
Distributed Computing manuscript No.
(will be inserted by the editor)

Distributed Data Clustering in Sensor Networks

Ittay Eyal · Idit Keidar · Raphael Rom

Received: date / Accepted: date

Abstract Low overhead analysis of large distributed

data sets is necessary for current data centers and

for future sensor networks. In such systems, each

node holds some data value, e.g., a local sensor

read, and a concise picture of the global system

state needs to be obtained. In resource-constrained

environments like sensor networks, this needs to

be done without collecting all the data at any lo-

cation, i.e., in a distributed manner. To this end,

we address the distributed clustering problem, in

which numerous interconnected nodes compute a

clustering of their data, i.e., partition these values

into multiple clusters, and describe each cluster

concisely.

We present a generic algorithm that solves the

distributed clustering problem and may be imple-

mented in various topologies, using different clus-

tering types. For example, the generic algorithm

can be instantiated to cluster values according to

distance, targeting the same problem as the fa-

mous k-means clustering algorithm.

However, the distance criterion is often not suf-

ficient to provide good clustering results. We present

an instantiation of the generic algorithm that de-

scribes the values as a Gaussian Mixture (a set of

weighted normal distributions), and uses machine

learning tools for clustering decisions. Simulations

A preliminary version of this paper appears in the pro-
ceedings of the 29th Symposium on Principles of Dis-
tributed Computing (PODC) [9].

I. Eyal, I. Keidar, R. Rom
Department of Electrical Engineering, Technion city,
Haifa 32000, ISRAEL
Tel.: +972-4-829-{3298,4649, 4830}
Fax: +972-4-8295757
E-mail: {ittay@tx, idish@ee, rom@ee}.technion.ac.il

show the robustness, speed and scalability of this

algorithm.

We prove that any implementation of the generic

algorithm converges over any connected topology,

clustering criterion and cluster representation, in

fully asynchronous settings.

Keywords Sensor networks, distributed cluster-

ing, robust aggregation

1 Introduction

To analyze large data sets, it is common practice to

employ clustering [6]: In clustering, the data values

are partitioned into several clusters, and each clus-

ter is described concisely using a summary. This

classical problem in machine learning is solved us-
ing various heuristic techniques, which typically

base their decisions on a view of the complete data

set, stored in some central database.

However, it is sometimes necessary to perform

clustering on data sets that are distributed among

a large number of nodes. For example, in a grid

computing system, load balancing can be imple-

mented by having heavily loaded machines stop

serving new requests. But this requires analysis of

the load of all machines. If, e.g., half the machines

have a load of about 10%, and the other half is

90% utilized, the system’s state can be summa-

rized by partitioning the machines into two clus-

ters — lightly loaded and heavily loaded. A ma-

chine with 60% load is associated with the heav-

ily loaded cluster, and should stop taking new re-

quests. But, if the cluster averages were instead

50% and 80%, it would have been associated with

the former, i.e., lightly loaded, and would keep

serving new requests. Another scenario is that of

sensor networks with thousands of nodes moni-

toring conditions like seismic activity or temper-

ature [1,21].

In both of these examples, there are strict con-

straints on the resources devoted to the clustering

mechanism. Large-scale computation clouds allot

only limited resources to monitoring, so as not to

interfere with their main operation, and sensor net-

works use lightweight nodes with minimal hard-

ware. These constraints render the collection of all

data at a central location infeasible, and there-

fore rule out the use of centralized clustering al-

gorithms.

In this paper, we address the problem of dis-

tributed clustering. A detailed account of previous

work appears in Section 2, and a formal definition

of the problem appears in Section 3.

A solution to distributed clustering ought to

summarize data within the network. There exist

distributed algorithms that calculate scalar aggre-

gates, such as sum and average, of the entire data

set [14,10]. In contrast, a clustering algorithm

must partition the data into clusters, and summa-

rize each cluster separately. In this case, it seems

like we are facing a Catch-22 [13]: Had the nodes

had the summaries, they would have been able

to partition the values by associating each one

with the summary it fits best. Alternatively, if each

value was labeled a cluster identifier, it would have

been possible to distributively calculate the sum-

mary of each cluster separately, using the afore-

mentioned aggregation algorithms.

In Section 4 we present a generic distributed

clustering algorithm to solve this predicament. In

our algorithm, all nodes obtain a clustering of the

complete data set without actually hearing all the

data values. The double bind described above is

overcome by implementing adaptive compression:

A clustering can be seen as a lossy compression of

the data, where a cluster of similar values can be

described succinctly, whereas a concise summary

of dissimilar values loses a lot of information. Our

algorithm tries to distribute the values between the

nodes. At the beginning, it uses minimal compres-

sion, since each node has only little information to

store and send. Once a significant amount of infor-

mation is obtained, a node may perform efficient

compression, joining only similar values.

