row
sum of the M matrix is given by:

> ), (),

JeN; i | JeN
j#i

z i—‘_(PO_] )ii

jen; T

DESAINECS)

— —
jeN; V=i
L= 0 <1

Z L-’-(F)Oil)ii

jen; T

Hence, we have shown that at least in one row, the row sum of M is strictly smaller than
1. Actually, we proved that the iteration matrix verifies all the sufficient conditions for
convergence. Namely, the row sums of the matrix M are less or equal than 1 (and at least
in one row this sum is strictly smaller than 1), the matrix M is irreducible and all its
entries are non-negative. ]

As a result, we proved the convergence of the decentralized algorithm to the optimal
solution performed by the centralized Kalman Filter for the most general case. Now, we
will conclude the same for the other methods as special cases of the previous general
framework. If the matrix P, is assumed to be diagonal and PSD, the decentralized

algorithm converges. To see that, we have just to substitute p;j =0 i# j and to check that

the condition p(M)<1 is still verified . If P, =0, we will obtain the Weighted-Least-

Squares case, and it is easy to check that in this case too, the convergence of the
decentralized algorithm is achieved. The proof for the most basic case (equivalent to LS) is
provided in the literature by Giridhar et al. [12] but all the other cases are to the best of our
knowledge original.

To sum up, the convergence conditions are given by:

R is diagonal and PSD, that is: o > (rji )_1 >0 Vi, ]

Z( PO?I )ij 20

]

(Poil)ii 20
(R). <0 (i=])

ij

We end this section by an additional lemma that will be of importance in the next chapter.
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Lemma 6.1

The convergence conditions have to be checked only once at the beginning of the
procedure. In other words, the Kalman Filter operations preserve the convergence
properties, that is: if P, is an M-matrix, then P, isan M-matrix forall n>1.

Proof

In the information form of the discrete time Kalman Filter, the measurement update
equation of the inverse covariance matrix is given by:

(P(+1{m)" =(P(n|n))" +H'R™'H (6.5)

In our case H = A", hence we obtain: (P(n+1] n))_1 =(P(n| n))_1 +AR'AT.

Recalling that the matrix R™ is assumed to be diagonal, let us analyze the properties of the
matrix AR™'A". For the regular incidence matrix, we have:

1y (0
ARTAT| T |=
1) \o

and for the reduced incidence matrix we have:

1
ART'AT| " |=v
|
Here, V is a vector with non-negative components.
The structure of the matrix AR™' A" is as follows:
(ARTAT) >0
(ARTAT )ij <0

The row sums are Z:(AR*IAT ) =0 for each node A, that is not adjacent to the reference
. 1)
vj
node. Besides, if the node A, is adjacent to the reference node, this sum is a strictly
positive number. Hence, we can draw the conclusion that if the a-priori inverse covariance
matrix (P(n ] n))f1 verifies the convergence conditions, the a-posteriori inverse covariance

-1

matrix (P(n+1| n)) will verify them too. As a consequence, we have to check these

conditions only once at the beginning of the procedure. This result will be useful in the next
section. -

In the next section, we extend the analysis to the case of multiple measurement sets and we
propose an optimal decentralized recursive algorithm.
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7. Recursive Algorithms: Multiple Measurement Update

In the previous sections, only the case of one measurement update was investigated. The
next step is to consider the multiple measurement case and to present a recursive version of
the previous decentralized algorithms. Several sets of measurements become successively
available and our goal is to develop an algorithm that estimates the offsets after each set of
measurements. The first alternative is to solve this problem by proposing a recursive
algorithm. The latter is required to be decentralized and to depend only on the last
measurement and on the previous estimates. The second option to solve the multiple
measurement case is to wait for all the measurements and then to perform the estimation
procedure. We will consider this case at the end of this section by proposing a
decentralized non-recursive algorithm.

In the subsequent analysis, we still focus on the case where the initial covariance matrix P,

is diagonal. The main problem is that after the first measurement update in the KF
equations, the covariance matrix is not diagonal anymore. Then, each node has to
communicate with all the other nodes over the network and not only with the one-hop
neighbors. First, we present the centralized Kalman Filter algorithm and then we propose
an optimal decentralized procedure that is equivalent to the KF solution. Afterward, we
suggest a decentralized sub-optimal algorithm and a decentralized non-recursive method.

7.1. The Centralized KF Algorithm

In Section 5.2, we obtained that the centralized Kalman Filter optimal solution (using the
LS approach) for a single set of measurements is given by:

2=(AR'AT+P) (ARy+P,'X,)

We will now develop the corresponding recursive version given n sets of measurements.
By repeating the previous derivation, we obtain:

A(n)=(n-AR'A" + P, )‘l (Z AR'y(k)+ Po‘lioj
k=1

-1

&(n-D=((n-1)-AR"A"+R") [Zl ARy(k) + P0170j

This implies:

x(n)=(n-AR"A" + Po‘l)_l [((n ~1)-ARTAT+ R R(N-1)+ AR-ly(n)] (7.1.1)
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Hence, we obtained a recursive relation for the estimated vector of offsets. The equation in
(7.1.1) corresponds to the centralized version of the recursive algorithm. We can simplify
this equation in the following way:

2()=(n-AR"A"+P )" [((n ~1)-AR™AT +P, ) R(n-1)+ AR’ly(n)]
X(n) = &(n=1)+(n-AR'AT + R, )’1 [AR’ly(n)—(AR’lAT )(n —1)]
(M) =R(N-1)+P(n[MAR™ [ y(n)— A" X(n-1)]

Let us now discuss several applications related to this centralized protocol. The centralized
algorithm can be applied to a variety of situations. For example, one can imagine a set of
fully intercommunicating nodes or the situation where a central unit is in charge. We can
also apply the centralized protocol not solely on the entire network but also locally.
Namely, we can estimate the offsets of a group of nodes that are regrouped geographically.
For each group, we will assign a single processor that can communicate with all the group
members. Another important application is the scenario in which a node needs to estimate
simultaneously several different variables. For instance, in the sensor localization problem,

each node A; has to estimate his position by evaluating the three coordinate(f(i Yis g ) In

this case, each node needs to estimate a vector of several variables so it is worthwhile to
extend our algorithm to the vector case (centralized version).

Similarly to the single measurement update, applying the centralized KF algorithm for
networks with a large number of measurements, will be prohibitively expensive in terms of
energy consumption, bandwidth and communication time. In other words, in order to
compute the optimal estimate directly (in a centralized manner), one seems to need all the
measurements associated with their error covariances and the topology of the entire
network (because the covariance matrix P(n|n) is non-diagonal). The solution we propose

is a recursive decentralized algorithm based on the same LS approach as in the previous
chapters.

7.2 The Optimal Decentralized Algorithm

We first consider the two measurements case and then extend to the general framework of
n sets of measurements. We start with the initial parameters (X,,P,), where P, is chosen
to be a diagonal matrix. When the first set of measurements, say Yy(1), arrives we can
estimate the offset vector 7(1) and calculate the a-posteriori inverse covariance matrix

P(1)'. This matrix will not be diagonal in general. The next step begins when the second
set of measurements Yy(2) arrives. As before, we can estimate the offset vector 7(2) and
calculate the a-posteriori inverse covariance matrix P(2)™'. But here, as the matrix P(1)”'

is not diagonal, the synchronization procedure is more difficult than the previous one
because the Jacobi method does not lead to a distributed algorithm. During the second step,
each node has to communicate with the entire network and not only with its neighbors.
This was discussed in Section 5.2. On the other hand, we can wait that the two sets of

measurement (y(l), y(2)) arrive and then estimate the offset vector 7(2) and calculate the

a-posteriori inverse covariance matrix P(2)”' by applying the Kalman Filter equations to
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the combined measurement vector. This one step method will give the same result as the
two steps method, but the procedure is easier because P, is diagonal and then the algorithm

is decentralized. Our goal is to develop a scheme that combines the better features of both
methods: namely, a recursive estimation algorithm that is still decentralized.

Let us solve the problem when two sets of measurements are available. Then, the objective
function is given by:

J=(X=%)" P (X=%)+(y()- A"X)" R (y(D - A"x)+(¥(2)- A'X)" R (y(2) - A'X)

First, we compute the optimal offset estimate of node A; given the first set of
measurements. When the matrix P, is assumed to be diagonal and only one set of

measurements is considered, we have obtained previously the following clock
synchronization algorithm:

fi<k+1>(1)=;- Zi( Wy <k>(1)) 2O is23N (7.2.1)
1 1 jeN; r]| p|
A
jen G B
Initialization: 7,”(1)=17,(0) i=2,3,..N. Here, k>0 is the iteration number.

Equation (7.2.1) corresponds to a synchronous decentralized iterative algorithm. As we
previously have shown, when the above procedure is applied by all nodes in all iterations,

the set of offset estimates converges to the optimal centralized solution (if the matrix P,™" is

chosen according to the conditions convergence). After repeating this algorithm an infinite
number of iterations, we will obtain the optimal offset estimate 7;(1). In other words, 7,(1)

is the optimal offset estimate (after the convergence of the above algorithm) of the node A,
given the set of measurements y(1).

The next step is to compute the optimal offset estimate of node A; given the sets of

measurement (y(l), y(2)) . By repeating the one-measurement derivation, we obtain:

fi(k“)(Z) _ 1 1 {Z 1 (O(])-i- A (k)(2)) 7; (0) z (0(2)+ A (k)(2))j| (7.2.2)
227 — LieNi Y i jeN; i

jeN; JI pi

Let us try to express 7,(2) as a function of 7,(1) (recursively). In equation (7.2.1), after an

infinite number of iterations in all the nodes, we will get the following steady-state
equations:

1

fi(l)z—.{;ﬁ(@gpﬁj(l)Fri;(»}
Foil

jeN; rJ| p|
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Let us find an expression for z O D from the above equation:
JjeN; J

I MUE D YL RO WS TR
jen; T of

jen, Tii P jen, Tii i

Now, let us replace in equation (7.2.2):

A (k+1) 1 . l 1 7 7,(

jeN; JI pi
+ Z # <k>(2)+7g+ Z (o<ji2>+ £90))

jeNI ]| jeNI J|
From this, we get:
. 1 | (1) .
(k+1) _ (2) (k)
7 (2>—T-{2Nf(ria>— i)+ ) ZN (0 +27, (2))}
2274_7 1eN; Tiji i JeN; i
jeN; rJI pi

which is the required expression.

Now, let us generalize this idea for n sets of measurements, i.e., to find a recursive relation
between fi(k”)(n) and 7,(n—1). We consider the general case in which the matrix R~ may
be different for each set of measurements. Hence, the objective function is given by:

J=(X=%)" R (x=%)+ i(Y(k)— ATX)"R(K) " (y(k)~ Ax) (7.2.3)

First, differentiate the objective function (7.2.3) with respect to the offsets and set the
partial derivatives to zero:

{ZZ (k)} i_i{z oL (k)”)}(Pol)i*ﬁ‘(Pol)iJo=0

k l]ENI ]| k=1 ]ENI ]|

As usual, we assume that the initial covariance matrix P, is diagonal and obtain the
corresponding iterative algorithm with combined measurements:

g2
|: rjl(k)j|

ZZ

k=I| jeN;

P

Initialization: 7,”(n)=7,(0) i=2,3,..N . Here, k >0 is the iteration number.
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The above formula corresponds to a synchronous decentralized iterative algorithm. As we
previously have shown, when the above procedure is applied by all nodes in all iterations,
the set of offset estimates converges to the optimal centralized solution.

The same equation holds for n—1. After an infinite number of iterations in all the nodes,
we will get the following steady-state equations:

(U 1 {;LZN: ,.(k)(o(k)”i(n_l))}Tilg?)}
sz.r,.(kj o

As before, let us find an expression for Z _t
= rij(n=1)
JENi Jl

k=1

0 ji(n—l) from the above equation:

n-1 1

zﬁéii(n—l): Z Z ]+_ £ (n—1)— 7i(0)

ko] jen T (K) | P ¥

(o 01 2,(n- 1))} Z

n-2
1
| & o0 & pre

Now, replace the above expression in the equation of 7**"(n):

A (k+1 _ 1 < A A (K 7(99/ k
7% (n) = — _ {ZLZN: rj,(k)(pw 7! >(n))} s ,.(k)( ,—<>(n))+

3 St
k=1 |_jeN; rji(k)_ Pi

(‘Z“ r"(k)}ﬂ aeeh kZ‘LZN: ,.(k)(%”j(”*))}

)

k=

_ Ti(9')/_ N 1 ™ 47 00
pi JEZN. rji(k)z-j(n 1)+ JEZN jl(k) (O (n)) }

From this, we get:

A (k+1 1 < a ) ~ (k
747 (n) = [ } {Z[JZ Jl(k)[(Ti(n—l)—rj(n—l))-i-rj( >(n)]]+

N )(O(”) ~ (k)(n))+ fi(n—l)}

JeN; ]I( pi
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Now, let us continue to arrange the previous expression so that 7,**”(n) will be given by
the sum of 7.(n—1) and an additional term related to the last set of measurements in order

to obtain a recursive relation.

