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Introduction and Motivation

• Accurate clock synchronization is important in many computer 
networks applications (e.g., sleep scheduling in the case of low duty 
cycle and tracking in wireless sensor networks).

• The accuracy of clock synchronization was improved by exploiting
global network-wide constraints (loops), taking account of a-priori 
knowledge and then considering recursive algorithms for multiple
measurement sets.

General NetworkTree Network
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Introduction and Motivation (Cont.)

• The Kalman Filter framework allows exploiting some a-priori 
knowledge and providing different weights to the measurements 
according to their accuracy.

• Decentralized estimation: requiring only local communication with 
one-hop neighbors.

• Equivalence with the sensor localization problem. Indeed, our 
algorithms can solve any problem in which we want to estimate 
some quantities given relative measurements.
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Related Work

• NTP (Network Time Protocol), D. L. Mills, 1991, 1992 and 1995 
(version 3) – The most widely accepted standard for synchronizing 
clocks over the internet, hierarchical procedure.

• O. Gurewitz, I. Cidon, M. Sidi, Network time synchronization using 
clock offset optimization, 2003.

• R. Solis, V. Borkar, P. R. Kumar, A new distributed time 
synchronization protocol for multihop wireless networks, 2005.

• Other methods were proposed, like RBS (Reference Broadcast 
Synchronization) and an interesting extension of D. Estrin et. Al, 
2003, Optimal and Global time synchronization in sensornets.
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Related Work (Cont.)

• Decentralized Kalman Filter (DKF) was extensively treated in the 
literature and many approaches (both optimal and heuristics) were 
proposed.
First, the algorithms were applied to fully connected networks: e.g., 
[Hasemipour, Roy and Laub, 1988] and [Rao and Durant-Whyte, 
1991]. 

• Consensus algorithms: [Xiao and Boyd, 2004], [Olfati-Saber and 
Shamma, 2005] and [R. Carli et al., 2008]. In fact, numerous of 
these methods are related to data fusion in networks and particularly 
distributed Kalman Filtering using weighted averaging [Alriksson and 
Rantzer, 2006].

• Later on, several methods for locally (or sparsely) connected
networks are considered, like: [Barooah and Hespanha, 2005] and 
[Khan and Moura, 2008]. 
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Problem Formulation

• System Model:
- Skew (rate deviation) parameter

- Offset parameter

t  - Real time (or reference time)

- Local clock (node number i)

Our goal is to synchronize each node in the network with the reference 
time. This is equivalent to estimate      and     for each network’s node. 
The algorithm has to be decentralized (local broadcasts) and to 
converge to the optimal centralized solution.

Assumptions:

1. Time-invariant offsets.

2. All the clocks run exactly at the same speed (i.e., no skew:    ).

iT

i i iT tα τ= +

iα
iτ

iα iτ

1i jα α= =
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Problem Formulation (Cont.)

• The measurements:

Assuming symmetric transmission delay leads to the following 

relative measurements:

( )1ˆ ( ) ( )
2

ij ij m ji m j i ijO T k T k τ τ ε= ∆ −∆ = − +

i j( ) ( ) ( ) ( )ij m j m i m ij m i j ijT k R k T k x k τ τ ε∆ = − = − + +

Received time at j

Transmission time at i

Estimated Offset at j

Transmission delay Noise (queuing delay)
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Problem Formulation (Cont.)

• In order to apply the Kalman Filter, we need to find the state space 

model.

• Define the vector: 

• State space model:

Here, A is the reduced incidence matrix.

Example:

( )1 2( ) 0, ,...
T

Nx n τ τ τ=≐

( 1) ( ) ( )x n x n w n+ = +

( ) ( ) ( )Ty n A x n v n




= +

1

4

2

3

5
Loop 1 Loop 2

( ) ( ) ( ) ( ) ( ) ( )1,2 2,3 3, 4 1,4 2,5 3,5

1 1 0 0 1 0 0

2 1 1 0 0 1 0

3 0 1 1 0 0 1

4 0 0 1 1 0 0

5 0 0 0 0 1 1

A

+ +

− + +
=

− + +

− −

− −
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Scientific Background

Least-Squares Estimation

- Minimizing a quadratic function:                                .

- The basic technique for computing the regression coefficients and 
very common in several domains: convex optimization, signal-
processing, control, statistics…

- In the non-deterministic case, it gives an estimator that is equivalent 
to the LMMSE and to the Maximum-Likelihood estimator (for the 
Gaussian case).