Our algorithm captures a large family of al-

gorithms that solve various instantiations of the

problem — with different approaches, clustering

values from any multidimensional domain and with

different data distributions, using various summary

representations, and running on arbitrary connected

topologies. A common approach to clustering is k-

means, where each cluster is summarized by its

centroid (average of the values in the cluster), and

partitioning is based on distance. A k-means ap-

proach is a possible implementation of our generic

algorithm. The result of this implementation, how-

ever, would differ from that of the classical central-

ized k-means algorithm.

Since the summary of clusters as centroids is

often insufficient in real life, machine learning so-

lutions typically also take the variance into ac-

count, and summarize values as a weighted set of

Gaussians (normal distributions), which is called

a Gaussian Mixture (GM) [20]. In Section 5, we

present a novel distributed clustering algorithm

that employs this approach, also as an instance of

our generic algorithm. The GM algorithm makes

clustering decisions using a popular machine learn-

ing heuristic, Expectation Maximization (EM) [5].

We present in Section 5.2 simulation results demon-

strating the effectiveness of this approach. These

results show that the algorithm converges with high

speed. It can provide a rich description of multi-

dimensional data sets. Additionally, it can detect

and remove outlying erroneous values, thereby en-

abling robust calculation of the average.

The centroids and GM algorithms are but two

examples of our generic algorithm; in all instances,

nodes independently strive to estimate the clus-

tering of the data. This raises a question that has

not been dealt with before: does this process con-

verge? One of the main contributions of this paper,
presented in Section 6, is a formal proof that in-

deed any implementation of our generic algorithm

converges, s.t. all nodes in the system learn the

same clustering of the complete data set. We prove

that convergence is ensured under a broad set of

circumstances: arbitrary asynchrony, an arbitrary

connected topology, and no assumptions on the

distribution of the values.

Note that in the abstract settings of the generic

algorithm, there is no sense in defining the desti-

nation clustering the algorithm converges to pre-

cisely, or in arguing about its quality, since these

are application-specific and usually heuristic in na-

ture. Additionally, due to asynchrony and lack of

constraints on topology, it is also impossible to

bound the convergence time.

In summary, this paper makes the following

contributions:

2

– It provides a generic algorithm that captures a

range of algorithms solving this problem in a

variety of settings (Section 4).

– It provides a novel distributed clustering algo-

rithm based on Gaussian Mixtures, which uses

machine learning techniques to make clustering

decisions (Section 5).

– It proves that the generic algorithm converges

in very broad circumstances, over any connected

topology, using any clustering criterion, in fully

asynchronous settings (Section 6).

2 Related Work

Kempe et al. [14] and Nath et al. [18] present ap-

proaches for calculating aggregates such as sums

and means using gossip. These approaches cannot

be directly used to perform clustering, though this

work draws ideas from [14], in particular the con-

cept of weight diffusion, and the tracing of value

weights.

In the field of machine learning, clustering has

been extensively studied for centrally available data

sets (see [6] for a comprehensive survey). In this

context, parallelization is sometimes used, where

multiple processes cluster partial data sets. Paral-

lel clustering differs from distributed clustering in

that all the data is available to all processes, or is

carefully distributed among them, and communi-

cation is cheap.

Centralized clustering solutions typically over-

come the Catch-22 issue explained in the intro-

duction by running multiple iterations. They first

estimate a solution, and then try to improve it by

re-partitioning the values to create a better clus-

tering. K-means [16] and Expectation Maximiza-

tion [5] are examples of such algorithms. Datta et

al. [4] implement the k-means algorithm distribu-

tively, whereby nodes simulate the centralized ver-

sion of the algorithm. Kowalczyk and Vlassis [15]

do the same for Gaussian Mixture estimation by

having the nodes distributively simulate Expecta-

tion Maximization. These algorithms require mul-

tiple aggregation iterations, each similar in length

to one complete run of our algorithm. The message

size in these algorithms is similar to ours, depen-

dent only on the parameters of the dataset, and

not on the number of nodes. Finally, they demon-

strate convergence through simulation only, but do

not provide a convergence proof.

Haridasan and van Renesse [12] and Sacha et

al. [19] estimate distributions in sensor networks by

estimating histograms. Unlike this paper, these so-

lutions are limited to single dimensional data val-

ues. Additionally, both use multiple iterations to

improve their estimations. While these algorithms

are suitable for certain distributions, they are not

applicable for clustering, where, for example, small

sets of distant values should not be merged with

others. They also do not prove convergence.

3 Model and Problem Definitions

3.1 Network Model

The system consists of a set of n nodes, connected

by communication channels, s.t. each node i has

a set of neighbors neighborsi ⊂ {1, · · · , n}, to

which it is connected. The channels form a static

directed connected network. Communication chan-

nels are asynchronous but reliable links: A node

may send messages on a link to a neighbor, and

eventually every sent message reaches its destina-

tion. Messages are not duplicated and no spurious

messages are created.

Time is discrete, and an execution is a series of

events occurring at times t = 0, 1, 2, · · · .

