Morning Session : 07:30am-10:30am

07:30 Welcome.
07:40 Tutorial : A history of discriminative approaches in speech recognition.   Jeff Bilmes
08:15 Augmented Statistical Models: Exploiting Generative Models in Discriminative Classifiers.   Martin I. Layton and Mark J. F. Gales
08:30 Word Alignment via Quadratic Assignment.   Simon Lacoste-Julien, Ben Taskar, Dan Klein and Michael I. Jordan
08:45 Discriminative Training for Automatic Speech Recognition using the Minimum Classification Error framework.   Erik McDermott
09:00 Discussion.  
09:15 Coffee Break.  
09:30 Phoneme Alignment using Large Margin Techniques.   Joseph Keshet, Shai Shalev-Shwartz and Yoram Singer
09:45 Max-Margin Matching for Semantic Role Labeling.   David Vickrey, James Connor and Daphne Koller
10:00 Large Margin Gaussian Mixture Modeling for Phonetic Classification and Recognition.   Fei Sha and Lawrence K. Saul
10:15 Discussion.  

Afternoon Session : 03:30pm-06:30pm

03:30pm Invited talk : A Hierarchical Phrase-Based Model for Statistical Machine Translation.   David Chiang
04:15pm Coffee Break + Poster Session   (See below).  
05:15pm Named-Entity Recognition in Novel Domains with External Lexical Knowledge.   Massimiliano Ciaramita and Yasemin Altun
05:30pm Sparse Forward-Backward for Fast Training of Conditional Random Fields.   Charles Sutton, Chris Pal and Andrew McCallum
05:45pm Search-Based Structured Prediction as Classification.   Hal Daumé III, John Langford and Daniel Marcu
06:00pm Discussion.  

Posters Session : 04:15pm-05:15pm

A Generative Modeling Framework for Structured Hidden Speech Dynamics.   Li Deng, Dong Yu and Alex Acero
Structured Multi-label Transductive Learning: a Case Study in Lexicon Acquisition.   Kevin Duh and Katrin Kirchhoff
Multi-Conditional Learning for Joint Probability Models with Latent Variables.   Chris Pal, Xuerui Wang, Michael Kelm and Andrew McCallum
Efficient graphical models for sequence segmentation.   Sunita Sarawagi
Statistical spoken language understanding: from generative model to conditional model.   Ye-Yi Wang, John Lee, Milind Mahajan and Alex Acero
Convex Hidden Markov Models.   Linli Xu and Dale Schuurmans