2 =4, (n-D)+ 1 } 1{162N,r,-i1n>[é("n) (#:n-D-2,9m)]+

1
1|:J§\l:| jl(k) "

=1

pi

+ {Z (k)(;”(n)—f,-(n—l))}

k=1] jeN J|

1 : Lo‘"’ ((n-D-#(n-1) |+

. 1 1 jeN; jl (1—) "
Z 27 +— the estimated measurement
k=1 rji(k) P

60 () = 2,(n—1)+

ieN;

jen; | k=1 T

+2 {i%}(fﬁ“(m—ﬂ(n -}

For the special case where the matrix R™' is similar for each set of measurements, we
obtain:

fﬁ“”(n):ﬂn-lp%' ZN‘,% Of - (4(-D-7,0-D) +n(2“(n)~7(n-1))
Ny —+— [N

jen; G

the estimated measurement

The above algorithm is decentralized, recursive and iterative. For each set of
measurements, it performs an infinite number of iterations in order to converge to the

optimal solution. Moreover, fi“‘“)(n) depends only on the last measurement and on the

previous estimates. We point out that the last equation slightly deviates from the standard
structure of a recursive algorithm due to the term n (time explicit index) in the
denominator and in the internal term.

Let us define the following quantity:

ol -0 3 S

pi jeN; | k=1

Hence, the following recursive relation holds:

(L] =[Le-n]"+ Y ——

jeN; rJ'i (n)
Lo =[O =

(7.2.4)
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We note that the elements of [Ii(n)]_1 in (7.2.4) are the diagonal entries of the inverse

covariance matrix in the Kalman Filter equations. Thus, the error estimation variances of
the estimates at each step are obtained. This is a desirable property since it gives
information on the estimation quality. Observe however that we do not compute the non-
diagonal elements of the inverse covariance matrix.

Using this notation, the recursive version of the decentralized algorithm in its final form is
given by:

£ () =7 (n-1)+

{Z%'[éﬂ-?) (T(n 1)— *(k)(n)):l+(n—l). Z%.(f}.m(n)—fj(n—l))}}

[I( ]
[Lm] =[L (-] +Zr—=—+n Z— i=2,..,N

jeN; ji pl jeN; r

where: [LO)]" =[PO)]" =—

We consider the case where the matrix R™' is similar for each set of measurements for
notation simplicity. Moreover, this assumption is quite logical and this scenario can be
considered as the most representative case. The above set of equations in (7.2.5)
correspond to our main algorithm that is summarized in Table 7.1. It is a decentralized,
synchronous and recursive algorithm that computes at each step, the estimated offsets in
addition to the corresponding error variances. The main advantage of this algorithm is its
local nature; each network node needs to communicate only with its neighbors.

We now describe in words the iterative procedure in (7.2.5). At time n, we assume that the
estimate of 7,(n—1) is given. Then, 7*(n) k =1,2,... is computed based on 7,(n—1) and
the last measurement set y(n). We assume that a sufficient number of iterations is
performed at each time n, so that the estimate 7;(n) is accurate.

The proposed algorithm in (7.2.5) may be derived in two ways, which lead to the same
optimal equations:
1. Differentiate J(n—1) and J(n) with respect to the offsets vector X and set the partial

derivatives to zero.
2. Algebraic manipulations of the standard recursive extension of (5.3.4), with the
following KF update inverse covariance equation:

(P.) =(R) +AR'AT (7.2.6)

In other words, the set of iterative equations in (7.2.5) is mathematically equivalent to
perform (5.3.4) separately for each measurement set in addition to (7.2.6). This result will
be useful in the proof of Theorem 7.1. This can be shown easily by some appropriate
mathematical manipulations and is not presented.

Now, let us show the convergence of the set of equations in (7.2.5) to the optimal
centralized solution.
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Theorem 7.1.

Suppose that:
a) The matrix R is diagonal and Positive Semi-Definite, that is: Os(rji )_l<oo Vi, j .

b) The initial covariance matrix P, is an M-matrix, namely:
—1 >
;(PO )ij >0

(R™), 20 and (R) <0 (i)

c) The clock adjustment operation in (7.2.5) is applied synchronously by all nodes
(i=2,3,...N)in all iterations, recursively for n sets of measurements .

d) A sufficient number of iterations is performed after each measurement set n, so that
£®(n) converges to 7,(n).
Then, for each n>1, the iterated estimators 7" (n) i=2,3,..N converge (as k —» ) to
the optimal offsets that minimize the objective function in (7.2.3).

We next present the proof of Theorem 7.1. Our proof relies on Lemma 6.1.

Lemma 6.1 immediately implies the convergence of the recursive extension (for several
measurement sets) of equation (5.3.4) to the optimal solution, where at each step, the new
covariance matrix is computed according to (7.2.6). Since the iterations in (7.2.5) are
equivalent to the procedure in (5.3.4), we obtain the claimed convergence in Theorem 7.1.m

Remarks:

- We can also apply the recursive procedure to the case where at each stage, just
some of the pair-wise offsets are measured (e.g., y(l) is only the measurement of

(534 ). In this case, the matrix A" for that stage will have a structure in accordance
with the measurements.

- The main advantage of this recursive method is that we have the same diagonal
matrix P, during the whole procedure, thus it is easier to prove convergence.
Moreover, we do not need that each node communicates with all the other nodes but
only with its neighbors. In fact, when a new set of measurement arrives, we exploit

the estimate of the previous iteration and add only the information contained in the
new measurement.
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Name: Decentralized Synchronous Recursive Kalman Filter
Assumptions: - The inverse initial covariance matrix P,” is diagonal.
- n sets of measurements are available.

- The matrix R™ is the same for each set of measurements.
Goal: Compute in a decentralized manner the offsets estimates at each network node
(except for the reference) that approach the optimal centralized estimates.

Initialization: 7, =0 Vk, 7 is arbitrary for i eV \{1}.

After deployment, each node i eV \{1} performs:
6. Detect its neighbors N, .

7. Identify the inverse initial covariance — and the initial offset z,(0).

P;
8. Obtain the first set of relative measurements éji(l) and the associated inverse
. 1 . - 11
covariances — for every je N;. Compute [1;(1)] o Z —
r. n P
ji jeN; Ui i

9. Send 7,(0) to its neighbors je N;. Obtainz;(0) je N; and keep in memory 7;(0).

At every time n that a new set of measurement arrives:

10. Compute recursively [Ii(n)]_1 =[I;(n —1)]_1 + 1 and send N to every node.
jeN; T
11. At every iteration k , each node A, performs:
a. Send 7(n) and Kk to its neighbors j € N,. Obtain fj(k>(n) JeN,.
b. Compute 7**"(n) from the previous quantities, using (7.2.5).
12. Send the final values of 7;(n) to its neighbors je N;. Obtain 7;(n) jeN; and

keep in memory 7,(n).

Table 7.1. Summary of the Decentralized Synchronous Recursive KF Algorithm.

So far, we developed the recursive decentralized algorithm for multiple sets of
measurements using the Least-Squares approach. Next, we will show that one can obtain
the same algorithm through the Kalman Filter equations.
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7.3 Equivalence with the KF Equations

We will show that the previous recursive algorithm can be obtained by applying the
Kalman Filter equations through appropriate manipulations. By applying the information
form of the Kalman Filter in our context, we obtained the following recursive equation (see
in Section 5.1):

X(n|n):X(n—1|n—1)+[(P(n—1|n-1)+Q)*‘+AR-‘ATIl AR y(n)~ ATX(n—1|n—1)]

Now, we will develop a decentralized version of the above equation and as expected, we
will show that this approach leads to the same recursive algorithm that we obtained in the
last section.

Let us recall that x(n) =(z, =0,7,,...7 )T (where 7, is the offset of the node A,) and that

a1 e . L
[Pi(O)] f=— (the initial inverse covariance matrix is diagonal). Moreover, we assume as
i
usual that the matrix R is diagonal. For the case where Q =0 (there is no process noise),

due to the special structure of the matrices AR A" and AR™', one can write the previous
equation for each node separately and obtain the following decentralized estimates:

fi(n):fi(n—1)+1;zl-{z {69 -2m-1]+n- Zri-(fj(n)—fj(n—l))“ i=2,.,N

~ tn- jen; Tii jen; T
pi jeN; Tii

As before, we can define:

[Ii(n)] [L(n-D] +z—=— n- z—

jENI J| pi JENI ]|

(L] =[PO] " =—

and then the recursive algorithm is given by:

fi<k+“(n)=fi(n—1)+[|(1)] {Z [0% ~(2(-n=2 M) ]+(n-1)- Zi-(f;k)(n)—fj(n—l))”

(o] =[,;m-n]" +Zr—=—+ Z— i=2,.,N

jeN; Yji p| jeN; J|

where: [1,(0)]" =[P(0)] =—

This is an iterative (synchronous) algorithm that computes recursively the estimated offset
for each node A;j (k=0 is the iteration number) in a decentralized manner. The above

algorithm is exactly similar to the procedure that we obtained in (7.2.5).

In summary, we have shown as expected that the decentralized recursive algorithm we
developed is exactly equivalent to the Kalman Filter. Indeed, we solve the problem of
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finding an optimal decentralized algorithm by two different approaches that lead to the
same optimal solution. This is not a surprise because in the different derivations we are
looking for the linear optimal estimate in the MMSE sense and the optimal solution is
given by the Kalman Filter. The special structure of the centralized version of the Kalman
Filter equations enables us to derive a decentralized version just with some mathematical
manipulations. This is not always possible, as we will see for the case where a white noise
process is incorporated in the equations. The problem of the Kalman Filter equations was
the fact that the covariance matrix does not keep its diagonal initial structure. Hence, each
node has to communicate with the entire network (or equivalently to make use of a central
unit). In the decentralized version, the requirement is that each node communicates only

with its one-hop neighbors. In addition, the terms [Ii(n)]f1 are equal to the diagonal terms

of the inverse covariance matrix. In other words, this algorithm computes the variance of
each estimate, so we can know the quality of the estimation at each node.

Next, we propose a simple sub-optimal algorithm that computes the offsets for the case
where multiple sets of measurements are available.

7.4 A Sub-Optimal Decentralized Algorithm

Another approach to solving the decentralized estimation problem can be considered. At

the end of the section 5, we obtained a general decentralized equation in the case of a non-
diagonal initial covariance matrix (for a single set of measurements):

fi(km - 1 : ;%(é“ +z:j(k))+(P071)ii T (0)_ZN:(P01)im (fm(k) —Tm(())) (7.4.1)
~+(r") N i i

As expected, the estimated offset of node A; depends on all the other offsets and not only

those of its neighbors. One can think about the naive sub-optimal algorithm that neglects
the off-diagonal terms of the inverse covariance matrix:

[Z 1+1(P01)IJ{Z (04 +(R ), 500

jen; T
jen; Tji

TAi(k+1) _

We obtained a decentralized sub-optimal algorithm for the case where a single set of
measurements is available. Let us generalize for the multiple measurement scenario. In this
case, the centralized optimal algorithm is given by:

&(n|n)=&(Mn-1{n=1)+P'(n-1|n-1)+ AR-‘AT]‘1 AR y(m)—A"&(n—1{n-1)]

If we neglect the off-diagonal terms of the inverse covariance matrix at time n—1, we have
(as usual, we assumed that the initial covariance matrix is diagonal):
f(n[n)=R(n-1|n —1)+[diag (P (n=1In=1))+ AR AT T AR [ y(n)— ATX(n—1|n-1)]
diag(P™'(n-1|n-1))=(R") +(n-1)- Zi=i+(n—1)- Ziz[li(n—l)]’1

jen Fi B jeN; T
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Here, we neglect the off-diagonal terms before inverting the information matrix (Pn_1 )_1 ,1n

the goal to improve the complexity. In this case, we will invert a diagonal matrix and hence
the time computation will significantly decrease.

Therefore, the decentralized sub-optimal algorithm is given by:

r‘i(k“)(n):r‘i(n—l)+(Pl) ! z1{JzHég;”—(fi(n—D—f,-“(n))]} (74.2)
: ii+n. [ JeNi T

jeN; T

We can interpret equation (7.4.2) in a very logical manner. The new estimate is given by
the sum of the previous estimate and a correction term. This correction term is composed of
the latest measurement minus the estimated measurement multiplied by the measurement
variance and the total is normalized by the accumulative variance.

In the numerical results section, we will compare the decentralized recursive algorithm that

converges to the optimal solution to the above sub-optimal scheme. The sub-optimal
algorithm is summarized in Table 7.2.
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Name: Decentralized (recursive) Sub-Optimal Algorithm
Assumptions: - The inverse initial covariance matrix P,” is diagonal.
- n sets of measurements are available.

- The matrix R™' is the same for each set of measurements.
Goal: Compute in a decentralized manner the offsets estimates at each network node
(except for the reference) in a logical sub-optimal manner.
Initialization: 7, =0 Vk, 7 is arbitrary for i eV \{1}.

After deployment, each node i eV \{1} performs:
1. Detect its neighbors N; .

2. Identify the inverse initial covariance — and the initial offset z;(0).

P;
3. Obtain the first set of relative measurements éji(l) and the associated inverse
. 1 . - 11
covariances — for every je N;. Compute [1;(1)] o Z —
r. n P
ji jeN; Tii i

4. Send 7,(0) to its neighbors j e N;. Obtainz;(0) je N; and keep in memory 7;(0).

At every time n that a new set of measurement arrives:

5. Compute recursively [Ii(n)]_1 =[I;(n —1)]_l + i
jeN; T
6. At every iteration k, each node A; performs:
a. Send 7 (n) and Kk to its neighbors j € N,. Obtain fj(k>(n) JeN,.
b. Compute 7**"(n) from the previous quantities, using (7.4.2).
7. Send the final values of 7;(n) to its neighbors je N;. Obtain 7;(n) jeN; and

keep in memory 7,(n).