- It is possible to assign a weight to each measurement according to 
its accuracy: the Weighted Least-Squares (WLS) case.

- The algorithm can be recursive (RLS) and decentralized (DLS).

( ) ( )2 22

1 1

( ) min
n n

i i i

i i

d d y f x
= =

Π = = = − →∑ ∑
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Scientific Background (Cont.)

Kalman Filtering

• Given the above state space model.

• Assuming that            and            are independent white Gaussian 
noises with zero mean and covariances               and         
respectively.

• The initial state of the system         is uncorrelated with the noises and 
verifies:

• The state estimation cycle is divided into two steps:

Initialization:

( 1) ( 1, ) ( ) ( 1, ) ( ) ( 1, ) ( )

( 1) ( 1) ( 1) ( 1)

x k k k x k k k w k k k u k

y k H k x k v k

+ = Φ + +Γ + +Ψ +


+ = + + + +

ˆ ˆ( 1| ) ( 1, ) ( | ) ( 1, ) ( )

( 1| ) ( 1, ) ( | ) ( 1, ) ( 1, ) ( ) ( 1, )T T

x k k k k x k k k k u k

P k k k k P k k k k k k Q k k k

+ = Φ + +Ψ +


+ = Φ + Φ + +Γ + Γ +

[ ]

[ ]

1

ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1) ( 1) ( 1| )

( 1) ( 1| ) ( 1) ( 1) ( 1| ) ( 1) ( 1)

( 1| 1) ( 1) ( 1) ( 1| )

T T

x k k x k k K k z k H k x k k

K k P k k H k H k P k k H k R k

P k k I K k H k P k k

−

 + + = + + + + − + +
  + = + + + + + + +  


+ + = − + + +

ˆ(0 | 0) (0) ; (0 | 0) (0)x xx m P P= =

{ }( )w k { }( )v k

( ) 0Q k ≥ ( ) 0R k >

(0)x

[ ] [ ] ( )( )(0) (0) ; cov (0) (0) (0) (0) (0) (0)
T

x x x xE x m x E x m x m P = = − − = 

Measurement updateTime update (prediction)
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Scientific Background (Cont.)

• The Kalman Filter is the LMMSE estimator and MMSE for the 

Gaussian case.

• The KF as a LS problem:

The minimizing solution of the following constrained deterministic 

optimization problem is equivalent to the MMSE solution (and to the 

MAP estimator) under the Gaussian assumption.

{ } { }

( ) ( )
1

1 1

0 0 0

0

,
1

0

1

1 1
(0) (0) ( ) ( )

2 2
min

1
( ) ( )

2

. . , 0,..., 1

n n

k
T T

k n n n

n

kx w
T

n n n n n n n

n

n n n n n

J x x P x x w Q w

y H x R y H x

s t x x w n k

−
− −

=

−

=

+

 
= − − + +  

 
 + − −
  
= Φ +Γ = −

∑

∑
LS MMSE MAPx x x= =
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Algorithms

CTP or LS Algorithm [Gurewitz, Cidon, Sidi, 2003 and 

Solis, Borkar, Kumar, 2005]

• A decentralized algorithm that outperforms NTP without increasing 
complexity.

• Each node computes its estimated offsets by the average on its 
neighbors.

• Minimize the following quadratic function:

• We will extend this result using a Kalman Filter framework.

( )1 ˆ

i

i ji j

j Ni

O
N

τ τ
∈

= +∑

( )2
,

ˆ( ) ( )

i

T T T

ji i j

i j
j N

J y A x y A x O τ τ

∈

= − − = − +∑
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Algorithms (Cont.)

Kalman Filter Framework

• State space model of the system:

• Start with the pair of parameters           the goal is to find by    

using the KF in a centralized fashion, or equivalently to minimize J:

• Several cases:

1) P0
-1=0, R-1=I, i.e., the regular Least-Squares problem.

2) P0
-1=0, R-1  is a diagonal matrix: the Weighted Least Squares 

problem.

3) P0
-1 can be a diagonal or a non-diagonal matrix.

( 1) ( )

( ) ( ) ( )T

x n x n

y n A x n v n

+ =


= +

0 0,x P ˆ
optτ

min1 1

0 0 0
ˆ( ) ( ) ( ) ( ) (0)T T T TJ x x P x x y A x R y A x x− −= − − + − − →
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Optimal Centralized Algorithm

• Compute the gradient and set it to zero:

• The corresponding error covariance matrix: 

• Prohibitively expensive in terms of energy consumption, bandwidth 
and communication time. 

