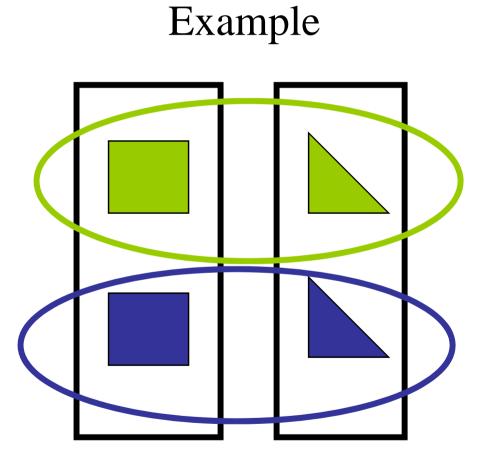
PAC-Bayesian Analysis of Co-clustering, Graph Clustering and Pairwise Clustering

Yevgeny Seldin

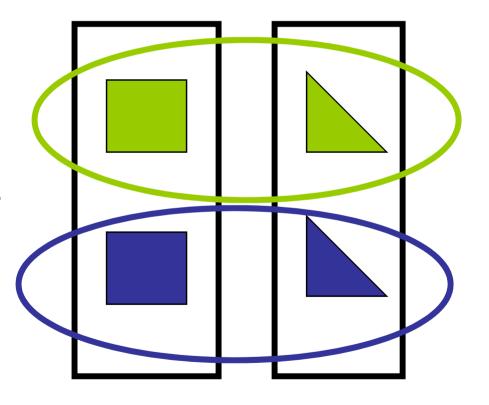
Motivation

 Clustering cannot be analyzed without specifying what it will be used for!



Example

- Cluster then pack
- Clustering by shape is preferable
 - Evaluate the amount of time saved



How to define a clustering problem?

- Common pitfall: the goal is defined in terms of the solution
 - Graph cut
 - Spectral clustering
 - Information-theoretic approaches
- Which one to choose??? How to compare?

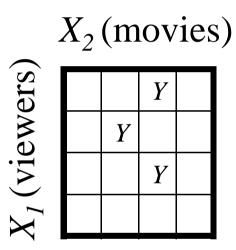
 Our goal: suggest problem formulation which is independent of the way of solution

Outline

- Two problems behind co-clustering
 - Discriminative prediction
 - Density estimation
- PAC-Bayesian analysis of discriminative prediction with co-clustering
- PAC-Bayesian analysis of graph clustering

Discriminative Prediction with Co-clustering

- Example: collaborative filtering
- Goal: find discriminative prediction rule $q(Y|X_1,X_2)$



Discriminative Prediction with Co-clustering

- Example: collaborative filtering
- Goal: find discriminative prediction rule $q(Y|X_1,X_2)$
- Evaluation:

$$L(q) = E_{p(X_1, X_2, Y)} E_{q(Y'|X_1, X_2)} l(Y, Y')$$

 X_2 (movies) $X_1 = X_2$ $X_2 = X_1$ $X_1 = X_2$ $X_2 = X_2$ $X_1 = X_2$ $X_2 = X_1$ $X_1 = X_2$ $X_2 = X_2$ $X_3 = X_1$ $X_1 = X_2$ $X_2 = X_3$ $X_3 = X_4$ $X_4 = X_1$ $X_1 = X_2$ $X_2 = X_3$ $X_3 = X_4$ $X_4 = X_4$ $X_4 = X_4$ $X_4 = X_4$ $X_5 = X_4$ $X_7 = X_4$ X

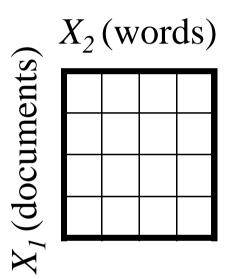
Expectation w.r.t. the true distribution $p(X_1, X_2, Y)$

Expectation w.r.t. the classifier $q(Y|X_1,X_2)$

Given loss l(Y,Y')