Table 7.2. Summary of the Decentralized Sub-Optimal Algorithm.

Next, we will present a decentralized non-recursive algorithm that solves the time
synchronization problem in the multiple measurement update case.
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7.5 Decentralized Non-Recursive Algorithm

Let us present an alternative method for the estimation algorithm in the multiple
measurement case. The objective function is the same as before with the usual assumptions.
Namely, the matrices P, and R are assumed to be diagonal and we suppose that the matrix

R~ is similar for all the measurement sets.

J=(x=%)" R (X=%)+ Zn:(Y(k) —~ATX) R (y(K)-ATx)

In Section 5, we have obtained the following synchronous decentralized iterative clock
synchronization algorithm (for a single set of measurements):

2040 . D i(ég? +fj<k>)+ﬂ i=2,3,..N (7.5.1)
1 1 JjeN; rji pi
y Ll
jeN; rJl pi
Initialization: 7' =7,(0) i=2,3,..N . Here, k >0 is the iteration number.

Our goal is to develop a new non-recursive estimation method (batch algorithm) for the
multiple measurement case. In the latter, we will define the equivalent measurement and
the corresponding equivalent covariance. In fact, we wait for all the measurement sets and
then, we compute the equivalent measurement and its corresponding covariance as follows
(we recall that the different measurement sets have independent noises):

Now, we can consider that we have just a single set of measurements and we can use the
decentralized clock synchronization procedure in (7.5.1).

1 . . .
Let us replace the term: Z —O(jli) by the above equivalent expressions and then we obtain:

jeN; ji

Nm:]lzlq+zlwu“ﬂ

jeN; Fj\l p
00 = ! : i( éji(")+n-fj(k)] +ﬂ i=2,3,..N (7.5.2)
n i_’.i jENI rJ| k=1 pi
jeN; r]l pi
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The equation given in (7.5.2) is an additional decentralized algorithm for estimating the
offset at each network node with respect to the reference time, using a Kalman Filter
framework. In fact, instead of using the first measurement in the synchronization
procedure, we employ the sum of all the measurements normalized by the number of sets.

One can also extend the previous procedure to the case in which the matrix R™! is different
for each set of measurements. Actually, the equivalent measurement is given by the
weighting average of all the measurements pre-multiplied by their variances.

In summary, we have developed several algorithms in order to compute the optimal
estimated offsets in a network, including in the multiple measurement case. The first option
is to apply the centralized Kalman Filter equations but in this case, each node is required to
communicate with every other node and not only with its neighbors. The second option is
to wait for all the sets of measurements and to apply the non-recursive algorithm we have
presented in the last section. In this case, the estimates are optimal and the communication
is only between neighbors but it cannot be implemented in real-time applications. The third
possibility is the algorithm that we developed; it requires only local communication and
gives an on-line optimal solution but we need to know the parameter n (the number of
measurement sets) and to run an iterative procedure. The fourth and last option is to apply
the sub-optimal algorithm (by neglecting the off-diagonal terms of the inverse covariance
matrix). This solution is the simplest in the sense that it does not require an iterative
algorithm and require local communication however, the solution is only sub-optimal.

In the next section, we will extend our results to several interesting directions: the
incorporation of a discount factor (in order to compensate for the time-invariance
assumption), the addition of a process noise to the state space equations and the extension
to temporary communication failures environment.
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8. Extensions

8.1 Incorporating a Discount Factor

In this case, the objective function to be minimized is given by (n represents the number of
measurement sets):

3= =R B (=X + D[ 00 - AT R (Y0 - ATX) |5 % (M) (8.1.1)

Here, 0<y <1 is the discount factor that gives a higher weight to the more recent

measurements. In other words, this factor can compensate for the assumption that the
offsets are time-invariant. An additional point of view consists of incorporating the
discount factor to the state space model or to the measurement noise covariance matrix.
The corresponding state space model in this case is given by:

x(n+1) =Xx(n)
. v(n)~ N(0,R)
y(n) = ATx(n)+y2v(n)

The second alternative is to consider the standard state space model and to incorporate the
discount factor in the measurement noise covariance matrix. In this case:

v(n) ~ N(0,R,)
R,=R-»"

In other words, the measurement noise decreases in time.

Our goal is to find the optimal offsets. Hence, we compute the derivative of the objective
function with respect to the offsets vector and set it to zero. As usual, we assume that the

initial inverse covariance matrix P, is diagonal.

szn_:y"-k [(ARTAT) x=(AR™) v [+ [(P7), x=(P") X, |0 i=23..N

This implies:

> Loy L |

jen, i i Pi

ri(n)=[ 1 J{ ” {7 Zi(éﬂ-%(n))}y“ %ri(m} i=2,3,..N
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Equation (8.1.2) represents the optimal offset of node A; given n sets of measurements.
We notice that the case y =1 coincides with the case we studied in the previous section

(without discount factor). The above equation can be implemented by a synchronous
iterative algorithm, as in the previous cases:

20 () - ( — {i{f‘”‘zr (el <k><n))}+y ;uo)} 5.13)
Z Z]/nm ] m=1 jeN; i i
Pi

JeN; rJ| m=1 i

Next, we will develop a recursive version of this synchronous iterative algorithm in a
similar way to the basic case.

The synchronous iterative algorithm that computes the optimal offset at node A; given

n—1 sets of measurements is given by:

20D (1) = ! {{ nl-mzr—(o<m>+”k>(n 1))} ;ri(o)}
(JZN Z nlm ] m=1 JeN; i i

]| m=1 p|

After an infinite number of iterations in all the nodes, we will obtain the following steady-
state equations:

£ (n—1)= 1 {[ nlmzr (O 7,(n- 1))} %ri(O)}
(Z z nlm n— . J m=1 ieN; i i

jeN J| m=1 pi

Let us find the expression for Z LOA ji(n—l) from the above equation:

jENi J
n-1 .
Z Loji(n—l) _ Z 1 z yn—l—m +i.7/”—1 'fi(n—l)—}/n_l~r'(0)—
jeN, Tii jen, Tii m=1 Pi pi

JEN J jeNi L

n-2 e 1
-3y ( 65 +2(n-)|- X —#j(n-1)
m=1
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Now, let us replace the last expression in the equation of 7**”(n) and after some simple

algebraic operations, we will obtain the following decentralized recursive algorithm (the
steps are very similar to the previous case, hence are not detailed here):

jen, T m=1 ieN; Tji

fﬁ“”(n):fi(n—l)+[|.(:n)]1 '{zi'[éﬁ?) —(fi(n—D—fﬁ“(”))]*(n ynm]'{zi'(fj(k’(”)—fj(”‘l))

] =y [n-p] '+ 3 - 223N

jeN; I’-ji

|

where: [1,(0)] =[P(O)]" =%.
As expected, the algorithm in (8.1.4) reduces to the previous one when y =1 (without
discount factor). The above algorithm is optimal (in the MMSE sense) given the previous
model measurements, since we proved that it is equivalent to the Kalman Filter algorithm.
Moreover, this algorithm is easy to implement as it requires communication only with
neighbors, allowing us to implement it locally.

In the equation of [Ii (n)]_l , the interpretation of the discount factor is clear. Since [Ii(n)]_l

is a measure of the inverse covariance matrix of the error estimate, it is logical that the new
information depends on the previous information multiplied by y (like a forgetting factor)
and on the inverse covariance of the measurements. We note that it is straightforward to

obtain the above algorithm in the case where the matrix R is different for each set of
measurements.
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8.2 Addition of Process White Noise

Now, we will include a white noise W(n) to the clocks readings. In this case, the state
space model will be given by:

{x(n +1) = x(n) +w(n) (8.2.1)

y(n) = A" x(n)+v(n)

We can interpret the noise W(n) as a measure of the unknown difference between two

successive offsets or as a compensation of the uniform skew assumption and the time-
invariant offsets. This is different from the incorporation of a discount factor because it
gives more flexibility through the choice of the noise statistics parameters.

We assume that w(n) is modeled as a white Gaussian noise with zero mean and covariance
Q(n)>0. Namely:

E[w(m]=0 Cov[w(k),w(h)]=Q(k)-dq

Moreover, we assume that the process noise and the measurement noise are statistically
independent:

Cov[w(k),v(h]=0 Wkl

In this case, the optimal estimate obtained by applying the Kalman Filter is equivalent to
the constrained minimization of the deterministic objective function (see the proof in
Appendix A):

J(x(0),x(1),..., x(M)) = (x(0) —X)" B, (x(0) = %,) + W' Q"'w+
+ Zn:(Y(k) —ATx(k) R (y(k)— ATx(k)) —" R,

subject to: x(n+1)=x(n)+w(n)

We note that this is the same objective function as before, with the addition of the last term.
By using the constraint, we can write this last term in the following way:

WQ w=3wQ, W, =3 (x(k) - x(k—1)) Q" (x(K) - x(k 1))

. o e . . . -1 - .
As usual, we will assume that the initial inverse covariance matrix P,” is diagonal. In

addition, we will assume that the covariance matrix of the process noise is diagonal and
time invariant, i.e., Q(k)=Q Vk=1,...,n.

In this new case, the offsets are time varying and the optimal solution is time dependent:

Xopt (0) XO|n

Xopt (n) Xn|n
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The preceding method cannot be applied to obtain the optimal solution in this case; the
time dependency makes the estimation problem more difficult.

With the purpose of finding these optimal time varying offsets, we may compute the
derivatives of the objective function with respect to the offsets vectors at time 0,1,...,n and

to set them to zero:

0J . e O aT . L
50y~ P KO PR~ (AR™)y(0)+ (AR™AT)X(0) + Q" x(0) - Q" x(1) =0

af(Jk) (ARilAT)l(k)_(ARq)Wk)*m—qlé(k—1)—9)5(()+Q*'5(k+1)=o; vk =1,...n—1

aJ
ox(n)

(ARAT)x(n)~(AR™)y(M+Q'x(M-Q'x(n-1) =0

One can observe that the solution is not simple since each vector depends on the estimates
at different times. Indeed, we see that the estimate at time 0 depends on that at time 1, the
estimate at time k (Vk=1,...,n—1) depends on its adjacent estimates (at times k+1 and

k-1), and finally the one at time n depends on that at time n-1.

Our goal is to develop a recursive relation of the following form:
Knptnar = f (Xn|n: y(n +1))

The method described above is not efficient to solve this problem. Hence, we choose to
write the Kalman Filter equations. In the previous notation, we have: ® =1, H = A",
The KF equations are therefore:

X(n+1{n)=x(n|n)
P(n+1/n)=P(n|n)+Q

Time update (prediction): {

Measurement update:
A(n+1n+1)=RN+1[n)+ KN+ y(n+1)— ATX(n+1]n) |

K(n+1)=P(n+1|mA[ A'P(n+1|n)A+ RT =P(n+1|n+1)AR"
P(n+1[n+1)=[ I -K(n+DA" |P(n+1|n)

58



The recursive combined Kalman Filter equations are given by:

Rn+1[n+1)=X(N[n)+Pn+1[n+DAR [ y(n+1)- A'X(n|n)] 522
P(n+1[n+1)=P(n+1|n)+AR"'A" =(P(n|n)+Q) "+ AR"'A" -

We can see that if Q =0 (there is no process noise), we achieve the same result as in the
basic case. As we previously mentioned, the inverse covariance matrix is not diagonal after

one step (due to the addition of the term ARTIAT ). Combining these two equations leads to
the following recursive centralized algorithm:

fK(N+1|n+1)=K(n|n)+ [(P(n I)+Q) " +ARAT T AR [y(n+D)-A'R(n|m)]  (823)

The only difference with the previous case is the presence of the covariance matrix Q. In

the case without process noise, we succeeded in developing a decentralized version of this
recursive centralized algorithm. However, when a process noise is incorporated to the state

space model, the new structure of the inverse covariance matrix P~'(n+1|n+1) does not

enable the application of the same procedure. Moreover, a decentralized non-recursive
(batch) algorithm is not an option, as there is a correlation between the different
measurements, so we cannot compute the equivalent measurement easily. The single
solution we propose is to apply the recursive centralized Kalman Filter algorithm given in
(8.2.3). It will lead to an optimal on-line solution, but requires communication between all
the nodes over the network (or the existence of a central unit).

In summary, in the case of the presence in the system of a process white noise, we have not
developed a recursive decentralized algorithm to optimally estimate the offsets at each
network node. The approaches that we employed in the previous case are not applicable
here, and this problem is still unsolved. On the other hand, the addition of a process noise
in our model is not compulsory since the offsets and the skew can be assumed to be
constant over some known time intervals. Moreover, this assumption can be compensated
through the incorporation of a discount factor as explained in the previous section.
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8.3 Faulty Communication Environment

One desirable attribute of any decentralized algorithm is robustness to communication
failures, such failures being unavoidable in practice. So far, we considered several
algorithms that iteratively compute the optimal estimates, assuming perfect communication
channels (no failures). In this section, we improve the algorithms to handle with dynamic
changes in the communication topology by considering temporary link failures. We slightly
modify our algorithm to become robust to temporary communication failures. Since a
neighbor may become unavailable at any time, every node stores in its local memory the
estimates of its neighbors' variables recorded from the last successful communication

exchange. We denote by (fi)j(k) the estimate of A;'s clock offset kept in A;'s local

memory at the end of the k -th iteration. If the last successful communication between A,

200

and A; took place during the |-th iteration, while | <k, then (7, )j(k)

Let N* = N, be the subset of A,'s neighbors that send and receive data successfully
during the K-th iteration. In other words, node A; gets from every A; e N.* the most

recent estimates and updates its copy of its neighbors' estimates. For the rest of the
neighbors, the communication fails, so the local copies remain unchanged.