3.2 The Distributed Clustering Problem

At time 0, each node i takes an input vali — a

value from a domain D. In all the examples in this

paper, D is a d-dimensional Cartesian space D =

Rd (with d ∈ N). However, in general, D may be

any domain.

A weighted value is a pair 〈val, α〉 ∈ D × (0, 1],

where α is a weight associated with a value val.
We associate a weight of 1 to a whole value, so, for

example, 〈vali, 1/2〉 is half of node i’s value. A set

of weighted values is called a cluster :

Definition 1 (Cluster) A cluster c is a set of

weighted values with unique values. The cluster’s

weight, c.weight, is the sum of the value weights:

c.weight
∆
=

∑
〈val,α〉∈c

α .

A cluster may be split into two new clusters,

each consisting of the same values as the origi-

nal cluster, but associated with half their original

weights. Similarly, multiple clusters may be merged

to form a new one, consisting of the union of their

values, where each value is associated with the sum

of its weights in the original clusters.

A cluster can be concisely described by a sum-

mary in a domain S, using a function f that maps

3

clusters to their summaries: f : (D × (0, 1])∗ → S.

The domain S is a pseudo-metric space (like met-

ric, except the distance between distinct points

may be zero), with a distance function dS : S2 →
R. For example, in the centroids algorithm, the

function f calculates the weighted average of sam-

ples in a cluster.

A cluster c may be partitioned into several clus-

ters, each holding a subset of its values and sum-

marized separately1. The set of weighted summaries

of these clusters is called a clustering of c. Weighted

values in c may be split among clusters, so that

different clusters contain portions of a given value.

The sum of weights associated with a value val in

all clusters is equal to the sum of weights associ-

ated with val in c. Formally:

Definition 2 (Clustering) A clustering C of a

cluster c into J clusters {cj}Jj=1 is the set of weighted

summaries of these clusters: C = {〈f(cj), cj .weight〉}Jj=1

s.t.

∀val :
∑

〈val,α〉∈c

α =

J∑
j=1

 ∑
〈val,α〉∈cj

α

 .

A clustering of a value set {valj}lj=1 is a clustering

of the cluster {〈valj , 1〉}lj=1.

The number of clusters in a clustering is bounded

by a system parameter k.

A clustering algorithm strives to partition the

samples into clusters in a way that optimizes some

criterion, for example, minimizes some distance

metric among values assigned to the same clus-

ter (as in k-means). In this paper, we are not con-

cerned with the nature of this criterion, and leave it
up to the application to specify the choice thereof

A clustering algorithm maintains at every time

t a clustering clusteringi(t), yielding an infinite se-

ries of clusterings. For such a series, we define con-

vergence:

Definition 3 (Clustering convergence)

A series of clusterings{
{〈f(cj(t)), cj(t).weight〉}Jtj=1

}∞
t=1

converges to a destination clustering, which is a set

of l clusters {destx}lx=1, if for every t ∈ 0, 1, 2, · · ·
there exists a mapping ψt between the Jt clusters

at time t and the l clusters in the destination clus-

tering ψt : {1, · · · , Jt} → {1, · · · , l}, such that:

1 Note that partitioning a cluster is different from
splitting it, because, when a cluster is split, each part
holds the same values.

1. The summaries converge to the clusters to which

they are mapped by ψt:

max
j

{
dS(f(cj(t)), f(destψt(j)))

} t→∞−−−→ 0 .

2. For each cluster x in the destination cluster-

ing, the relative amount of weight in all clusters

mapped to x converges to x’s relative weight in

the clustering:

∀1 ≤ x ≤ l :

∑
{j|ψt(j)=x} cj(t).weight∑Jt

j=1 cj(t).weight

t→∞−−−→

destx.weight∑l
y=1 desty.weight

.

We are now ready to define the problem ad-

dressed in this paper, where a set of nodes strive to

learn a common clustering of their inputs. As pre-

vious works on aggregation in sensor networks [14,

18,2], we define a converging problem, where nodes

continuously produce outputs, and these outputs

converge to such a common clustering.

Definition 4 (Distributed clustering) Each node

i takes an input vali at time 0 and maintains a

clustering clusteringi(t) at each time t, s.t. there

exists a clustering of the input values {vali}ni=1 to

which the clustering in all nodes converge.

4 Generic Clustering Algorithm

We now present our generic algorithm that solves

the Distributed Clustering Problem. At each node,

the algorithm builds a clustering, which converges

over time to one that describes all input values

of all nodes. In order to avoid excessive bandwidth

and storage consumption, the algorithm maintains

clusterings as weighted summaries of clusters, and

not the actual sets of weighted values. By slight

abuse of terminology, we refer by the term clus-

ter to both a set of weighted values c, and its

summary–weight pair 〈c.summary, c.weight〉.
A node starts with a clustering of its own input

value. It then periodically splits its clustering into

two new ones, which have the same summaries but

half the weights of the originals; it sends one clus-

tering to a neighbor, and keeps the other. Upon re-

ceiving a clustering from a neighbor, a node merges

it with its own, according to an application-specific

merge rule. The algorithm thus progresses as a se-

ries of merge and split operations.