Co-occurrence Data Analysis

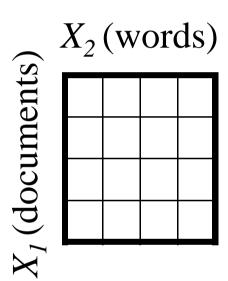
- Example: words-documents cooccurrence data
- Goal: find an estimator $q(X_1, X_2)$ for the joint distribution $p(X_1, X_2)$



Co-occurrence Data Analysis

- Example: words-documents cooccurrence data
- Goal: find an estimator $q(X_1, X_2)$ for the joint distribution $p(X_1, X_2)$
- Evaluation:

$$L(q) = -E_{p(X_1, X_2)} \ln q(X_1, X_2)$$
The true distribution
$$p(X_1, X_2)$$

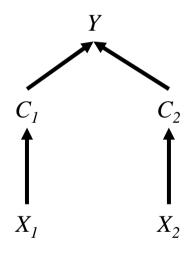


Outline

• PAC-Bayesian analysis of discriminative prediction with co-clustering

Discriminative prediction based on co-clustering

Model:
$$q(Y | X_1, X_2) = \sum_{C_1, C_2} q(Y | C_1, C_2) q(C_1 | X_1) q(C_2 | X_2)$$



Denote:

$$Q = \{q(C_1|X_1), q(C_2|X_2), q(Y|C_1,C_2)\}$$

• With probability $\geq 1-\delta$:

$$kl(\hat{L}(Q) || L(Q)) \le \frac{\sum_{i} |X_i| I(X_i; C_i) + K}{N}$$

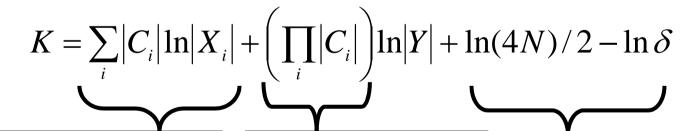
$$kl(\hat{L}(Q) \parallel L(Q)) = \hat{L}(Q) \ln \frac{\hat{L}(Q)}{L(Q)} + (1 - \hat{L}(Q)) \ln \frac{\hat{L}(Q)}{L(Q)}$$

• A looser, but simpler form of the bound:

$$L(Q) \leq \hat{L}(Q) + \sqrt{\frac{2\hat{L}(Q)\left(\sum_{i} \left|X_{i}\right| I(X_{i}; C_{i}) + K\right)}{N}} + \frac{2\left(\sum_{i} \left|X_{i}\right| I(X_{i}; C_{i}) + K\right)}{N}$$

• With probability $\geq 1-\delta$:

$$kl(\hat{L}(Q) || L(Q)) \le \frac{\sum_{i} |X_i| I(X_i; C_i) + K}{N}$$



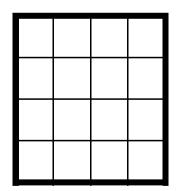
Logarithmic in $|X_i|$

Number of partition cells

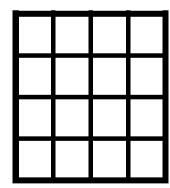
PAC-Bayesian bound part

• With probability $\geq 1-\delta$:

$$kl(\hat{L}(Q) || L(Q)) \le \frac{\sum_{i} |X_i| I(X_i; C_i) + K}{N}$$

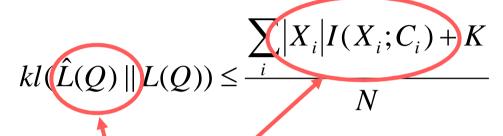


Low Complexity $I(X_i; C_i) = 0$



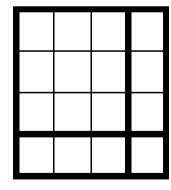
High Complexity $I(X_i; C_i) = \ln |X_i|$

• With probability $\geq 1-\delta$:

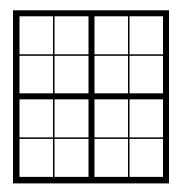


Optimization tradeoff:

Empirical loss vs. "Effective" partition complexity



Lower



Higher Complexity Complexity

Practice

• With probability $\geq 1-\delta$:

$$kl(\hat{L}(Q) || L(Q)) \le \frac{\sum_{i} |X_i| I(X_i; C_i) + K}{N}$$

• Replace with a trade-off:

