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Motivation
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How to define a clustering problem?

« Common pitfall: the goal is defined in terms
of the solution
— Graph cut
— Spectral clustering
— Information-theoretic approaches

* \Which one to choose??? How to compare?

e Our goal: suggest problem formulation
which Is independent of the way of solution



Outline

 Two problems behind co-clustering
— Discriminative prediction
— Density estimation

 PAC-Bayesian analysis of discriminati
prediction with co-clustering

 PAC-Bayesian analysis of graph clustering



Discriminative Prediction with Co-clustering

 Example: collaborative filtering

e Goal: find discriminative
prediction ruleg(Y]X,,X,)

X, (movies)
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Discriminative Prediction with Co-clustering

 Example: collaborative filtering

' iceriminati X, (movies
e Goal: find discriminative o 2 )
prediction ruleg(Y]X;,X,) . Y
. q) Y
e Evaluation S v
L(C]) - Ep(X1’X21Y) Eq(Y'|x1,x2)I (Y’Y') ><F|

Expectation w.r.t. the| EXxpectation Given
true distribution w.r.t. the loss
P(X;,%,,Y) classifier 1(Y,Y")

q(YIXy1, X))



Co-occurrence Data Analysis

 Example: words-documents co-
occurrence data

* Goal: find an estimatag(X,,X,)
for the joint distributiorp(X;,X,)

X, (words)

X, (documents



Co-occurrence Data Analysis

 Example: words-documents co-

occurrence data 2 X, (words)
e Goal: fi_n(_ll an _est_ima_tm[(xl,xz) =
for the joint distributiorp(X,,X,) §
e Evaluation:; =
>

L(q) — _Ep(Xl,Xz) In Q(Xl’ Xz)

The true distribution
P(Xy,X5)



Outline

 PAC-Bayesian analysis of discriminati
prediction with co-clustering



Discriminative prediction
based on co-clustering

Model: q(Y|X,,X,)= > a(Y|C,C,)a(C,|X)a(C,|X,)

Y

X1 X2
Denote:

Q = {a(CyXp), a(C,[X,), q(Y|C,,C,)}



q(Y [ X3, X,) = D a(Y |C,.C,)a(C, | X)a(C, | X,) Q=1{a(Y|C,,C,),a(C, | X)), a(C, | X,)}

Generalization Bound

« With probability> 1-0:

) D IX|H(X;;C)+K
KI(L(Q)]IL(Q)) < -

N

LQ . 1 tonm i@
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* Alooser, but simpler form of the bound:

KI(L(Q)]IL(Q)) = L(Q)In

2@ T ki) +k | 2 Zxnxic)ek]

L(Q) < L(Q) +\/ N + .




a(Y | X, X,) = ZQ(Y |C.,C,)a(C, | X)a(C, | X,)
C.C,

Generalization Bound

« With probability> 1-0:
D IX|H(X;;C)+K

KI(L(Q)|IL(Q)) <~

Q= {Q(Y |C1,C2),q(C1 | X1)’q(C2 | Xz)}

N

K =Y [cin|x| +(HCijInY +IN(@N)/2-In3
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q(Y [ X3, X,) = D a(Y |C,.C,)a(C, | X)a(C, | X,) Q=1{a(Y|C,,C,),a(C, | X)), a(C, | X,)}

Generalization Bound

« With probability> 1-0:

) D IX|H(X;;C)+K
KI(L(Q)]IL(Q)) < -

N

Low Complexity High Complexity
1(X;C) =0 1(X;C)) = InfXi]



q(Y [ X3, X,) = D a(Y |C,.C,)a(C, | X)a(C, | X,) Q=1{a(Y|C,,C,),a(C, | X)), a(C, | X,)}

Generalization Bound

« With probability> 1-0:

) M |X|H(X;;C)HK
KI(L(Q)I|L(Q)) <

N
Optimization tradeofft:
Empirical loss vs.
“Effective” partition _
Lower Higher

complexity . .
Complexity Complexity



Practice

« With probability> 1-0:

) D IX|H(X;;C)+K
KI(L(Q)]IL(Q)) < -

N

 Replace with a trade-off:

F(Q) = ANL(Q) + > |X[1(X;;C)



Application

 MovielLens dataset
— 100,000 ratings on 5-star scale
— 80,000 train ratings, 20,000 test ratings
— 943 viewers X 1682 movies
— State-of-the-art Mean Absolute Error (0.72)

— The optimal performance Is achieved even
with 300x300 cluster space
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50x50 Clusters

F(Q) = ANL(Q)+ Y |Xi[1(X;:C)
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Weighted Graph Clustering

 The weigts of the edgeg are generated by
unknown distributiornp(w; [,

e Given a sample of size N of edge wel

» Build a model(w|x;,%,) such that
Epixixow E quwixexe) [ (W,wW) IS minimized



Other problems

« Pairwise clustering = clustering of a
weighted graph
— Edge weights = pairwise relations

 Clustering of unweigted graph
— Present edges = weight 1
— Absent edges = weight O



Weighted Graph Clustering

 The weights of the links are generated
according to:

a(w; X, X)) = 2c_c, aw;[C, Cp) a(CoX) a(CylX)

e This Is co-clustering with sharedC|X)
— Same bounds and (almost same) algorithms apply



Application

e Optimize the trade-off

F(Q) = ANL(Q) +[X[1 (X;C)
* Kings dataset

— Edge weights = exponentiated negative
distance between DNS servers

— |X| = 1740
— Number of edges = 1,512,930



Graph Clustering Application
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Relation with Matrix Factorization

e Co-clustering:

— 0(X1,X5) =21 02 A(CIX)a(CL,C)) a(CylX,)
-M= QlTGQz

e Graph clustering:

— 0(X1,X5) =21 02 A(CIX)a(CL,C)) a(CylX,)
~M=~Q'GQ



Summary of main contributions

 Formulation of co-clustering and graph
clustering (unsupervised learning) as prediction
problems

« PAC-Bayesian analysis of co-clustering and
graph clustering

— Regularization terms

 Encouraging empirical results



Future Directions

* Practice:

— More applications
 Theory:

— Continuous domaii

— Multidimensional matrices
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