We begin with an illustrative example in Sec-

tion 4.1 which summarizes clusters as their cen-

troids — the averages of their weighted values.

4

Then, in Section 4.2, we present the generic

distributed clustering algorithm. It is instantiated

with a domain S of summaries used to describe

clusters, and with application-specific functions that

manipulate summaries and make clustering deci-

sions. We use the centroid algorithm as an example

instantiation.

In Section 4.3, we enumerate a set of require-

ments on the functions the algorithm is instanti-

ated with. We then show that in any instantia-

tion of the generic algorithm with functions that

meet these requirements, the weighted summaries

of clusters are the same as those we would have ob-

tained, had we applied the algorithm’s operations

on the original clusters, and then summarized the

results.

4.1 Example — Centroids

We begin by considering the example case of cen-

troid summaries, where a cluster is described by

its centroid and weight 〈c.µ, c.w〉. Initially, the cen-

troid is the sensor’s read value, and the weight is 1,

so at node i the cluster is 〈vali, 1〉. A node occasion-

ally sends half of its clusters to a neighbor. A node

with clusters 〈c1.µ, c1.w〉, 〈c2.µ, c2.w〉 would keep

〈c1.µ, 12c1.w〉, 〈c2.µ,
1
2c2.w〉 and send to a neighbor

a message with the pair 〈c1.µ, 12c1.w〉, 〈c2.µ,
1
2c2.w〉.

The neighbor receiving the message will consider

the received clusters with its own, and merge clus-

ters with close centroids. Merge is performed by

calculating the weighted sum. For example, the

merge of two clusters 〈c.µ, c.w〉 and 〈d.µ, d.w〉 is

〈
1
2c.w · c.µ+ d.w · d.µ

1
2c.w + d.w

,
1

2
c.w + d.w〉 .

We now proceed to describe the generic algo-

rithm.

4.2 Algorithm

The algorithm for node i is shown in Algorithm 1

(at this stage, we ignore the parts in dashed frames).

The algorithm is generic, and it is instantiated

with the summary domain S and the functions

valToSummary, partition and mergeSet. The

functions of the centroids example are given in Al-

gorithm 2. The summary domain S in this case is

the same as the value domain, i.e., Rd.

Initially, each node produces a clustering with

a single cluster, based on the single value it has

taken as input (Line 2). The weight of this cluster

is 1, and its summary is produced by the function

valToSummary : D → S. In the centroids example,

the initial summary is the input value (Algorithm

2, valToSummary function).

A node occasionally sends data to a neighbor

(Algorithm 1, Lines 3–7): It first splits its clus-

tering into two new ones. For each cluster in the

original clustering, there is a matching cluster in

each of the new ones, with the same summary,

but with approximately half the weight. Weight is

quantized, limited to multiples of a system param-

eter q (q, 2q, 3q, . . .). This is done in order to avoid

a scenario where it takes infinitely many transfers

of infinitesimal weight to transfer a finite weight

from one cluster to another (Zeno effect). We as-

sume that q is small enough to avoid quantization

errors: q � 1
n . In order to respect the quantiza-

tion requirement, the weight is not multiplied by

exactly 0.5, but by the closest factor for which the

resulting weight is a multiple of q (function half in

Algorithm 1). One of the clusters is attributed the

result of half and the other is attributed the com-

plement, so that the sum of weights is equal to the

original, and system-wide conservation of weight is

maintained. Note that despite the weight quanti-

zation, values and summaries may still be continu-

ous, therefore convergence may still be continuous.

If the communication topology is dense, it is

possible to perform scalable random peer samp-

ling [17], even under message loss [11], in order to

achieve data propagation guarantees.

The node then keeps one of the new cluster-

ings, replacing its original one (Line 6), and sends

the other to some neighbor j (Line 7). The se-

lection of neighbors has to ensure fairness in the

sense that in an infinite run, each neighbor is cho-

sen infinitely often; this can be achieved, e.g., us-

ing round robin. Alternatively, the node may im-

plement gossip communication patterns: It may

choose a random neighbor and send data to it

(push), or ask it for data (pull), or perform a bi-

lateral exchange (push-pull).

When a message with a neighbor’s clustering

reaches the node, an event handler (Lines 8–11)

is called. It first combines the two clusterings of

the nodes into a set bigSet (Line 9). Then, an

application-specific function partition divides the

clusters in bigSet into setsM = {Mx}|M |x=1 (Line 10).