In mathematical notation:

© 0, VA, € N_j(k)
(7) " =1" . (83.1)
! 7%V VA e NN

Then, node A, computes its own estimate at the k+1 iteration by one of the algorithms

developed in the previous sections. The only difference is that the estimates of the
neighbors are taken according to the above formula and depend on the failures in the
communication links.

This extension was inspired by [3], where the authors apply this method for solving the
time synchronization problem in a faulty communication environment for the WLS case

(P, =0). They also show its convergence to the optimal estimates when certain mild

conditions on the failure rate are satisfied. Namely, they consider that there exists a positive
integer p <o such that the number of consecutive communication failures between every

pair of neighboring nodes is less than p. One can apparently extend the result for the

general Kalman Filter framework, but a convergence analysis must be investigated. In this
research, we did not consider the latter analysis. Moreover, in [3] the authors propose an
initialization scheme that improves the accuracy of the estimates. The corresponding details
are omitted here.

In summary, we propose a modification to our algorithm so it may work even in the
presence of faulty communication. In fact, the WLS algorithm is proved (in [3]) to
converge to the optimal solution even in the presence of link failures, whereas for the
decentralized KF, such a proof was not investigated here and can be considered as a future
research direction.
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9. Clock Skew Estimation

In the previous analysis, we considered a simple model where all the clocks progress at the
same rate (¢; = a; =1, i.e., there is no skew), but have arbitrary offsets. In other words, the

estimation problem was reduced to the estimation of the clock offsets. In this section, we
extend the results to the case of general clock skew, when the clock offset parameters are
still assumed to be time-invariant and our objective is to estimate both the clock offsets and
the rate offsets at each network node. Naturally, the importance of estimating the clock
skew increases as the measurements (and estimates) are conducted over longer time
intervals. If all the measurements are obtained simultaneously, the skew parameter is
irrelevant. We still suppose that the clock drift at a node follows the linear form:
T,(t)=o;t+7,, where ¢; and 7; are the skew (rate offset) and the offset parameters

respectively, t is the real time (or the reference time) and T, is the local time (at node A;j).

Our goal 1s to estimate the parameters ¢; that describe the rate of the local clocks relative
to the reference clock (¢, =1) in addition to the offsets 7. If one knew the constants ¢;,
then one could estimate 7; as in the previous sections by first dividing all the local clocks
readings by ¢;. Thus, we must now describe how to obtain estimates of these skew values
a;, and do so without prior knowledge of the offsets z; or to propose an algorithm that

estimates both parameters simultaneously.

In this section, we will divide the analysis into two different approaches. The first approach
estimates the time offsets and the rate offsets simultaneously, whereas the second is based
on a separate estimation of both parameters. The latter treats the clock offset and the clock
skew on different time scales like the scheme in [21]. First, we will describe a procedure to
estimate simultaneously both the offsets and the skews using a combined Kalman Filter
algorithm. We will consider a centralized optimal algorithm and describe briefly its
decentralized implementation. Second, we treat the case of separate skew and offset
estimation problem. We propose three different algorithms in order to estimate the skew
parameter at each node over the network with respect to the reference clock. The procedure
of each method will be detailed, before comparing their characteristics with respect to one
another. The first method was introduced in the literature (see [41] and [21]) and is
characterized by the application of the logarithmic function on the skew parameters. The
second method is mathematically equivalent to the first one, but does not require the
application of the logarithm. The latter is named the multiplicative method due to its
multiplicative nature. Both these methods are based on Least-Squares minimization of
appropriate cost functions. The third method uses the same measurement model as the
offset estimation problem and in opposition to the two other methods, is only sub-optimal.
The second and the third method are to the best of our knowledge original.

We note that the exposition in this chapter is relatively brief, and we avoid repeating details
that are similar to previous chapters.
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9.1 Combined Skew and Offset Estimation

Our purpose is to develop a unified algorithm in order to estimate the clock parameters
(both clock offset and skew) simultaneously. First, we write the state space model of our
problem that includes the clock skew influence. Then, we will optimally solve the
estimation problem by applying the Kalman Filter algorithm to the state space vector that
contains all the clock parameters (both clock offset and skew) at each network node. In this
part, we consider the same measurement model as in the offset estimation problem (see
Figure 4.1).

In our clock model, the local time (at node A;) is given by: T.(t) =t +7,, where ¢, and
7; are the skew (rate deviation) and the clock offset parameters respectively and t is the

real time (or the reference time). Let us define the state vector X(t) with its i-th element
given by:

%) =T,(t)-t=(a -1)t+7

Let us now perform a uniform discretization of the previous continuous-time equation (for
simplicity, we assumed that the sampling interval is uniform and denoted by T ):

X () = (&, ~1)Tn+7, =%, (0)+Ten (e, —1) 9.1.1)

We define: by 2 (o —1) as a constant random bias at node A;j and b=(b, =0,b,,...,b,)".

In other words, the bias b is equivalent to the skew parameter minus 1. In vector form, we
obtain:

X(n) = X(0)+nT, -b

x(n)=x(n-1)+Ts-b

or, equivalently: ©)
xX(V)=z

Namely, we have incorporated a constant random bias to the state space dynamical
equation. Then, the state space model that includes the clock skew is given by:

{z(nﬂ) =x(n)+T-b

(9.1.2)
y(n) = A" x(n)+v(n)

Here, we assume that b ~ N(0,B) where B is the bias covariance matrix and is assumed to

be diagonal. Moreover, 1(0) and b are assumed to be statistically independent.

In brief, we showed that incorporating an additive bias to the dynamical equation of the
state space model is equivalent to add a multiplicative skew parameter to the clock model.

Let us define the augmented state space vector by:

X (n) = (5?)] (9.1.3)
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For this augmented state space vector, we will have the following state space model:

an_5(n+1)_| T x(n) XN
D=y JTlo 1 L oM (9.1.4)

y(m=(A" 0)X(n)+v(n)

It is now possible to apply the standard KF equations in order to obtain a centralized
optimal estimate of both skew b and offset x(n). Our objective is to estimate the entire

augmented vector given in (9.1.3) (that is, the offset and the skew at each node over the
network) in an optimal way. In addition, we will attempt to develop a decentralized version
that hopefully converges to the optimal centralized solution.

Remark

x(0
An alternative easier method is to estimate the vector (‘é )j. This is exactly equivalent

x(0 x(n
because if one knows the vector (_E j, one can easily compute the general vector (_EJ )j

using the relation:

x(n)=x(0)+nT;-b

a) Centralized Kalman Filter Algorithm

In order to find the optimal parameters, we define the corresponding objective function
(Least-Squares approach) and we set its gradients with respect to z and b to zero. An

additional alternative is to write the Kalman Filter equations for the augmented state space
vector. Then, we will obtain a vector equation for estimating the optimal offsets together
with the optimal skew parameters at each node over the network. The details are hereby
omitted for the simple reason that the procedure is very similar to the basic case, and the
mathematical manipulations are of no particular interest.

b) Decentralized Implementation

We briefly discuss the decentralized implementation of the optimal centralized solution.
Proceeding similarly to Section 5, it is possible to develop a decentralized Jacobi-like
iteration for this problem. Unfortunately, this algorithm generally diverges (the spectral
radius of the iteration matrix is bigger than 1). Actually, we obtained a decentralized
algorithm that allows us to estimate both the skew and the offset and we have shown (by a
simple numerical example) that this algorithm does not converge. We omit the details here,
as they do not contain any insights. As a future research direction, it can be interesting to
check if the decentralized iterative algorithm converges to the optimal centralized solution
in the case of a reduced step size. Namely, if instead of the Jacobi iterative procedure, we
try to employ a relaxed Jacobi algorithm (or equivalently, the gradient method) with small
step size (see Section 2.1).
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As it stands, the problem is better solved by estimating the offsets and the skews
simultaneously by the centralized optimal algorithm. The main advantage of this approach
relies in that it will lead to the optimal solution; however its central drawback is that each
node has to communicate with every other node. So far, a decentralized optimal algorithm
for the combined estimation problem was not obtained. Therefore, we may consider the
separate skew and offset estimation for which several decentralized methods are proposed
in the next section.
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9.2 Separate Skew and Offset Estimation

In this section, we propose to solve the time synchronization problem by estimating
separately the clock offset and the clock skew (rate offset) at each network node. The clock
offset estimation problem can be solved by one of the preceding algorithms (see sections 5
and 7 for the single measurement and the multiple measurement cases respectively). Three
different methods are presented in order to solve the clock skew estimation problem.

a) The Logarithmic Method

In the subsequent analysis, the measurements are obtained in a different way than in the
offset estimation problem. Namely, each node is sending a pair of probe packets located at
significant time intervals (i.e., large compared to the variances of the individual
measurements) to each one of its neighbors. Figure 9.1 depicts the situation for the pair of
neighboring nodes A; and A;. Time is stamped on the packets k; and k;, by the sender A,

upon transmissions (T;(k), T;(k,) >T;(k;)) and by the receiver A; upon receiving the
packets (R;(k)), Rj(k,)). Indeed, in order to obtain an accurate estimate of the skew

parameter, we need to take a pair of probe packets well spaced in time. In other words, ¢;
can be regarded as the slope of the local time as a function of the reference time.

T.(k,) R; (k)

| l
T
T.(0) > T, (k) R k)

Figure 9.1. Communication between two neighboring nodes for the skew estimation
problem.

Let t,, denote the transmission time of packet k;; m=1,2 according to the reference time.

Then, up to the time-stamping error (assuming that at time t =0, the offset was 7;):

Ti(km) = ity +7

Similarly, let £, denote the received time of packet k,, m=1,2. Then:
ty =ty + Xij (Km)

Rj(km)zaj (tm+Xij(km))+Tj
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Here, X;(k,) is the propagation delay of the packet ky, over the corresponding link. In the
above equations, both (tl,tz,fl,fz) and (z‘i,rj) are unknown, in addition to the skew

parameters of interest (ai,a j ) We now manipulate our measurements so that these extra

unknowns are cancelled.

Let AR; denote the time difference between the reception of probe packet k, by node A;
and the receiving time of packet k; at node A; according to A;’s clock, namely:
AR; = Rj(kz)_ Rj(kl)

Let AT, denote the time difference between the transmission of probe packet k, by
node A; and the transmission time of packet k; at node A; according to A,’s clock,
namely:

AT, :Ti(kz)_Ti(kl)

If we divide AT, by AR;, we obtain an estimate of the relative skew «j; = % (assuming
a .
J
that the transmission delay and the offsets remain constant for the different probe packets ):
AT; _ Ti(kz)_Ti(kl)

. _(atrf)(at+7) _a
= = = (9.2.1)
ARy Ry(k)=Ri(k)  (at,+ 5 )~(at+ )

It is natural to divide the above quantities in order to cancel the influence of both the offsets

L . . .. AT .
and the time interval. If we apply the logarithm function to the quantity A—R', we will
i
obtain a relative measurement of the skew logarithm:

a AT, |
Z; :logA—Rj=log(ai)—log(aj) (9.2.2)

The term z; in (9.2.2) corresponds to the measurement of the node pair Aj and A ;.

Then, one can employ the previous methodology of Section 5 in order to estimate the skew
logarithm at each node. In other words, if we substitute z; for O ji and /% =log(e;) for

7j, we obtain the same mathematical problem as the previous offset estimation problem.
For example, let us develop the optimal decentralized algorithm for the basic statistical LS
case, namely: R=R™"' =1 and P, =0. The state vector and the objective function to be
minimized are given by:

x(n) = (6, =log(e,)=0,4, =log(a,),.., =log(axy))' (9.2.3)

I=(-AO (y-A 0= (z;-+8,)
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In order to minimize J, we may compute the partial derivatives with respect to f; and set
them to zero (the procedure is very similar to the one performed in Section 5):

0J T
a_ﬂi_(AA )ix—Ay=—2j;i(zﬁ—ﬂi+ﬁj):
:—2{—,8, ZI+Z(ZJ'+'BJ) =0

Substituting into the partial derivatives leads to:

0J
a_/i’i:|Ni|ﬂi —;M(Zjﬁﬂ,-):O

From this, we can as usual employ an iterative (synchronous) algorithm in order to
implement the above optimal equation:

~k+) ] ~ (k)

B :Wz(z“ﬂj ) (9.2.4)

jeN;

~(0) . . N
Initialization: ﬂi(o =log(e;(0)) i=2,3,..N.Here, k>0 is the iteration number.