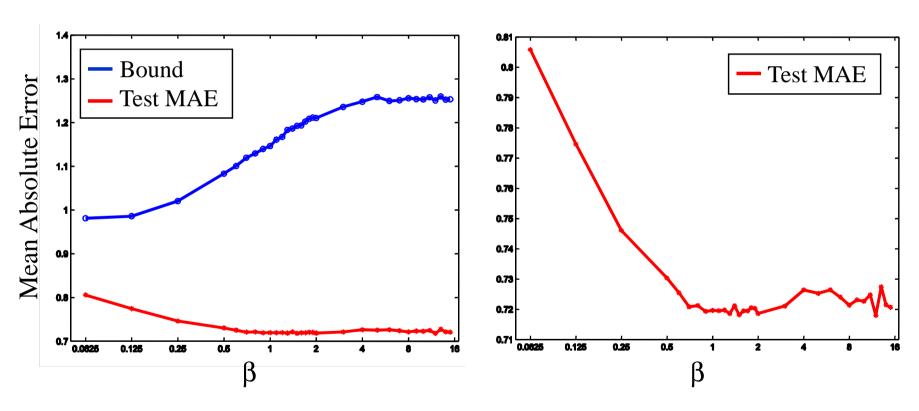
$$F(Q) = \beta N \hat{L}(Q) + \sum_{i} |X_{i}| I(X_{i}; C_{i})$$

Application

- MovieLens dataset
 - 100,000 ratings on 5-star scale
 - -80,000 train ratings, 20,000 test ratings
 - 943 viewers x 1682 movies
 - State-of-the-art Mean Absolute Error (0.72)
 - The optimal performance is achieved even with 300x300 cluster space