The clusters in each of the sets in M are merged

into a single cluster, together forming the new clus-

tering of the node (Line 11). The summary of each

merged cluster is calculated by another application-

5

Algorithm 1: Generic Distributed Data Clustering Algorithm. Dashed frames show

auxiliary code .
1 state

2 clusteringi, initially {〈valToSummary(vali), 1 , ei 〉}

3 Periodically do atomically

4 Choose j ∈ neighborsi (Selection has to ensure fairness)
5 old← clusteringi
6 clusteringi ←

⋃
c∈old{〈c.summary, half(c.weight) ,

half(c.weight)
c.weight

· c.aux 〉}

7 send (j,
⋃

c∈old{〈c.summary, c.weight− half(c.weight) ,
(

1− half(c.weight)
c.weight

)
· c.aux 〉})

8 Upon receipt of incoming do atomically

9 bigSet← clusteringi ∪ incoming
10 M ← partition(bigSet) (The function partition returns a set of cluster sets)

11 clusteringi ←
⋃|M|

x=1

〈mergeSet(⋃c∈Mx
{〈c.summary, c.weight〉}

)
,
∑

c∈Mx
c.weight ,

∑
c∈Mx

c.aux 〉

12 function half(α)
13 return the multiple of q which is closest to α/2.

specific function, mergeSet, and its weight is the

sum of weights of the merged clusters.

To conform with the restrictions of k and q, the

partition function must guarantee that (1) |M | ≤
k; and (2) no Mx includes a single cluster of weight

q (that is, every cluster of weight q is merged with

at least one other cluster).

Note that the parameter k forces lossy com-

pression of the data, since merged values cannot

later be separated. At the beginning, only a small

number of data values is known to the node, so it

performs only a few (easy) clustering decisions. As
the algorithm progresses, the number of values de-

scribed by the node’s clustering increases. By then,

it has enough knowledge of the data set, so as to

perform correct clustering decisions, and achieve

a high compression ratio without losing valuable

data.

In the centroids algorithm, the summary of the

merged set is the weighted average of the summaries

of the merged clusters, calculated by the implemen-

tation of mergeSet shown in Algorithm 2. Merging

decisions are based on the distance between clus-

ter centroids. Intuitively, it is best to merge close

centroids, and keep distant ones separated. This

is done greedily by partition (shown in Algo-

rithm 2) which repeatedly merges the closest sets,

until the k bound is reached. For k = 1, the algo-

rithm is reduced to push-sum.

Algorithm 2: Centroid Functions

1 function valToSummary(val)
2 return val

3 function mergeSet(clusters)

4 return

 ∑
〈avg,m〉 ∈
clusters

m

−1

×
∑

〈avg,m〉 ∈
clusters

m · avg

5 function partition(bigSet)
6 M ← {{c}}c∈bigSet
7 If there are sets in M whose clusters’ weights

are q, then unify them arbitrarily with others
8 while |M | > k do

9 let Mx and My be the (different) cluster
sets in M whose centroids are closest

10 M ←M \ {Mx,My} ∪ (Mx ∪My)

11 return M

4.3 Auxiliaries and Instantiation Requirements

For the algorithm to perform a meaningful and

correct clustering of the data, its functions must

respect a set of requirements. In Section 4.3.1 we

specify these requirements and in Section 4.3.2 we

show that the centroids algorithm described above

meets these requirements. In Section 4.3.3 we prove

that these requirements ensure that the summaries

described by the algorithm indeed represent clus-

ters.

6

4.3.1 Instantiation Requirements

To phrase the requirements, we describe a cluster

in 〈D, (0, 1]〉∗ as a vector in the Mixture Space —

the space Rn (n being the number of input val-

ues), where each coordinate represents one input

value. A cluster is described in this space as a vec-

tor whose j’th component is the weight associated

with valj in that cluster. For a given input set, a

vector in the mixture space precisely describes a

cluster. We can therefore redefine f as a mapping

from mixture space vectors of clusters to cluster

summaries, according to the input set I ∈ Dn. We

denote this mapping fI : Rn → S.

We define the distance function dM : (Rn)2 →
R between two vectors in the mixture space to

be the angle between them. Clusters consisting of

similar weighted values are close in the mixture

space (according to dM). Their summaries should

be close in the summary space (according to dS),

with some scaling factor ρ. Simply put — clus-

ters consisting of similar values (i.e., close in dM)

should have similar summaries (i.e., close in dS).

Formally:

R1 For any input value set I,

∃ρ : ∀v1, v2 ∈ (0, 1]
n

:

dS(fI(v1), fI(v2)) ≤ ρ · dM (v1, v2).

In addition, operations on summaries must pre-

serve the relation to the clusters they describe. In-

tuitively, this means that operating on summaries

is similar to performing the various operations on

the value set, and then summarizing the results.

R2 Initial values are mapped by fI to their sum-

maries:

∀i, 1 ≤ i ≤ n : valToSummary(vali) = fI(ei).

R3 Summaries are oblivious to weight scaling:

∀α > 0, v ∈ (0, 1]
n

: fI(v) = fI(αv).

R4 Merging a summarized description of clusters

is equivalent to merging these clusters and then

summarizing the result2:

mergeSet

(⋃
v∈V
〈{fI(v), ‖v‖1〉}

)
= fI

(∑
v∈V

v

)
.