• We need to develop a decentralized version for the general case.

( ) ( )

( ) ( )

1 1 1 1

0 0 0

1
1 1 1 1

0 0 0

0T

x

T

J AR A P x AR y P x

x AR A P AR y P x

− − − −

−− − − −

∇ = + − − =

= + +

( ) ( ) ( ) 11 1

0
ˆ ˆ

T TE x x x x AR A P
−− − − − = + 
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Decentralized Algorithm

Let us develop the decentralized algorithm for the case where R-1  and 

P0
-1 are diagonal matrices.

Here,            is the i-th row of the matrix       .

This implies:

( ) ( ) ( ) ( )

1 1

0 0 0

1 1 1 1

0 0 0* *

( ) ( ) ( ) ( )

0

T T T T

T

i i i i
i

J x x P x x y A x R y A x

J
AR A x AR y P x P x

τ

− −

− − − −

= − − + − −

∂
= − + − =

∂

( )10 *i
P − 1

0P
−

( )1 1 1 1ˆ (0)
i i

i ji j i

j N j Nji i ji i

O
r p r p

τ τ τ
∈ ∈

 
+ = + + ⋅  

 
∑ ∑

( ) (0)1 1 ˆ

1 1 i

i

i
i ji j

j N ji i

j N ji i

O
r p

r p

τ
τ τ

∈

∈

 
= ⋅ + + 
    +  
 

∑
∑

(Weighting Average)
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Decentralized Algorithm (Cont.)

The results are presented in the following table.

DKF-2

is non-diagonal.

DKF-1

is diagonal.

WLS

 

is diagonal and PSD.

LS
1

0 0 ;P R I− = = ( )1 ˆ

i

i ji j

j Ni

O
N

τ τ
∈

= +∑

( )1 1 ˆ
1

i

i

i ji j

j N ji

j N ji

O
r

r

τ τ
∈

∈

= ⋅ +∑
∑

( ) (0)1 1 ˆ

1 1 i

i

i
i ji j

j N ji i

j N ji i

O
r p

r p

τ
τ τ

∈

∈

 
= ⋅ + + 
    +  
 

∑
∑

( )
( ) ( ) ( ) ( )1 1

0 0

11

0

1 1 ˆ (0) (0)
1 i

i

N

i ji j i k kii ik
j N kji

k i
ii

j N ji

O P P
r

P
r

τ τ τ τ τ− −

∈ =−
≠

∈

 
 = + + − −
  
 +    

 

∑ ∑
∑

1R−

1

0P
−

1

0P
−
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Decentralized Algorithm (Cont.)

Remarks

• We showed that the WLS and the KF algorithms are equivalent to 
the Maximum-Likelihood and  the Maximum-A-Posteriori 
estimators, respectively under the appropriate assumptions.

• We also explained that the WLS case can be written in a 
decentralized version of the Jacobi algorithm.

• One can implement the above equations through a synchronous 
algorithm of the form (for DKF-1):

Problems:

1. After the first step, the covariance matrix of the KF is not diagonal 
anymore.

2. Convergence Analysis of the decentralized algorithms (4 cases).

( )( 1) (1) ( ) (0)1 1 ˆˆ ˆ(1) (1) 2,3,...
1 1 i

i

k k i
i ji j

j N ji i

j N ji i

O i N
r p

r p

τ
τ τ+

∈

∈

 
= ⋅ + + = 
    +  
 

∑
∑
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Convergence Analysis

Theorem 1 

Suppose that:

• A single set of measurements is available.

• The matrix is diagonal and PSD, that is:                     .

• The offsets are time-invariant.

• The initial state vector     is known.

• The initial covariance matrix is known and verifies:

Then:

If the previous clock adjustment operation is applied (in a synchronous 
way) by all nodes (             ) in all iterations, the set of estimated 
offsets    converges to the set of offsets that minimize the objective 
function:  

namely, the set of offsets that would have been obtained by
performing the centralized optimal protocol.

R ( ) 1 0 ,jir i j
−

∞ > ≥ ∀

0x

0P

( )

( )
( ) ( )

1

0

1

0

1

0

0

0

0

ij
j

ii

ij

P

P

P i j

−

−

−

 ≥



≥


≤ ≠


∑

2,3,...i N=

îτ
1 1

0 0 0( ) ( ) ( ) ( )T T T TJ x x P x x y A x R y A x− −= − − + − −
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Convergence Analysis (Cont.)