The procedure in (9.2.4) represents the decentralized synchronous algorithm that
implements the optimal equation in order to estimate the rate offset logarithm at each
network node given a single pair of measurements. One can easily generalize for the
general Kalman Filter framework in a similar manner. The procedure is exactly the same;
we have just to perform the following substitutions:

. .. [ AT,
Oji - Zji =log[—' \J

AR;

J (9.2.5)

i = f =log()

After applying the above procedure, one can optimally estimate the rate offset logarithm at
each node over the network with respect to the reference node. Consequently, we have
shown that the clock skew estimation problem reduces to the same mathematical setup as
the offset estimation problem under the appropriate substitutions in (9.2.5).

Next, we propose an alternative method in order to estimate the skew parameters without
requiring the application of the logarithm function on the measurement sets.
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b) The Multiplicative Method

Now, we will develop an additional method to estimate the skew parameters without
requiring the application of the logarithm function on the sets of measurements. As we
previously explained, the estimation of the skew values ¢; has to be done without the prior

knowledge of the offsets 7j. We note that the only way to get rid of the dependence of the
real time t is to divide AT; by AR;:

AT, _ Titky)-Titk) _ &
AR, R;(k)-R;(k) @,

]

11>

S (9.2.6)

The term ¢;; in (9.2.6) corresponds to the measurement of the node pair Aj and Aj.

In this case, we do not apply the logarithm function but instead we define the following
objective function which is to be minimized:

We considered here the basic LS case, but one can easily generalize to the WLS case. Let
us now differentiate J (a) according to ¢y and set the partial derivatives to zero:

-Zy {g,k ——}z % (::)2 [gki j—kj =0

jeN

aak

From this, we can employ an iterative (synchronous) algorithm in order to implement the
above optimal equation:

~(k+1 1 .
gk =Ny ZN ol (9.2.7)

We can note that the synchronous decentralized algorithm in (9.2.7) has exactly the same
form as the previous algorithm with the logarithm function in (9.2.4). The difference is that
in this case, the update is multiplicative and in the other case the update was additive.
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The main drawback of the two previous methods is that the measurements for the offset
estimation and for the skew estimation are not similar. Namely, the measurement model for
the offset estimation problem is composed of a fast bilateral exchange (see Figure 4.1). In
the measurement model of the skew estimation problem, node A; sends a pair of probe

packets located at significant time intervals to node A; (see Figure 9.1). Since we are

interested in performing both the offset and the skew synchronizations, it is valuable to
develop an algorithm that employs the same measurement format in the different
procedures.

Next, we propose an additional sub-optimal method for skew estimation that requires the
same measurements format as the offset estimation problem.

c) State-Space based Solution

Now, we consider the same measurement model as in the offset estimation problem (see
Figure 4.1). For this measurement model, it was previously shown that the measurement
equation of the state space model is given by:

y(n) = A"x(n)+v(n)
The entries of the vector x(n) are defined by the offsets at each node at time t:
X (N =T,(N)—-n=(e; -1)n+7,

Here, n>0 is the discrete time index and y(n) is the measurement set of every pair of

neighboring nodes at time n. We note that n need not refer to the actual time, but rather
corresponds to the epoch when the n-th measurement set y(n) become available. The

initial state of the system X(0) has the following first and second order statistics:
E[X(O)] =%, COV[X(O)] =P, {v(n)} is the measurement noise modeled as a white noise with

zero mean and covariance R(nN)=R>0. We assume that {v(n)} is uncorrelated and therefore

the matrix R is diagonal and Positive Semi-Definite (PSD). Its i-j element corresponds to
the pair of neighboring nodes A; and A;:

(R)ij = rJ'i

{v(n)} ,X(0) are uncorrelated, that is: E [X(O)VT (n)] =0 vn.

Let us denote:

Then:
x()=b-n+z
y(m=A"(b-n+z)+v(n)
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We consider the multiple measurement case and we propose a decentralized sub-optimal
algorithm that estimates the offset and the skew separately. The offsets are estimated after
each set of measurements in a recursive way (for more details, see Section 7), and the skew
parameters are estimated after n=T, sets of measurements only (according to the pair of

farthest measurements). This is a sub-optimal scheme since the estimate of b is not

performed in accordance with all the sets of measurements, and we are not taking into
account the dependence between 7z and b. We would like to emphasize the fact that this

algorithm is a heuristic method (non-optimal) in opposition to the majority of the previous
algorithms that were optimal in the sense that they achieve the minimal value of an
objective function.

We will now present in more details this decentralized algorithm that estimates the skew
parameter at each node over the network. As we explained in the beginning of the present
section, it is logical to estimate the skew parameter according to a pair of measurements
well spaced in time (because it is like a slope estimation problem), whereas the offsets can

be estimated after each set of measurements. Let us compute the difference between y(Tb)

and y(0) (assuming that the offsets 7, are time-invariant):
Y(Tp)= AT (b-Ty +2)+V(Ty)

y(0)=A'z+y(0)

Y(To)=y(0) _ y1 p, ¥(T)-¥(0) (9.2.8)
Ty B Th

One can easily note that we have obtained in (9.2.8) an equation that is similar to the
measurement equation of the offset estimation problem (see Section 4.4). The only
difference is that the measurements and the noises are divided by the number of
measurement sets T, . The consequence is that now, the covariance matrix of the noise will

be equal to 5 R, i.e., the measurement noise distribution is given by:

(To)

Y(T)-v(0) _\lo_2 g

To (o)

In other words, we showed that the skew estimation problem considered here reduces to the
basic offset estimation problem of Section 5 under the following substitutions:

X—>b

y%—y(Tb)_ y(0) (9.2.9)
Ty

VoV
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For example, the synchronous decentralized algorithm that estimates b; in the most basic
case (Least-Squares estimation) is given by:

1

6.(k+1) _
I T '|Ni

> (0, -0, +T, 5} (9.2.10)

jeN;

In the general case (DKF), we will obtain the following synchronization procedure:

! 3 (é..”“—éji”)ﬂb-6j<k>)+Tb-w (9.2.11)

1 1 |:jeN 2rji ! Bi
T, - —t '
g (Z 2r, BJ

jeN;

2(k+l)
b =

Here, we assume as usual that b ~ N(0,B) where B is the bias covariance matrix and is
assumed to be diagonal.

In practice, we will estimate the offsets according to one of the previous developed
algorithms in a recursive way (after each set of measurements). After that enough sets of

measurements, say T, arrived, one can estimate b at each node over the network

according to one of the previous algorithms. While we estimate Bi at each node over the
network, we can easily compute the skew parameter using the relation:

~
A

a :bi +1.

Then, we will assume that the skew parameter remains constant during a known constant
time 7, so we have just to normalize the measurements by the estimated skew:

In order to determine the correct value of the constant time 7, , we have to know how much
time the skew can be assumed to stay constant in our model. This can be done according to
the literature on how to model a clock and is beyond the scope of this research. After 7,
time units, one can estimate once more the new parameters Bi at each node over the
network according to the first and the last measurements of this new time period. In other

words, after each set of measurements we will estimate 7; (i =2,.., N), whereas
Bi (i =2,.., N) is estimated according to y(Tb) and y(O) at the first cycle, y(2Tb) and
y(Ty +1) at the second cycle, etc.

Remark: The number T, can be different for each node namely; each node can update the
skew of its own clock at his most appropriate time.

This approach is similar to the scheme in [21], where the authors treat skew
synchronization and offset synchronization on different time scales. That is, the parameters
a; are adjusted every rg,, time units, whereas the parameters 7; are adjusted every

Toffset time units, with:

Tskew > Toffset |-
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So far, we have obtained several decentralized algorithms for estimating the skew
parameters b with no dependence on the offsets 7.

In summary, we have developed several decentralized algorithms for clock synchronization
that can deal with general clocks, including both offsets and skews. The first option is to
estimate the clock offset and skew simultaneously whereas the second alternative estimates
them separately. Concerning the combined estimation problem, only a brief description was
considered and no concrete results were presented. For the separate estimation method,
three algorithms were proposed in order to estimate the skew parameter. The sub-optimal
solution is the only one that uses the same measurement format as that of the offset
estimation procedure. Nevertheless, the parameter Ty, must be known, and the result is only

sub-optimal considering that only two sets of measurements are used. In the two other
optimal methods, there is no such requirement on Ty, (because t, —t; is cancelled), yet the

algorithms are based on measurements that are not similar to the offset estimation problem.

In the next section, we present simulation results over several network topologies for
evaluating and comparing the accuracy of the proposed time synchronization schemes.

72



10. Numerical Results

In this section, we implement some of the algorithms that we previously developed for
typical problems and we compare the results with the existing algorithms. First of all, let us
describe in a concise way the different algorithms that we chose to implement.

10.1 Algorithms Description

CTP: (“Classless Time Protocol” [14]). This algorithm computes each offset by calculating
the average of the relative offsets of all the adjacent nodes and is equivalent to performing
the Least-Squares statistical method. For example, if one node has two neighbors with
relative offsets of (+1) and (-2) respectively, the node adjusts its own clock by:
+1-2

=—0.5. In [14], the authors used a measurement filter in order to obtain less noisy

measurements (low queuing delay). The procedure is repeated at each node and for each set
of measurements until convergence. In simulations, both the centralized and the
decentralized versions are considered.

WLS: Similar to CTP, but now the offsets are calculated using the Weighted Least-Squares
method. Namely, each offset is estimated as the average over the neighbors' relative
measurements, but each measurement is multiplied by a weight according to its accuracy.
For example, in the simulations we made the logical assumption that the links with a
smaller queuing delay (i.e., there is a light load) have a smaller variance in their
measurements. As a consequence, links with small queuing delays are associated to a
bigger weight when evaluating the offsets.

DKE: An additional decentralized algorithm based on the Kalman Filter framework. This
algorithm is related to the following state space equations:

x(n+1) = x(n)
y(n)=A"x(n)+v(n)

Here, x(n)=(7,=0,7,,...7, )T (7, is the offset of the node A, ), y(n) is the measurement at

time n and A is the reduced incidence matrix (for more details, see the problem
formulation and the scientific background sections). Moreover, we assume the following
usual assumptions:

- X(0) 1is the initial Gaussian state of the system with the following first and second order
statistics:

E[x(O)]=m,(0) cov[x(0)]=E|(x(0)~m,0)(x(0)-m,(0)" |=P,(0)=P,

- {y(n)} is the measurement white Gaussian noise with zero mean and covariance
R(n)=R>0.

- {v(n),x(0)} are uncorrelated for any n.
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As we previously show, the decentralized Kalman Filter algorithm that we developed
converges to the optimal centralized solution under the appropriate conditions. We chose to
implement the DKF algorithm in a synchronous way, with only one set of measurements,
but we will examine several different values of the covariance matrices P, and R.

CKE and CLS: The centralized Kalman Filter and the centralized Least-Squares
algorithms in their standard form. For more details, see Section 5.2.

SOA: The sub-optimal algorithm that neglects the off-diagonal terms of the inverse
covariance matrix. For more details, see Section 7.4.

As we previously mentioned, NTP is the most widely accepted standard for synchronizing
clocks over the internet [28-30]. The three following algorithms are different hierarchical
versions of the Network Time Protocol (NTP) and are used in this section as a benchmark.
These three NTP-based hierarchical schemes were inspired by [14].

NTP-1: In this first scheme, each node arbitrarily selects a single neighbor which is one
hop closer to the reference node than itself. Node A, adjusted his clock by:
AT; —AT;
T =—.
' 2
We start with nodes that are one hop away from the reference node, move to nodes that are
two hops away from it, etc.

NTP-2: This second scheme is similar to NTP-1, but in this case AT; and AT} are selected

separately on each directed link. In other words, it tends to find the smallest possible
queuing delays for each link. For example, if the queuing delays from node A; to node A,

are (2,3,6,5,3,4,5, 6) and back from A, to A, (6,5, 4, 6,4,5,3,7), it will select the

minimal value on each direction separately, i.e., (2, 3) and calculate the offset based on this
modified measurement.

NTP-3: This third scheme is a multi-parent scheme. Each node computes its clock offsets
using the average of all its neighbors which are one hop closer to the reference node than
itself. This can be interpreted as the CTP algorithm where only the parent nodes are used
for calculations.

10.2 Network Topologies

In order to evaluate the results of the different algorithms, we need first to construct the
network topology setup. The network topology we choose to implement is based on the
random model of [47]. We start with a single root node (also called the “Reference Time
Node") and restrict the hop distance of each node to the root to be at most a certain number
of hops. The connectivity between the nodes in the network is randomly selected. The
propagation delay of each edge is chosen once for both directions (assumed to be

symmetric) of any existing edge based on the uniform distribution U [0,10] . The queuing

delay of each edge is chosen as Erlang (or Gamma) distribution where the number of
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exponentials (¢ ) and the mean time between events (6) are randomly selected U [1,10]

and U [0.1,1] respectively. The parameters are sampled once for each edge. The clock

offsets with respect to the “Reference Time Node” are randomly selected based on a
uniform distributionU [—10,10] . The offset of the reference node (A, ) is set to zero since it

is assumed to be synchronized with the UTC.

As suggested by NTP in [30], eight round-trip packets are transmitted over each edge and
AT;; are measured based on these packets. Then, we have to pick up the best measurement

among the eight (the one with the smallest transmission delay). To be compliant with the
NTP message format, we suggest using four time stamps in each bilateral transmission. We
constrained each node to have at least one neighbor.

In this numerical example, we naturally assumed that all the clocks run at the same speed,
ie., @, =a; =1,Vi, ] and that the offsets are time invariant.