2 Denote by ‖v‖p the Lp norm of v.

4.3.2 The Centroids Case

We show now that the centroids algorithm respects

the requirements. Recall that fI in this case is the

weighted average of the samples, and let dS be the

L2 distance between centroids. We show that the

requirements are respected.

Claim For the centroids algorithm, as described

in Algorithm 2, the requirements R1–R4 are re-

spected.

Proof Let ρ be the maximal L2 distance between

values, and let ṽ be the L2 normalized vector v.

We show that R1 holds with this ρ.

dS(fI(v1), fI(v2))
(1)

≤

ρ‖v1 − v2‖1
(2)

≤

ρ · n−1/2‖ṽ1 − ṽ2‖1
(3)

≤

ρ‖ṽ1 − ṽ2‖2
(4)

≤
ρ · dM (ṽ1, ṽ2) = ρ · dM (v1, v2)

(1) Each value may contribute at most ρ the coor-

dinate difference.

(2) The normalization from L1 to L2 may factor

each dimension by no less than n−1/2.

(3) The L1 norm is smaller than
√
n times the L2

norm, so a factor of
√
n is added that annuls

the n−1/2 factor.

(4) Recall that dM is the angle between the two

vectors. The L2 difference of normalized vec-

tors is smaller than the angle between them.

It is readily seen that requirements R2–R4 also

hold.

4.3.3 Auxiliary Correctness

Returning to the generic case, we show that the

weighted summaries maintained by the algorithm

to describe clusters that are merged and split, in-

deed do so. To do that, we define an auxiliary algo-

rithm. This is an extension of Algorithm 1 with the

auxiliary code in the dashed frames. Clusters are

now triplets, containing, in addition to the sum-

mary and weight, the cluster’s mixture space vec-

tor c.aux.

At initialization (Line 2), the auxiliary vector

at node i is ei (a unit vector whose i’th component

is 1). When splitting a cluster (Lines 6–7), the vec-

tor is factored by about 1/2 (the same ratio as the

7

weight). When merging a set of clusters, the mix-

ture vector of the result is the sum of the original

clusters’ vectors (Line 11).

The following lemma shows that, at all times,

the summary maintained by the algorithm is in-

deed that of the cluster described by its mixture

vector:

Lemma 1 (Auxiliary correctness) The generic

algorithm, instantiated by functions satisfying R2–

R4, maintains the following invariant: For any clus-

ter c either in a node’s clustering (c ∈ clusteringi)

or in transit in a communication channel, the fol-

lowing two equations hold:

fI(c.aux) = c.summary (1)

‖c.aux‖1 = c.weight (2)

Proof By induction on the global states of the sys-

tem.

Basis Initialization puts at time 0, at every node

i the auxiliary vector ei, a weight of 1, and the

summary valToSummary of value i. Require-

ment R2 thus ensures that Equation 1 holds

in the initial state, and Equation 2 holds since

‖ei‖ = 1. Communication channels are empty.

Assumption At time j − 1 the invariant holds.

Step Transition j may be either send or receive.

Each of them removes clusters from the set,

and produces a cluster or two. To prove that at

time j the invariant holds, we need only show

that in both cases the new cluster(s) maintain

the invariant.

Send We show that the mapping holds for the

kept cluster ckeep. A similar proof holds for

the sent one csend. Proof of Equation 1:

ckeep.summary
line 6

=

= c.summary
induction
assumption

=

= fI(c.aux)
R3
=

= fI

(
half(c.weight)

c.weight
· c.aux

) auxiliary
line 6=

= fI(ckeep.aux)

Proof of Equation 2:

ckeep.weight
line 6

=

= half(c.weight) =

=
half(c.weight)

c.weight
· c.weight

induction
assumption

=

=
half(c.weight)

c.weight
· ‖c.aux‖1 =

=

∥∥∥∥half(c.weight)

c.weight
· c.aux

∥∥∥∥
1

auxiliary
line 6=

= ‖ckeep.aux‖1

Receive We prove that the mapping holds for

each of the m produced clusters. Each clus-

ter cx is derived from a set Mx. Proof of

Equation 1:

cx.summary
line 11

=

=mergeSet

(⋃
c∈Mx

{〈c.summary, c.weight〉}

)induction
assump-

tion=

= mergeSet

(⋃
c∈Mx

{〈fI(c.aux), ‖c.aux‖1〉}

)
R4
=

= fI

(∑
c∈Mx

c.aux

)
auxiliary
line 11=

= fI (cx.aux)

Proof of Equation 2:

cx.weight
line 11

=

=
∑
c∈Mx

c.weight
induction
assumption

=

=
∑
c∈Mx

‖c.aux‖1 =

=

∥∥∥∥∥ ∑
c∈Mx

c.aux

∥∥∥∥∥
1

auxiliary
line 11=

= ‖cx.aux‖1

5 Gaussian Clustering

When clustering value sets from a metric space,

the centroids solution is seldom sufficient. Consider

the example shown in Figure 1, where we need

to associate a new value with one of two existing

clusters. Figure 1a shows the information that the

centroids algorithm has for clusters A and B, and a

new value. The algorithm would associate the new

value to cluster A, on account of it being closer to

8

its centroid. However, Figure 1b shows the set of

values that produced the two clusters. We see that

it is more likely that the new value in fact belongs

to cluster B, since it has a much larger variance.