• The proof for the general case can be found in the thesis. Here, for our 
convenience, we present the proof for the DKF-1 case. 

• The convergence analysis for the multiple measurement case can be 
found in the thesis.

• Proof for the DKF-1 case:

The synchronous iteration can be written in vector form as the following:

The optimal solution (equivalent to perform the centralized protocol) is:

( ) ( )1
( 1) ( ) 1 1 ( ) 1 1 1 ( )

0 0 0

k k T k kD P AR A AR y P x Pτ τ τ τ
−+ − − − − −= − + − − +ɶ ( )1

1

1

0

i
ij j N ji

i j

D
r

otherwise

−

∈

 =
= 



∑ɶ

( ) ( )1
* 1 1 1 1

0 0 0

TAR A P AR y P xτ
−− − − −= + +
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Convergence Analysis (Cont.)

Let us define:

Then we obtain:

Defining:                                                   we have the following 
iteration equation: 

The necessary and sufficient condition for convergence is that the 
spectral radius of M is strictly smaller than 1.

( ) ( ) *k kτ τ τ−≐

( ) ( ) ( )

( ) ( )

( ) ( )( ) ( )
* *

1 1
( 1) ( 1) * ( ) 1 1 ( ) 1 1 1 ( ) 1 1

0 0 0 0

1
( 1) 1 1 1 ( )

0 0

1 1 1
1 1 1 1 1 1 1 1

0 0 0

( 1)

k k k T k k T

k T k

T T T

k

D P AR A AR y P x P AR A AR y

I D P AR A P

D P AR A P AR A P AR y AR A AR y

τ τ

τ τ τ τ τ τ

τ τ

τ

− −+ + − − − − − − −

−+ − − −

− − −− − − − − − − −

+

− = − + − − + −

 = − + + +  

+ + + + −

ɶ≐

ɶ

ɶ
����������� ���������

( ) ( ) ( )1
1 1 1 ( ) *

0 0

T kI D P AR A P τ τ
−− − − = − + + −  

ɶ

( ) ( )1
1 1 1

0 0

TM I D P AR A P
−− − −− + +ɶ≐

( 1) ( )k kMτ τ+ =
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Convergence Analysis (Cont.)
• The structure of the matrix M can be determined by inspection as the 

following:

• We can easily check that M is both non-negative and sub-stochastic if:

• In the most general case the convergence conditions are given by
(diagonal dominance):

• Moreover, we show that if the a-priori inverse covariance matrix  
verifies the convergence conditions, the a-posteriori inverse 
covariance matrix will verify them too. 

0

1

,
1 1

0

i

ji

ij

j N ji i

i j

r
M i j and i j areneighbors

r p

otherwise

∈

=




= ≠
 +




∑

( )1 1
0; , 0 1 . .

ji i

i j and i M Q E D
r p

ρ∞ > ≥ ∀ ≥ ∀ ⇒ <

( )
( )
( )

( ) ( )
1

0
1 1 1

0 0 01

0

01
0; , 0; 0

0

ii

ij ii ij
j j iji

ij

P
i j P P P

r P

−

− − −

−
∀ ∀ ≠

 ≥
∞ > ≥ ∀ ≥ ⇒ ≥ − ≥

≤
∑ ∑
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Recursive Version: Multiple Measurement Update

• The main problem is that if the matrix       is not a diagonal matrix, 

each node needs to communicate with every other node and not only 

with its neighbors. Thus, in this case each node has to know the

global topology of the entire network. The solution is to look for a 

recursive algorithm.

• Assume that the objective function is given by:

• By repeating the one-measurement derivation for the multiple-

measurement case, we can obtain:

1 1

0 0

1

( ) ( ) ( ( ) ) ( ( ) )
n

T T T T

k

J x x P x x y k A x R y k A x− −

=

= − − + − −∑

1P−

( ) ( )( 1) ( ) ( )1 1 ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( 1) ( ) ( 1)
1 1

i

i

k n k

i i ji i j j j

j N ji

j N ji i
the estimated measurement

n n O n n n n n
r

n
r p

τ τ τ τ τ τ+

∈

∈

  
  = − + ⋅ − − − − + − −  
 +    

∑
∑ ���������
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Recursive Version (Cont.)

The recursive, iterative and decentralized (optimal) algorithm is given 

in its final form by:

We showed that the elements of    are the diagonal elements of P. 

Hence, the variances of the estimates at each step are obtained.