In all the subsequent simulations, we consider a general network as depicted in Figure 10.1,
where internal loops are allowed. This is important because the Least-Squares approach
improves the estimates by imposing the global constraints for all the loops in the multihop
network.

Figure 10.1. A general network with internal loops.

Three different networks are considered:
e Network 1: a 400 node network with relatively high connectivity of 1798 edges.
e Network 2: a 400 node network with 997 edges.

e Network 3: a 170 node network with 1200 edges.
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10.3 Graphical Results

In this section, we compare CTP to the WLS and to the DKF algorithms in several
interesting cases. Finally, we perform the recursive centralized Kalman Filter (with 50
measurement sets) and compare its performance to the centralized Least-Squares method
and to the Sub-Optimal Algorithm (SOA) that neglects the off-diagonal terms of the
inverse covariance matrix.

In Appendix C, one can find a performance comparison between the CTP algorithm and
three hierarchical versions of NTP, and a convergence analysis of the decentralized version
of CTP (see Figures C.1 to C.4). All those simulation results are similar to the work
performed by O. Gurewitz et al. in [14] and were repeated in order to constitute the starting
point of the subsequent results. The next step consists of implementing the Weighted Least-
Squares algorithm in a decentralized manner and to compare the results to the decentralized
CTP algorithm. In the WLS algorithm, we decide to take several different values of the
weighting matrix R. Then, we will model the queuing delay according to this weighting
matrix. For example, we can choose the queuing delay according to the Gamma
distribution where the number of exponentials (« ) is equal to the upper integer value of R
and the mean time between events () is equal to R. The other option is to take a normal
distribution with zero mean and covariance matrix equal to the matrix R.

Figure 10.2 presents the comparison between the decentralized CTP and WLS algorithms
for the case where the weighting matrix R is randomly distributed U [0.1,12] . The network

topology is the same as before (400 nodes with 997 edges) and the queuing delay is
randomly chosen according to the Gamma distribution relative to R.
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Figure 10.2. Comparison between the decentralized CTP and WLS algorithms in Network 2.

As expected, the WLS method outperforms the CTP (or LS) algorithm. The reason is that
in the WLS version, each measurement is multiplied by a weight according to its accuracy
that depends on the queuing delay. Since the weights are equal to the variance of the
queuing delay; it outperforms the case where the weights are identically equal to one. This
scenario is not very realistic and is more theoretic, because in practice we do not know the
exact covariance matrix of the delay.

Unsurprisingly, if the weighting matrix R is taken as the identity matrix, we return to the
Least-Squares case, equivalent as it is to the CTP algorithm. As we can see in the next
figure, the graphs perfectly coincide.
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Figure 10.3. Comparison between the decentralized CTP and WLS algorithms in Network 2,
with R=1.

The next scenario corresponds to the case where half the nodes have a certain value r; and

the remaining have twice that value, i.e., half the nodes are smarter than the others. For
example, we chose the values 4.5 and 9. In this case too, the WLS method is more accurate
than the CTP algorithm as we can see in the next figure.

We note that in all the relevant figures, the curve describing the CTP algorithm is not
exactly the same. Indeed, it slightly depends on the noise realization and each figure was
plotted for a random realization. However, this fact does not compromise the comparison
between the different algorithms. No matter what the noise realization is, the insight
presented by the results remains correct.
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Figure 10.4. Comparison between the decentralized CTP and WLS algorithms in Network 2,
with different r; .

As previously pointed out, we cannot know exactly the covariance matrix R. Hence, we

check several cases, where instead of R, we may employ as an example R* or the matrix
R plus an additive Gaussian Noise (with different variances). In other words, the matrix R
is not known exactly, but we can use an approximation.

Figure 10.5 shows that the WLS method with the exact R gives the best results and the
CTP algorithm (withR =1) achieves the worst results. Interestingly, the WLS algorithm
with R* gives intermediate results (between LS and WLS). We can infer that even if the
exact R is not employed, we can still outperform the results of the basic CTP protocol by
using a good approximation of the matrix R. We will see in Figure 10.10 that if the
approximation is not quite accurate, the regular LS outperforms the WLS algorithm.
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Figure 10.5. Comparison between the decentralized CTP and WLS algorithms (with R
and R?) in Network 2.

Next, let us analyze the robustness of the matrix R in the WLS algorithm. Since the exact
R is not known, we implement the WLS algorithm with a weighting matrix equal to R
plus an additive Gaussian noise with zero mean and two different standard deviations. We
chose the following model:

Here, fi; is a Gaussian noise with zero mean and standard deviation equal to 0.05 in the

first case and to 0.2 in the second. The results are summarized in the next figure.
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Figure 10.6a. Small noise variance Figure 10.6b. Higher noise variance

Figure 10.6. Comparison between the decentralized CTP and WLS algorithms (with
additive Gaussian noises in R ) in Network 2.

As we can see from the previous figure, the results depend on the noise intensity. In the
first case (Figure 10.6a), the variance of the Gaussian noise is relatively small and the WLS
method outperforms the CTP algorithm. In the second case (Figure 10.6b), the variance
noise is increased and as a consequence, the WLS is not anymore better than CTP.
Therefore, we partially investigate the robustness properties of the exact covariance matrix
R, and obtain as expected that if the intensity of the additive Gaussian noise is too high,
the WLS method is not appropriate, whereas when the noise variance is relatively low, the
WLS algorithm gives better results than CTP.
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The next part of our numerical analysis is dedicated to the DKF algorithm. In the latter, we
can incorporate some a-priori knowledge of the initial offsets and we compare it to the
decentralized CTP algorithm. In Section 6, we showed that the DKF algorithm converges
to the optimal solution obtained by performing the centralized Kalman Filter. In addition,
the DKF algorithm has the same mathematical structure as the decentralized CTP with the
incorporation of a supplementary term related to the a-priori knowledge. First, we check
the DKF algorithm in the case where the initial covariance matrix P, is an infinite diagonal

matrix and R is equal to the identity matrix. As expected, this case reduces to the basic LS
case (CTP algorithm) and the graphs are plotted in Figure 10.7.
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Figure 10.7. Comparison between the decentralized CTP and DKF algorithms (with
P~ — diag (oo) and R =1) in Network 2.
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The next scenario considered is related to the case where half the network nodes are smart
(i.e., small initial variances in the main diagonal of PF,), and the remaining are unintelligent

(i.e., bigger initial variances in the main diagonal of P)). In all the cases, the initial
covariance matrix P, is assumed to be diagonal and the initial offsets vector X, is supposed

to be equal to zero. According to the Kalman Filter requirements, the initial offsets have a
Gaussian distribution:

We present the results in Figure 10.8 in the case where R =1 and P, is given by:

®) ~U (0.01,0.19) ; half thenodes
iy (5,10 ; the remainder -

The case where the matrix R takes different values is straightforward and the results are
not presented here because we want to focus on the influence of the a-priori knowledge.
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Figure 10.8. Comparison between the decentralized CTP and DKF algorithms (with
different (P, )ii and R=1) in Network 2.
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The last case we analyze in the DKF context is the one where 10% of the nodes are
perfectly synchronized to the UTC (through a GPS for example), and the remainder is not
synchronized at all. Namely, for these arbitrary 40 nodes we take the initial variances very
small (0.01) and the offsets equal to zero, and for the rest of the nodes, the variances tend to
infinity and the offsets are randomly chosen according to a uniform distribution. The
graphical comparison between the decentralized CTP algorithm and DKEF is presented in
Figure 10.9. As expected in this case too, the DKF algorithm outperforms the decentralized
CTP method in terms of clock accuracy.
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Figure 10.9. Comparison between the decentralized CTP and DKF algorithms (with 10%
of nodes synchronized via GPS) in Network 2.

In all the previous simulations, the results we obtained agree with our expectations.
Namely, the CTP algorithm is more accurate than all the NTP schemes and the
corresponding decentralized version converges to the optimal centralized solution (see the
proof in [14]). Moreover, the WLS algorithm is more accurate than the basic CTP (LS)
method and the DKF outperforms the CTP algorithm in some suitable scenarios. These
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results are expected from the theory because in the WLS algorithm, we provide the best
weighting factors to the measurements and in the DKF method, some a-priori knowledge is
included in the right manner. Hence, in several appropriate scenarios (if some a-priori
knowledge is available or the variance of the measurements can be approximated), the
DKF and the WLS algorithms are preferable. As expected from the theory, this typical
application shows that all the algorithms give satisfactory results. In many cases, the
Kalman Filter is the best algorithm, followed by the Weighted Least-Squares and the
regular Least-Squares methods and the NTP based protocols.

In this section, we are not comparing the convergence rate of the different algorithms and
this can be also an important factor in the choice of the appropriate protocol.

The last part of this section is devoted to the comparison of the recursive Centralized
Kalman Filter (CKF) algorithm to the Sub-Optimal Algorithm (SOA) that neglects the off-
diagonal terms of the inverse covariance matrix (for more details, see Section 7.4). The
latter is only a sub-optimal procedure and there is no need to know the parameter n. We
check several values of n (the number of measurement sets) and P, (the initial covariance

matrix). In this part, we consider the topology of Network 3 (170 nodes with 1200 edges).
Our objective is to compare the accuracy of the estimated offsets obtained by both the
optimal and sub-optimal algorithms and to compare the variances.

In this case, the queuing delay is randomized in accordance with the Kalman Filter
assumptions, namely normally distributed with zero mean and covariance matrix R. The
first situation we considered is the basic case where P, =R =1. The following figure

presents the results obtained by applying both the optimal CKF method and the SOA for
different values of n. As expected, in all the cases the optimal algorithm gives the best
results. The sub-optimal algorithm gives relatively poor results but reduces the complexity
and is not diverging. If the important criterion is the accuracy of the clock synchronization,
it is obvious that the optimal CKF is preferable, but if the accuracy is less important than
the complexity and the computation time, the sub-optimal algorithm can be valuable. We
are also interested in comparing the variances of the different algorithms. We compute the
following expression:

( Pewe )ii _( Psoa )ii
(PCKF )ii

(10.3.1)

at each node over the network and present the results in a graphical form in Figure 10.11.
As we can note from the figure, the variances of the CKF method are always bigger than
the variances of the SOA algorithm and the normalized deviation is quite elevated (from
45% to 75 %). In other words, the sub-optimal algorithm underestimates the variances and
consequently is not a good method. Since the variances are small, it will give a wrong
estimation and will not correct the results. In brief, we can infer that the simple sub-optimal
algorithm does not solve the problem efficiently and it is preferable to employ the Kalman
Filter algorithm.
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Figure 10.10. Comparison between CKF and SOA (with P, =R =1) in Network 3 for
different values of n.
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Variance Comparison in a 170 nodes network
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Figure 10.11. Variance comparison between CKF and SOA (with P, =R =1) in Network 3.

The next step extends the preceding analysis to a more general framework where the
measurement covariance matrix R is uniformly distributed and the queuing delays are
normally distributed with zero mean and covariance matrix R . In other words:

R~U[0.01,12]
Qdelay - N (O’ R)

In addition, we consider that 10% of the nodes are perfectly synchronized to the UTC
(through a GPS for example), and the remainder is not synchronized at all. Namely, for
these arbitrary 17 nodes we will take the initial variances very small (0.01) and the offsets
equal to zero, and for the rest of the nodes, the variances tend to infinity and the offsets are
randomly chosen according to a uniform distribution. In this analysis, we also compare the
results to the Centralized Least-Squares (CLS) algorithm.

In fact, as we previously mentioned, the SOA gives relatively poor results in comparison to
the CKF algorithm. We thus want to determine if the basic LS algorithm is more accurate
than SOA. In other words, is it preferable to totally neglect the a-priori knowledge (i.e.,

take P, =0) or to consider this a-priori knowledge and then to neglect a part of its
influence?
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Figure 10.12 presents the results for the offsets obtained by applying the optimal CKF
method, the SOA and the CLS algorithms for the same different values of n as in the
previous case. Figure 10.13 compares the variances between CKF and SOA. We can draw
the same conclusions as in the previous case, with the exception of a normalized variance
dispersion between 4% to 78%.

Moreover, we obtained that the sub-optimal algorithm is even worse (in terms of clock
accuracy) than the basic centralized Least-Squares method (that does not take into account
the initial covariance matrix). From the two subsequent figures, we may conclude that
despite the fact that the sub-optimal algorithm is valuable for complexity and computation
time reasons, the results are relatively far from the optimal ones. Hence, we do not consider
it as an efficient algorithm to solve the time network synchronization problem considered
in this thesis. In order to solve this problem in an efficient way, we propose several
alternatives. The first option is to apply the recursive version of the DKF algorithm that we
developed in this report because it leads to the optimal solution and requires only local
communication. A second alternative is to investigate another sub-optimal solution, such as
the method proposed in [17]. This recent work presents a distributed Kalman Filter that
estimates sparsely connected, large scale systems (L-banded matrix algorithm). Actually, a
smart approximation of the covariance matrix is employed and the authors prove that the
solution converges to the global Kalman Filter as the number of bands increases.
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Figure 10.12. Comparison between CKF, SOA and CLS (with R ~U[0.01,12] and P, # )

in Network 3 for different values of n.
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Variance Comparison in a 170 nodes network
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Figure 10.13. Variance comparison between CKF and SOA (with R ~U[0.01,12] and
P, # | ) in Network 3.