The field of machine learning suggests the heuris-

tic of clustering data using a Gaussian Mixture

(a weighted set of normal distributions), allowing

for a rich and accurate description of multivariate

data. Figure 1b illustrates the summary employed

by GM: An ellipse depicts an equidensity line of

the Gaussian summary of each cluster. Given these

Gaussians, one can easily classify the new value

correctly.

We present in Section 5.1 the GM algorithm

— a new distributed clustering algorithm, imple-

menting the generic one by representing clusters

as Gaussians, and clusters as Gaussian Mixtures.

Contrary to the classical machine learning algo-

rithms, ours performs the clustering without col-

lecting the data in a central location. Nodes use

the popular machine learning tool of Expectation

Maximization to make clustering decisions (Sec-

tion 5.1). A taste of the results achieved by our

GM algorithm is given in Section 5.2 via simula-

tion. It demonstrates the clustering of multidimen-

sional data and more. Note that due to the heuris-

tic nature of EM, the only possible evaluation of

our algorithm’s quality is empirical.

5.1 Generic Algorithm Instantiation

The summary of a cluster is a tuple 〈µ, σ〉, com-

prised of the average of the weighted values in

the cluster µ ∈ Rd (where D = Rd is the value

space), and their covariance matrix σ ∈ Rd×d. To-

gether with the weight, a cluster is described by a

weighted Gaussian, and a clustering consists of a

weighted set of Gaussians, or a Gaussian Mixture.

Let v = (v1, · · · , vn) be an auxiliary vector; we

denote by ṽ a normalized version thereof:

ṽ =
v∑s
j=1 vj

Recall that vj represents the weight of valj in

the cluster. The centroid µ(v) and covariance ma-

trix σ(v) of the weighted values in the cluster are

calculated as follows:

µ(v) =

n∑
j=1

ṽj · valj , and

σ(v) =
1

1−
∑n
k=1 ṽ

2
k

n∑
j=1

ṽj(valj − µ)(valj − µ)T .

We use them to define the mapping fI from the

mixture space to the summary space:

fI(v) = 〈µ(v), σ(v)〉 .

Note that the use of the normalized vector ṽ makes

both µ(v) and σ(v) invariant under weight scaling,

thus fulfilling Requirement R3.

We define dS as in the centroids algorithm.

Namely, it is the L2 distance between the centroids

of clusters. This fulfills requirement R1 (see Sec-

tion 4.3.2).

The function valToSummary returns a cluster

with an average equal to val, a zero covariance ma-

trix, and a weight of 1. Requirement R2 is trivially

satisfied.

To describe the function mergeSet we use the

following definitions: Denote the weight, average

and covariance matrix of cluster x by wx, µx and

σx, respectively. Given the summaries and weights

of two clusters a and b, one can calculate the sum-

mary of a cluster c created by merging the two:

µc =
wa

wa + wb
µa +

wb
wa + wb

µb

σc =
wa

wa + wb
σa +

wb
wa + wb

σb+

wa · wb
(wa + wb)2

· (µa − µb) · (µa − µb)T

This merging function maintains the average and

covariance of the original values [20], therefore it

can be iterated to merge a set of summaries and

implement mergeSet in a way that conforms to

R4.

Expectation Maximization Partitioning

To complete the description of the GM algorithm,

we now explain the partition function. When

a node has accumulated more than k clusters, it

needs to merge some of them. In principle, it would

be best to choose clusters to merge according to

Maximum Likelihood, which is defined in this case

as follows: We denote a Gaussian Mixture of x

Gaussians x-GM. Given a too large set of l ≥ k

clusters, an l-GM, the algorithm tries to find the

k-GM probability distribution for which the l-GM

has the maximal likelihood. However, computing

Maximum Likelihood is NP-hard. We therefore in-

stead follow common practice and approximate it

with the Expectation Maximization algorithm [16].

Our goal is to re-classify GMold, an l-GM with

l > k, to GMnew, a k-GM. Denote by V the d di-

mensional space in which the distributions are de-

fined. Denote by fX(v) the probability density at

9

(a) Centroids and a new value (b) Gaussians and a new value

Fig. 1: Associating a new value when clusters are summarized (a) as centroids and (b) as Gaussians.

point v of distribution X. If X is a weight distribu-

tion such as a Gaussian mixture, it is normalized

s.t. it constitutes a probability density.