[ ]
( ) ( ) ( )

[ ] [ ]

[ ] [ ]

( 1) ( ) ( ) ( )

1

1 1

1 1

1 1 1ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ) 1 ( ) ( 1)
( )

1 1 1
( ) ( 1)

2,...,
1

(0) (0)

i i

i i

k n k k

i i ji i j j j

j N j Nji jii

i i

j N j Nji i ji

i i

i

n n O n n n n n
r rI n

I n I n n
r p r

i N

I P
p

τ τ τ τ τ τ+
−

∈ ∈

− −

∈ ∈

− −

    = − + ⋅ ⋅ − − − + − ⋅ ⋅ − −        

 = − + = + ⋅


=
 = =


∑ ∑

∑ ∑

I
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Recursive Version (Cont.)

Remarks

• We obtained a decentralized, synchronous recursive algorithm that 
converges to the optimal centralized KF solution. The main 
advantage of this algorithm is its local nature; each network's node 
needs to communicate only with its neighbors.

• The equations are not similar to the KF equations.

• We note that the same equations may be obtained from the 
information form of the KF after appropriate manipulations.

• An alternative approach is to consider the sub-optimal algorithm that 
neglects the off-diagonal terms of the inverse covariance matrix. It 
reduces the complexity but looses the optimality.
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Incorporating a Discount Factor

The objective function to be minimized is (            ):

The recursive algorithm in this case:

This is  a recursive synchronous and decentralized algorithm that 

computes the optimal offsets (in the MMSE sense) hence, equivalent to 

the Kalman Filter solution.

min1 1

0 0 0

1

ˆ( ) ( ) ( ( ) ) ( ( ) ) ( )
n

n T n k T T T

opt

k

J x x P x x y k A x R y k A x x nγ γ− − −

=

 = − − + − − → ∑

0 1γ< <

[ ]
( ) ( )

[ ] [ ]

1
( 1) ( ) ( ) ( )

1
1

1
1 1

1

1 1 1ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( 1) ( 1) ( ) ( ) ( 1)
( )

1 1 1
( ) ( 1)

i i

i i

n
k n k n k k

i i ji i j j j

j N k j Nji jii

n
n k n

i i

j N k j Nji ji i

i

n n O n n n n
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Additional Extensions

• We investigated the case where a process noise is incorporated in 

the dynamical state space equation. 

In this latter, only a centralized algorithm was obtained.

• We improved the algorithms to handle with dynamic changes in the

communication topology by considering temporary link failures 

(following the work of Barooah and Hespanha, 2005).
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Clock Skew Estimation

Combined Skew and Offset Estimation

• State space model that includes the skew:

• Define the augmented state vector:                  for which we have the 

following model:

• Centralized Kalman Filter algorithm: LS approach or KF equations.

• Decentralized implementation: decentralized Jacobi-like iterations 

generally diverge (spectral radius of the iteration matrix is bigger than 1). 

Future direction: relaxed Jacobi algorithm (gradient method) with small 

step size.
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Clock Skew Estimation (Cont.)

Separate Skew and Offset Estimation

• Offset estimation using one of the previous methods. 3 methods are 

developed in order to estimate the skew parameters.

• The logarithmic method, introduced by (Karp et. al. 2003 and Solis et. 

Al. 2006).

• Two additional original methods: The multiplicative method and a state 

space based solution.

• Only the third method employs the same measurement format than the 

offset estimation problem.
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Clock Skew Estimation (Cont.)

The Logarithmic Method:

If we perform the following substitution:

Then, one can easily show that we will obtain the same problem as the

previous offset optimization problem.

The solution for the basic LS case is given by:

The remaining question is how we obtain the measurements: 

In practice, we will treat skew synchronization and offset synchronization

on different time scales. That is, we will adjust the parameters every  

time units, whereas we will adjust the parameters     every     time

units, with:   
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Clock Skew Estimation (Cont.)

• We have developed an additional method without requiring the 
application of the logarithm function on the sets of measurements. 
The corresponding objective function is given by:

• The main drawback of these two methods is that the measurements 
for the offset estimation and for the skew estimation are not similar.

• We proposed an additional method based on the state space model.

First, we showed that adding a constant random noise (bias) to the 
dynamical equation is equivalent to relax the skew assumption.
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Clock Skew Estimation (Cont.)

State Space based Solution

We consider the following decentralized sub-optimal algorithm:
estimate the offsets after each set of measurements in a recursive 
way, and the skew parameters after      sets of measurements only 
(according to the pair of farthest measurements). 