In summary, we performed several clock synchronization algorithms over different
network topologies and compare the results. We obtained that the algorithms based on the
Kalman Filter framework give the best results in terms of clock accuracy. The basic Least-
Squares algorithm (equivalent to CTP in [14]) outperforms the three hierarchical NTP
schemes considered and we have extended the results to some more general situations. We
can provide different weights to the measurements according to their accuracy and
incorporate a-priori knowledge of the problem. As seen in the simulation results, the
decentralized Kalman Filter algorithm constitutes the most appropriate and the most
general method for clock synchronization among the proposed algorithms. The clock
accuracy is the most precise, it requires only local communication between neighbors and
the complexity is not increased. In the last part of this section, we compared the centralized
Kalman Filter solution to a simple sub-optimal algorithm that neglects the off-diagonal

terms of the inverse covariance matrix P,”'. As expected, the optimal algorithm gives

improved results with respect to the sub-optimal method, and this is why we needed to
develop a decentralized version of the Kalman Filter.

Simulation results on the skew estimation problem are not considered in this thesis. As a

future work, one may envisage the comparison of the different algorithms of Section 9.
In the next section, we present the conclusions and several directions for future research.
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11. Conclusion and Future Work

We developed several decentralized algorithms for estimating the offset at each node in a
network with respect to the reference time, using a Kalman Filter framework. These
algorithms can be either synchronous or asynchronous, some of which being recursive. In
addition, we showed that these decentralized filtering algorithms converge to the optimal
centralized solution. The essential characteristic of these algorithms is their decentralized
nature; each node can estimate its clock offset only by exchanging packets with its one-hop
neighbors. We considered the case where all the clocks run at the same speed, i.e.,
a; =a; =1 (there is no skew) as well as the case where ¢; # a;. In the latter case, we

developed several different estimation algorithms: one for estimating the clock skews
(without knowledge of the offsets) and one for estimating the clock offsets. In practice, we
will treat skew synchronization and offset synchronization on different time scales. We
obtained that the offset and the skew estimation problems reduce to the same mathematical
setup. Hence, we developed several decentralized algorithms for clock synchronization that
can treat general clocks with both offsets and skews. We investigate two different
approaches. In the first, time offsets and rate offsets are estimated simultaneously, whereas
the second is based on a separate estimation of both parameters.

In summary, we extended the existing Least-Squares results using the Kalman Filter
framework. Namely, we can give different weights to the measurements according to their
accuracy and include a-priori knowledge. The main algorithm is both decentralized
(requires only local broadcasts), recursive (works in real-time applications) and converges
to the optimal centralized solution. As expected, under some appropriate assumptions, we
showed that our optimal estimated offsets correspond to the Maximum A-Posteriori
estimator (or to the Maximum-Likelihood estimator in the statistical Least-Squares case).

We also considered several extensions to the basic case, like the incorporation of a discount
factor and the exposure to temporary communication failures. We tested the different
algorithms on typical networks and compared the results with several versions of the
Network Time Protocol. In most of the cases, the proposed algorithms outperform the NTP
schemes and the LS method. In addition, we compared the recursive CKF algorithm to a
simple sub-optimal algorithm that neglects the off-diagonal terms of the inverse covariance
matrix.

Several directions may continue the work performed in this research thesis. Among these,
we suggest the following:

e The general clock problem that includes both offset and skew was not solved in an
optimal way. It can be interesting to find a decentralized optimal algorithm that
converges to the optimal solution and makes use of all the measurements.

e There exist several approaches to performing heuristics that approximate the
Kalman Filter solution. For example, [17] presents a distributed Kalman Filter to
estimate sparsely connected, large scale systems (L-banded matrix algorithm). It
can be worthwhile to use the same approach to solve the clock synchronization
problem.
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In this thesis, we gave more importance to theoretical analysis than to numerical
simulations. Extending the simulation results to the case where a general clock is
considered (including skew estimation), and implementing the algorithm with
temporary communication failures could provide fruitful. Moreover, it can be
valuable to compare the convergence rate of the different algorithms in a numerical
analysis.

In the general state space problem that includes process noise, we did not achieve
an optimal decentralized algorithm. A further possible direction for future research
may be to solve this problem optimally.

So far, the offsets were considered to be time-invariant and the network topology
static. The next step involves solving the same problem when these assumptions are
relaxed, that is, dynamic topologies with time-varying offsets. In the time-varying
case, the advantageous properties of the Kalman Filter structure can be exploited.

As we previously noted, the problem that we considered in this thesis can be viewed
as a general problem related to distributed estimation based on relative
measurements in sensor networks. The time synchronization and the sensor
localization problems are only special cases. An additional question of interest is to
consider a general framework in order to estimate the distances between several
cooperative agents. An interesting example is that of a group of aircraft flying in
formation, where we seek to estimate the distance to the leader. This problem seems
to be very interesting albeit more difficult due to its non-linear nature.
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Appendix A — Equivalence between KF and LS
We intend to prove the following general theorem about the equivalence between the
Kalman Filter and the Least-Squares problem.

Assuming the Gaussian linear (time varying) state space model given by:

x(n+1)=D(nx(n) +G(nw(n) X(0) ~ N(x, F,)
y(n)=H(nx(n)+y(n) w(n) ~ N(0,Q(n));  v(n)~ N(0,R(n))

Let us assume that the measurement noise V(n) and the system noise W(n) are white,
uncorrelated and statistically independent of X, .

We denote the state vector that maximizes the Maximum A-Posteriori (MAP) probability
T
by Xyup = (X ™. Xk(”)) . Let us recall that for the Gaussian case, this is equivalent to the

MMSE estimator, i.e., the state vector obtained by applying the Kalman Filter ( X (n | n) ).

Additionally, consider the following deterministic optimization problem:

Jn=%(z<0)—70) 1(x(0)-%,) %Z (W) Q™ (W, )+
min [ k=0
+§Z(Xk —Hx)' Rkil(zk —H ) (A1)

st. X., =d.x +Gw,,k=0,.,n-1

n
Here, X, and {yk}k , are given vectors, and P,R ",Q," are symmetric positive-definite
matrices.

The previous constrained optimization problem is by definition a Least-Squares problem.
Let us denote its optimal solution by X, .

Theorem

The minimizing solution of the above LS problem is equal to the MAP estimator (and to the
MMSE solution), i.e., under the above conditions:

Xis = Xuap = Xmwvise (A.2)
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Proof

Let us write the expression of P(X,,..., X, Yo, ¥
P(Xgses Xns Yoses Yo ) = P(Xg = X, Xi — @i, —G,w,,yj—ngj=Mj,i:0,...,n—l,j=O,...,n)

Without loss of generality, we can assume that G, =1 . Recalling that each term is
Gaussian and that all the terms are independent, we can obtain:

P(Xg»-es Xps Y- ,yn)=const-exp(—%(go—70)T Po_](lo—Yo)j'

'Hexp(_%(li — DX )T Q" (li — DX )j'l:!exp(_%(zj N Hjlj)T Rj_l(zj - Hjli))

i=0

On the other hand, we can compute the MAP estimator:

(Yoo yn))}=argmax{P( . n’yo’)yn)}=

XMA,,:argmax{P((Xo, WX ) y y
Yosees Y

:argmax{P( 05+ Xns Ygooon yn)}:argmax{logp(ﬁo, o Xns Yoo yn)}:

=argmin {J, } = X
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Appendix B - Maximum-Likelihood and Maximum A-Posteriori
Estimators

Consider the Weighted Least-Squares case, i.e., the objective function is given by:

_ 1A ?
I=(y-AXRU(y-A0=3 —(0;-7+7,)
T
jeN;

As we have shown previously, the optimal decentralized solution for estimating the offset
at each network node according to a single set of measurements is given by:

1 | N
Tj = 1 Z r—(OJ|+TJ) (Bl)
Z e JENi J

jENi rJI

We will now compute the Maximum-Likelihood Estimator of the offsets and under some
basic assumptions; we will obtain the same expression as in (B.1).

As usual, the measurements model we used is:

A~ 1

Oji :E(AT” —ATJ.i):(ri —rj)+8ij
| —

Here, &jj is the estimation error of the relative offset between node A; and node Aj (by

definition &jj =¢j;) .We will further assume that these random variables are independent

forany i, j=1..N (i#]).

Let us write the expression for the probability of the estimated offset éij given the values
of the vector 7 under the assumption that the errors &j; are Gaussian random variables
with mean zero and variance F; :

{6
1 2r;

I B.2
e (B2)

The joint probability of the estimated offsets éij given the values of the vector 7

2
—Ti+Tj)

P(éij |£)=

(i, j such that j € N;) is given by (assuming that ¢; j are independent):

—(Oij ~Tj+T )2

:H 1 o 2r;
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Taking the logarithm function on P, differentiating it with respect to z; and setting it to

zero will lead to the same solution as in the Weighted-Least-Squares case. Under the
assumptions that the estimation errors are both Gaussian (with zero mean) and independent
random variables, our previous optimal estimated offsets (for the WLS case) also
correspond to the maximally likely set of offset assignments. Moreover, it was proved in
[21] that the Maximum-Likelihood estimated offsets are similar to the minimum-variance
unbiased estimated offsets.

The next step is to compute the Maximum A-Posteriori estimator for the general problem
where the objective function is composed of two distinct terms:

J=(x-%) R (X-%)+(y-A'X) R (y-A'x)
We notice that this case is a Bayesian case and thus the Maximum-Likelihood estimator is

irrelevant, but we may compute the MAP estimator instead.

We consider the general case, where the matrix P, is not assumed to be diagonal. The joint
probability of the estimated vector 7z given the values of the estimated offsets éij

(V1i, jsuch that j € Nj) is given by (assuming that & j are independent):

SUCI e
Bayes ij
(G-si+ej)”
P(éi,- |z)= ]Jl 2:”“ e i
7~N (70, PO)
o) Ry (25|

This implies:

jeNj ji

(Ti )MAP = 1 1 Z ri(éjl +Ti)+(P07l)ii Ti (0)_i(P01 )ik (Tk — T (0)) (B-3)
{Z+(Po_l)iij o i

In this case, we assumed that each offset is a Gaussian random variable that is independent
of the other offsets. Moreover, we used the fact that P(éij ) is independent of 7 (it comes

directly from the measurements:éij =%(AT” —ATji)) and then, does not affect the

differentiation. Under these assumptions, we obtain that the Maximum A-Posteriori
estimator in (B.3) is the same as the optimal estimator computed previously.
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Appendix C — CTP Numerical Results

We compare the CTP algorithm to three different hierarchical versions of NTP and then
analyze the convergence rate of the decentralized CTP algorithm.

First, we consider Network 1 (400 nodes with relatively high connectivity of 1798 edges).
Figure C.1 shows the fraction of nodes with clock offset with respect to the reference time
node that is not grater than t for the 4 different algorithms. In other words, the y-axis
represents the fraction of nodes with clock offset, with respect to the UTC, not greater than
the value described by the x-axis. Figure C.1 clearly demonstrates the significant
improvement of CTP (Least-Squares approach) over all the hierarchical NTP schemes

considered here, in terms of clock accuracy.
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Figure C.1. Distribution of the clock offsets for each algorithm in Network 1.
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Figure C.2 presents the results for the same network topology, but in a different way. The y

axis shows the Probability Density Function (PDF) with clock offsets described by the x-
axis.

400 Nodes
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Figure C.2. Probability Density Function of the clock offsets for each algorithm in
Network 1.

The next figure depicts the clock offset dispersion around the UTC clock in the same 400
node network. The x-axis corresponds to the node ID, whereas the y-axis corresponds to
the clock offset with respect to the UTC clock after performing each one of the different
algorithms. It can be seen that as expected, the CTP algorithm keeps all the estimated
offsets in a very narrow region which means small errors and small dispersions in the
clocks. The other schemes are characterized by a much wider domain. Furthermore, the
thickness of the region in CTP is the same for all the nodes over the network, whereas in
the NTP schemes it slightly depends on the ID. This can be explained by the fact that the
NTP schemes are hierarchical and, as a consequence, the closest the nodes are from the
reference (small ID), the most accurate are the offsets.
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Figure C.3. The clock offsets dispersion in Network 1.

The next part of this section is dedicated to the convergence analysis of the distributed CTP
algorithm. From now, we consider Network 2 (400 nodes with 997 edges).

We examined the clock offsets after 0, 1, 3, 5 and 10 iterations with respect to the optimal
centralized solution. Figure C.4 describes the fraction of nodes with clock offset relating to
the set of optimal values not greater than t in Network 2. We start with clock offsets that
are uniformly distributed (0 iteration). It can be seen in the graph that before we start, we
have very few nodes (less than 10%) that are synchronized, but 32%, 55%, 77% and 84%
of the nodes are within one time unit of the optimal solution after the first, third, fifth and
tenth iteration respectively.
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Figure C.4. Rate convergence analysis of the decentralized CTP algorithm in Network 2.