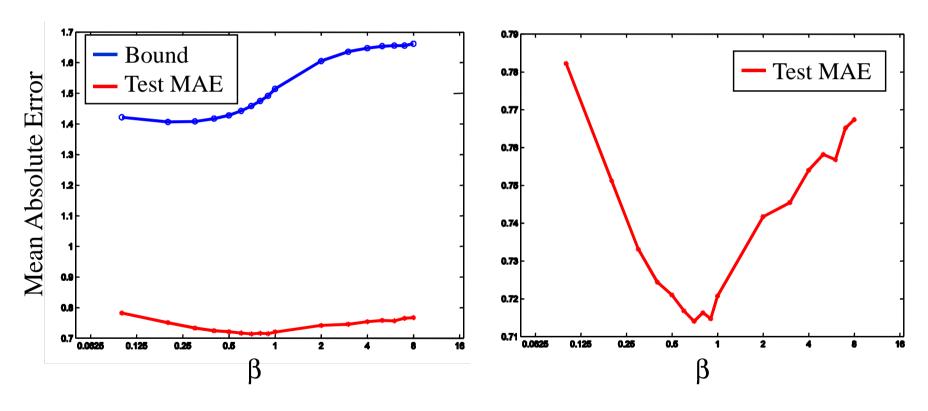
13x6 Clusters

$$F(Q) = \beta N \hat{L}(Q) + \sum_{i} |X_{i}| I(X_{i}; C_{i})$$



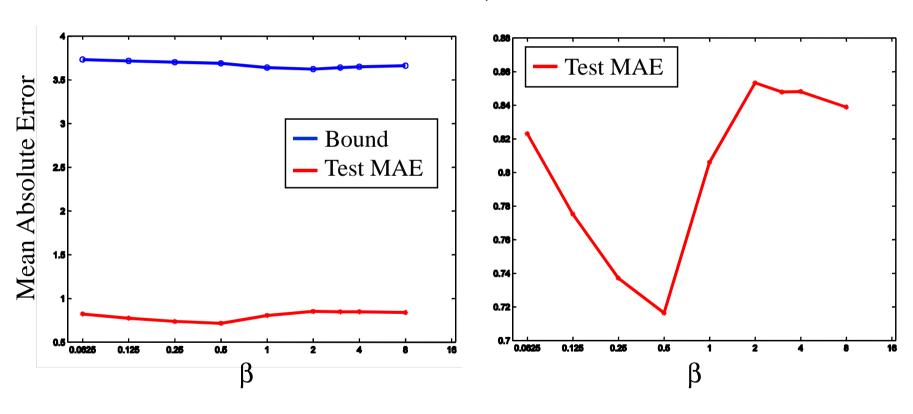
50x50 Clusters

$$F(Q) = \beta N \hat{L}(Q) + \sum_{i} |X_{i}| I(X_{i}; C_{i})$$



283x283 Clusters

$$F(Q) = \beta N \hat{L}(Q) + \sum_{i} |X_{i}| I(X_{i}; C_{i})$$



Weighted Graph Clustering

• The weigts of the edges w_{ij} are generated by unknown distribution $p(w_{ij}|x_i,x_j)$

• Given a sample of size N of edge weights

• Build a model $q(w|x_1,x_2)$ such that $E_{p(x_1,x_2,w)} E_{q(w'|x_1,x_2)} l(w,w')$ is minimized

Other problems

- Pairwise clustering = clustering of a weighted graph
 - Edge weights = pairwise relations
- Clustering of unweigted graph
 - Present edges = weight 1
 - Absent edges = weight 0

Weighted Graph Clustering

• The weights of the links are generated according to:

$$q(w_{ij}|X_i,X_j) = \sum_{C_a,C_b} q(w_{ij}|C_a,C_b) q(C_a|X_i) q(C_b|X_j)$$

- This is co-clustering with shared q(C|X)
 - Same bounds and (almost same) algorithms apply

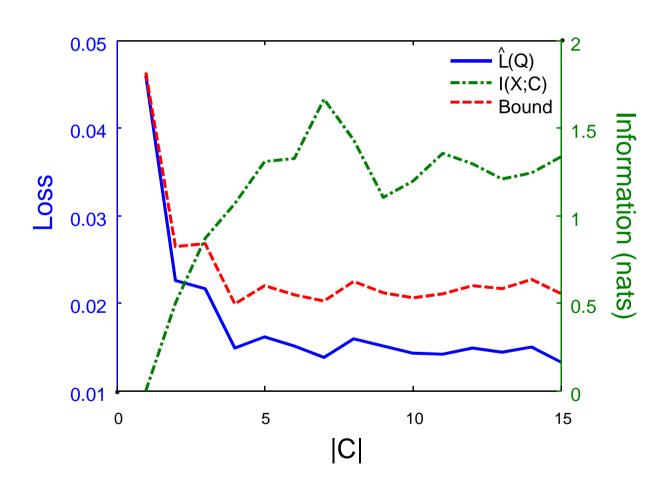
Application

Optimize the trade-off

$$F(Q) = \beta N \hat{L}(Q) + |X| I(X;C)$$

- Kings dataset
 - Edge weights = exponentiated negative distance between DNS servers
 - -|X| = 1740
 - Number of edges = 1,512,930

Graph Clustering Application



Relation with Matrix Factorization

• Co-clustering:

$$-g(X_1,X_2) = \sum_{C_1,C_2} q(C_1|X_1)g(C_1,C_2) \ q(C_2|X_2)$$

$$-M \approx Q_1^T G Q_2$$

• Graph clustering:

$$-g(X_1,X_2) = \sum_{C_1,C_2} q(C_1|X_1)g(C_1,C_2) \ q(C_2|X_2)$$

$$-M \approx Q^T G Q$$

Summary of main contributions

- Formulation of co-clustering and graph clustering (unsupervised learning) as prediction problems
- PAC-Bayesian analysis of co-clustering and graph clustering
 - Regularization terms
- Encouraging empirical results

Future Directions

- Practice:
 - More applications
- Theory:
 - Continuous domains
 - Multidimensional matrices

References

Co-clustering: Seldin & Tishby JMLR 2010 submitted, avail.online

Graph clustering: Seldin Social Analytics 2010