By operate on the state space equations, we obtain the same 
mathematical problem:

Just now, the noise is: 

The skew estimation algorithms are given by:
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Clock Skew Estimation (Cont.)

• In brief, we have obtained several decentralized algorithms for 
estimating the skew parameters     with no dependence on the 
offsets    (             ).

• In practice, we will estimate                   after each set of 
measurements, whereas                    is estimated according to     
and         at the first cycle,           and             at the second cycle, etc.

In each time interval, we will assume that the skew parameter 
remains constant.

• In summary, we have developed 3 different methods to comply with
general clocks that including frequency and time offsets. The state 
space based solution gives the advantage that the algorithm uses
the same measurements as in the offset estimation procedure, but
we need to know the parameter      . 

b
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Numerical Results

• The setup and the network topologies are based on the literature, 
and essentially on: Gurewitz, Cidon and Sidi, 2003.

• Compare the CTP (LS) with three different hierarchical versions of 
the Network Time Protocol (NTP).

• Analyze the convergence rate of the decentralized algorithm. 

• Compare LS with WLS in several cases.

• Compare LS with DKF.

• Recursive Algorithm.
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Numerical Results (Cont.)

Distribution of the clock offsets for the different algorithms in a 400 node network.
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Numerical Results (Cont.)

The clock offsets dispersion on a 400 node network.
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Numerical Results (Cont.)

Rate convergence analysis of the decentralized CTP algorithm in a 400 node network. 
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Numerical Results (Cont.)

Comparison between the decentralized CTP and WLS algorithms in a 400 node network.
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Numerical Results (Cont.)

Comparison between the decentralized CTP and WLS algorithms (with additive 

Gaussian noises on R) in a 400 node network.
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Numerical Results (Cont.)

Comparison between the decentralized CTP and DKF algorithms in a 400 node 

network.

Analysis of the DKF algorithm for different a-priori covariance matrix. 

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value clock offset

F
ra
c
ti
o
n
 o
f 
n
o
d
e
s

DKF Vs. Distributed CTP 400 Nodes

 

 

Distributed CTP

DKF

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value clock offset

F
ra
c
ti
o
n
 o
f 
n
o
d
e
s

DKF Vs. Distributed CTP 400 Nodes

 

 

Distributed CTP

DKF

( )
( )
( )0

0.01,0.19 ;

5,10 ;ii

U half of thenodes
P

U the remainder


= 


∼

∼
( )0

0.01 ; 10%

;ii

of thenodes
P

the remainder


= 

→∞



49

n=50n=30

n=10n=1

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value clock offset

F
ra
c
ti
o
n
 o
f 
n
o
d
e
s

CKF and CLS Vs. SOA 170 Nodes

 

 

CKF

SOA

CLS

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value clock offset

F
ra
c
ti
o
n
 o
f 
n
o
d
e
s

CKF and CLS Vs. SOA 170 Nodes

 

 

CKF

SOA

CLS

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value clock offset

F
ra
c
ti
o
n
 o
f 
n
o
d
e
s

CKF and CLS Vs. SOA 170 Nodes

 

 

CKF

SOA

CLS

Recursive Algorithm

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Absolute value clock offset

F
ra
c
ti
o
n
 o
f 
n
o
d
e
s

CKF and CLS Vs. SOA 170 Nodes

 

 

CKF

SOA

CLS



50

Outline

• Introduction and Motivation

• Related Work

• Problem Formulation

• Scientific Background
Least-Squares Estimation

Kalman Filtering 

• Algorithms
LS algorithm and KF Framework

Optimal Centralized Algorithm

Decentralized Algorithm

• Convergence Analysis

• Extensions

• Clock Skew Estimation            

• Numerical Results

• Conclusions and Future Work



51

Conclusions and Future Work

• Decentralized algorithms for estimating the offset at each network’s 
node using a Kalman Filter framework were obtained.

• The main algorithm is both decentralized and recursive and 
converges to the optimal solution.

• Several extensions to the basic algorithm were considered.

• We treat the case of general clocks with both offsets and skews.

• The different algorithms were tested on typical networks. In most of 
the cases, the proposed algorithms outperform the NTP schemes 
and the LS method.
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Conclusions and Future Work (Cont.)

We mention the following directions for future research:

• Solve optimally (in a decentralized way) the combined problem 
including both skews and offsets, and the case for which a process 
noise is incorporated.

• Extend to dynamic network topologies with time-varying offsets.

• Simulations of the case with non-uniform skews.

• Non-linear estimation of the distances between several agents.

Thank you for your attention!