104







2’%pn

NN 2ONYW P10 DAY 2O MDD YOXIY NIA DY PIYW NIRRT T amay
NRY .D1NAAT 2°AWART NIDTYA 210 MY D002 AWIT AR PR 2NWW PN010 .D0awnn
1°2 11721077 P1°72 7127 772 727N MINW NMYS 1°2 QRN DY 2°001247 2°20 W YW DOYIRaT
OPVIOR DIV DWW NATVA 2PV NPV X7 7DD RANT LNOTYNA QORI 2N 221w
TORT DOPMINT LNMWPNT NWI2 NYWY 7077 KT DOIWW J1210AW P00 SV 77
717 2°AWNR DWW 2MYY 112107 NY2IPAN AT LN 923 TR A% VW DR 1T W00
"2 O8N nan Y mamang nwa Pa (Probe Packets) nivn7ino mymia nobnnm nvenaxa
,JAT2 V1R DAY L0200 NWIA 2IWRAY MUY aws 1, I71ava .o 0°1ata
N1N902 M0 MYPR MIAYP .D2IDWI 2ONA%AN MY 22p71 MOwh 301 nwaa npix oown
772107 217 S2PNT VITIVDT .NPNTI0A MNWIA 2ONWYW NIDI0 N1YAY 209V MIND MR
[Mills, 1991, 92 and 1995] (Network Time Protocol) NTP-77 X177 ,5wn? 01101°K2 2213w

[Gurewitz, Cidon (Classless Time Protocol) CTP-77 an»™moK :mwTn qwa Ayt ,anInss
DR 92779 2920 DNYWT MR DR N1OM 123770 KD 771%2 50 3101977 L[and Sidi, 2003
TYOWT DR VAR NIA DY TR0 PRIR0IRG N7IN DR 09X 7 Ao NTP-5 o2 0101207
TIYWn ¥ NODIN NHON AwA PR mawnn noepad Yy (Clock Offsets) yara mnna 90 v
P17 .[Solis, Borkar and Kumar, 2006] (Least-Squares Estimator) 2°nmnsi 2°v12007
772 IOAT) DY NPT NPT 2OXI2K MAwANT M"Y A 21w N0 Hw 0w
WANTI ONIDP0-R MR DNPIVORI WY (DDRNM D0 2O2AVA TR 2ONWWI NN 2100w
NAIPR NMWPN WNTT INAT 73227 1397 2137 MWa HW 10T 19DRNT L7252 Nompn Nwpn
2OV NYw BV 001w anioRm CTP-7 ansmoRw MXIa2 3001 .72%2 D010wn av

R irisiRativalrl7Ratehishohl

2XNT TIWWN T 1AP 1301 ,P0IRAT NI DAN NORDD NPT N2IYn May ,ws nna
9520 NNDT,N0IRAT AN K22 ((MMSE) nooRmo 1) nyman NoYI207 ARMW 12192 YORDVDINGT
TP NONAR %A %R 07 S Wi MMSE 12112 SHRPUDIRT IR0 230 Tvwn?
172107 N1 2V 2O TIWW AN INAOR [NDY 17 110070 L3 P92 IRNIY 9D NIN902 A1 19IRA
X792 .0°0°P0 DOANAPRY IRNWI2 2OVIR0T NDW TIN OINN PWWH 02 NWN2 DWW 90 DR
DX 172107 2007 1971 PIRDINNT NWWT QY 112107 1 9901 N 17172 9911 ,019907 NhaaT
TR M7 70T 2XP2 29X 2ONWW DOW 71 UK LNWRI 29WA LPOKR 0P DWO2 2O0n%T N 9O
DM1°2 W2 DOIWWT 90 DW AT MNIN DR TIww? X0 15w 7m0 R (Clock Skew) 2xp °5727

.0 WY

TYWA DINN SW TIWW SRNMIPOR MO DTV 2°NIN0T 2°Y12°77 DWOA DR 2°773 1R LT pnna
WS 97N NN DR A1 T NWRIT 22WH RPR N0 DY 2°00121n7 NwIa ik 90 hw
YX2Y INPIW RO UR Q0N W2 DX 9D W PYW NINN oMY NI 23N MUY IWKRD 2307
NI20AT .TO1AN YOOI TIWWNY NDIINKT ,NP2OVIWR NN 7230 NV NTTA 70T NITY
O MT TN DWW 2°7PWN PAIYIRY ,NOTYNN DY IR VT DR DXIT NAWORND 117p 1107 YW
°D 2% D°W1,07IR .PN0OYR 17397 NONOANTT DIRDINPT NXOWUAY VAL 1DINA 11711 .JP1TY TMIRD
71227 IR NTARD DINIMPA NXOI0R LIA0R 130R7 YW ANWRIT 7T N7V 5w 25w IR
NAIX 92 TRY NITTIAN 1970 KD 1A9P 13017 2w MIRNWAT AT 25w 0 ,mMAnR 00972 .50 21009
NMWPNT AT MR NINWI M2V % L7187 KXY 237 12172 377 0K DX 93 Qv wpn? 7191 Dl
W RYIDNN DY DDA N °2°0PT ANCNAYR NP T PP MIN91 AR L5201 °nva
Sw NN MPW nOR 1020 YW 1NNDaw WY 1OWH Y JAND1 .N1VITIVON MIRNWA
(LS) nMo0a 2pi 79pna DR 527 911 TR NPUD IMINT 770N NPXPND DY NEIRD RPN
92 999 770 DPXPND DR MY WY OONRPOUDIRT PNDT DR ONIRAY NI DY oD 7PN
Wwnn? >75 .(0DRY LIRTINT DR INWI LTI 77PR2) 0ORY NIWIRY NI 7PN TURITINIP



IMDIONT AR P10 SVIYR ANMIVIRA WA NR ,N02PNAT DOORDOUDIRT IRNWAT DR
DNPIVOR W MYAwAT DYDY ORT MXMILRT DNR 2°90 NIV 11T ORDOLDIRG NN
,719 TV .7292 2210w QY DTIWRN MYEAR 1w NWWI DTN DR 2WNR WO DY 20w 107 2R
950R MNP 1AW 7IPRY P90 DR 29701 K27 25V LaPAT DAR 7T PO aOpn? 100N
71277 Y 12970 MW aNOIAIRT PW NP2907P0 1073 10X L, 20N DIt MTTA OV NIXIap
TIN5 DIINMY MR RITW PN1PIA ATV PW NOTOINT 327307 IR TN T 2NPAIR 90 AN
NYIX2 %P 73027 SW NONDY ST POnoaw 10X 2w MMSE 12112 191700 O9RNIUDINT
TATT DAUN DY 2WOMY Q0N MR X2 O MW DY W 20120 R ,TO¥NTI0PR
12 NN N2T7 L, TWWA DIRCW DW NTINWT DR 201 ONCNAYRT L,NWNa N 909 moawwni
DR MIRY VIWDT PRDVDIR-NNT QNIAIRY O1NI NUR Q0N LWWI 00 DY PEPITIR
NR NI2°1 7782 37777 7 A0 L0IRTINPIT NXI0AY 910777 AXI0NT DWW N0IRY I 022K
XM NMINEIND TV P92 ARIIOURLNTPHRMVOINT NNON DR NTARD IR NP0

ORI ANAR KDY 200N 21X W NIART anNIRIY

AT NPXPD? T QTP YW 390N MIPRIN L,O0°020 anCYRT YW Manaa 190n2 P
TRY MW 0 aNMAYRT DX O°RNI,10 10D LARRRITT DRNWAL NIYR WY DY 501 N1
Qv P2 1A12 ATINa W WS Novad I¥P2 0N L,A0M2 LNTIWRPN2 NIAT NIRGAWY °192
NN NPLANNAT NA0AT ANIRY MA%ALEA NPy nww R UK .(Clock Skew) a¥pa anmnn
TP WY LNAK WA MW MW YOXI AP DTN WY DOV M2 NNAIRNNT MR
TAT 2XPT MINTN YW 27107 SM0DIR TIVY VORI LTIWN AWOA2 LITINT YRS 71912 YXaNn

.Ja%p 1307 NATva

DR NNIWARY A2 DI DY MDY DY DPAIDIN M2V PN NIRTIN 1907 NI ,1ON NNY
P17 NN DOYIXOAT DR NIDWH AR 1301 DW aWONT 9 9Pl ,I0XD .MINWI MINva0T YW P
IRNWI2 NMNDIWA NMIRYIN 2217 7M7P 13072 28 DDI2AW 2NN L,NINR 29972 .0O1vws PN010
MXMa ¥321 .CTP-7 an» 9% NTP 5w nnw DIRDIA (30 ,NN902 Mn»pi MINRT Mow?
QNPINIRT PW WINAY CNONNT YT OW 9997 M7 Pwn NXCIn NI (MY MW
DNOIPIRA YW 72077 700 DYXINT J0Waw P01 UK .MITT P MIXIap 0501 May S0P
TPXMO0T MIRYIN D POXI AN 20T 2OYINOAT DX NI DONPRNNT QXINT DM 001

JIT NIT°R2 2°X0 DWN2 DWW 2oW AN DAN Nveann

TMan Y Y 9o Yab nebnnn Arnan APY AT DWNa DY PN210 N0V 0D PNl
DMNMBORT MR DR R N0 ,TRNTY .0TM010 NMINWIR DYWIIR NOM MTTA NATYA
NPYPY 1AM DTV, 20932 R Mwna (Sensor Localization Problem) 2010 112°K novyab

.7 P92 7¥R2 0 Y U191 1K LTS

DW 9PN AP0 KON PINIT VIAN YRIA DR 121,341 2 2P0 P To RIT A ATavE 51
DWW DANMIBORT IR X1 ,5 P92 YA DR 101N YTIN DR RN L4 P92 RN MNoon
N WIPM 6 P L(PNARA 7073a I NI 0732 1) DT AT W Apnn Ay
70T NR P01 MR L7 P92 IR CDRLOIRG 11NNDY AT anTRRT YW MoIONT
0217 9-1 8 2P0 20T KR 0 ANMNYRY MM MITTA N ANNIRT P NO0MpAT
MIRXIN 2P DINN 2w WM PR QTR N0 PR L0037 TIpnn YW Manan "oomna

11 P92 MIMER >Ny pnn MTIR MY 1901 MIP0A ,1027 .10 P92 NIBXIN 17X9mM0

II



@%1%%1y 1270

1 MORAIND RPN
5 Nuan .1
7 wTR Y .2
ettt ettt ere s Do Mnon 2°y1207 noow 2.1
L0t et et e e e e ae e 9P 1110 2.2
L e eaea e TPXNTIDIR NIIXA 9P 1300 2.3
Lt 0°9737 NN I mM7aw 2.4
Lttt YR AR 2.5

15 mMase e .3
LSt DWW N0 e 3.1

L ettt ettt et ettt et e et e e anteas nan e 3.2

20 ettt ettt e ereeaans DINIXNP AN IR 3.3

21 DA Mo BT Nt 4
2 TR nwwn Hmn 4.1

2] ettt et ettt ettt te et e ere e e mTn 4.2

2 ettt ettt et e ettt et et teae et eaaeeaeas Tyan mona 4.3

2 ettt et et 28N 91 4.4

24 DTTIA TR NOTY 1NN ANTNIDRIY IR NN L5
2 ettt 1M2P 7307 MRNWwn 5.1
2 ettt et ere s D° N5 QY120 N 5.2
26 YROUDINT 1IN0 MIRNWA M2 DRNAYRT 5.3
30 s NPLIVIRT MRNMWAT 2T 2NN 5.4
33 nvIONT MmN .6
39 M2 MITITR POTY 132907 aNMIR L7
KL TR TR 12177 1A%P 730m an R 7.1
B0 M2 PORDINT DNNAYRT 7.2



BBt 9P 13070 NIRNWH oY MPpw 7.3

B9 et Im27 MHRNVDIR-NN aANOR 7.4

D ettt 23077 K2 M2 anMNOR 7.5

54 nanan .8
Sttt et et nraeerean 1°77 07Pn noon 8.1

37 RO 12% Novn Wy nooiT 8.2

00 e NMWPN2 MRYBWY N9 7220 8.3

61 NPWT 2P TR .9
02 2XPY JAT MINTN W 2w v 9.1

B e 2ZPY AT MITTN SW 701 Y 9.2

73 RHMT NMIRIN .10
T3 ettt e e te et e reeareean 27N NORT RN 10.1
T MpP7237 MINWwA7 NP0 10.2
Tttt ettt et aeeenees N3 MRxn 10.3

91 NS Ny 77y nupon (11
93 NIPR NRvn
97 2ININDT 21T NV DR 1307 P2 MPIPR - R n1Ee:
99 MAP-1 52952 019920 S2ywn - 2 ovl
101 CTP =72y 19391709 NIREIN - 3 1150
I 2PN






TRPOW 0N '911D N1MITA WY P
oPWn NOTINY Tu,Poa

110 N2

PNRR 225w 932 NIRRT TNIRT 9V 72700 DY LI OV PRncw 2 '9119% M7t Cnxn2
MY NI 3TN DRI 10T 9V 077w 7V 1127 MINT 12y 2°1mak M7 C11%02 002
DORTRPR MIPIRA DY DIV WATT DY 092,00 WNIViw 1IN DI 00w 12085 DY

SMINDNWIA 727730 N9D0IT 7199107 DY PP100Y 770 IR






127 MPP 1107 NIV NWN2 TNV T1N010

qPnn SV 71201

T00%N RINT NPAPY MW YW Phh 1700 aws
Qi faly

TS 2OPR

ORAWOY M50 1197 — 11710057 DW VIDY WA

2009 "2mpPIR 977 v"own MYn






91127 MPP 1307 NIV NWN2 2TV 1IN0

R R-El-r



	Report 92.pdf
	Doc1.pdf
	Heb_abstract2.pdf
	Hebrew2.pdf