The likelihood that the samples concisely de-

scribed by GMold are the result of the probability

distribution described by (the normalized) GMnew

is:

L =
∑

c∈GMnew

∑
g∈GMold

(∫
v∈V

wcfc(v) · wgfg(v)dv

)
The merge employs the Expectation Maximiza-

tion algorithm to approximate Maximum Likeli-

hood. It arbitrarily groups the clusters in GMold

into k sets, and merges each set into a single Gaus-

sian, forming a k-GM GMnew. It then alternately

regroups GMold’s clusters to maximize their like-

lihood w.r.t. GMnew, and recalculates GMnew ac-

cording to this grouping. This process is repeated

until convergence.

5.2 Simulation Results

Due to the heuristic nature of the Gaussian Mix-

ture clustering and of EM, the quality of their re-

sults is typically evaluated experimentally. In this

section, we briefly demonstrate the effectiveness of

our GM algorithm through simulation. First, we

demonstrate the algorithm’s ability to cluster mul-

tidimensional data, which could be produced by a

sensor network. Then, we demonstrate a possible

application using the algorithm to calculate the

average while removing erroneous data reads and

coping with node failures. This result also demon-

strates the convergence speed of the algorithm.

In both cases, we simulate a fully connected

network of 1,000 nodes. Like previous works [7,

12], we measure progress in rounds, where in each

round each node sends a clustering to one neigh-

bor. Nodes that receive clusterings from multiple

neighbors accumulate all the received clusters and

run EM once for the entire set.

More simulation results and analysis can be

found in [8].

5.2.1 Multidimensional Data Clustering

As an example input, we use data generated from a

set of three Gaussians in R2. Values are generated

according to the distribution shown in Figure 2a,

where the ellipses are equidensity contours of nor-

mal distributions. This input might describe tem-

perature readings taken by a set of sensors posi-

tioned on a fence located by the woods, and whose

right side is close to a fire outbreak. Each value

is comprised of the sensor’s location x and the

recorded temperature y. The generated input val-

ues are shown in Figure 2b. We run the GM algo-

rithm with this input until its convergence; k = 7

and q is set by floating point accuracy.

The result is shown in Figure 2c. The ellipses

are equidensity contours, and the x’s are singleton

clusters (with zero variance). This result is visibly

a usable estimation of the input data.

5.2.2 Robustness

Erroneous samples removal As an example appli-

cation, we use the algorithm to calculate a statisti-

cally robust average. We consider a sensor network

of 1,000 sensors reading values in R2. Most of these

values are sampled from a given Gaussian distribu-

tion and we wish to calculate their average. Some

values, however, are erroneous, and are unlikely to

belong to this distribution. They may be the result

of a malfunctioning sensor, or of a sensing error,

e.g., an animal sitting on an ambient temperature

sensor. These values should be removed from the

statistics.

We use 950 values from the standard normal

distribution, i.e., with a mean (0, 0) and a unit co-

variance matrix I. Fifty additional values are dis-

tributed normally with covariance matrix 0.1 · I
and mean (0, ∆), with∆ ranging between 0 and 25.

10

(a) Distribution (b) Values (c) Result

Fig. 2: Gaussian Mixture clustering example. The three Gaussians in Figure 2a were used to generate

the data set in Figure 2b. The GM algorithm produced the estimation in Figure 2c.

The distribution of all values is illustrated in Fig-

ure 3a.

For each value of ∆, the protocol is run until

convergence. We use k = 2, so that each node has

at most 2 clusters at any given time — hopefully

one for good values and one for the erroneous val-

ues.

The results are shown in Figure 3b. The dot-

ted line shows the average weight ratio belonging

to erroneous samples yet incorrectly assigned to

the good cluster. Erroneous samples are defined

to be values with probability density lower than

fmin = 5×10−5 (for the standard normal distribu-

tion). The other two lines show the error in calcu-

lating the mean, where error is the average over all

nodes of the distance between the estimated mean

and the true mean (0, 0). The solid line shows the

result of our algorithm, which removes erroneous

samples, while the dashed line shows the result of

regular average aggregation, which does not.

We see that when the erroneous samples are

close to the good values, the number of misses is

large — the proximity of the clusters makes their

separation difficult. However, due to the small dis-

tance, this mistake hardly influences the estimated

average. As the erroneous samples’ mean moves

further from the true mean, their identification be-

comes accurate and their influence is nullified.

Note that even for large ∆’s, a certain num-

ber of erroneous samples is still missed. These are

values from the good distribution, relatively close

to the main cluster, yet with probability density

lower than fmin. The protocol mistakenly consid-

ers these to be good values. Additionally, around

∆ = 5 the miss rate is dropped to its minimum,

yet the robust error does not. This is due to the

fact that bad values are located close enough to

the good mean so that their probability density

Main Cluster

Outliers

(a)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
rr

o
r

w/ Classification

w/o Classification

0 5 10 15 20 25
0

20

40

60

80

100

∆

M
is

s
e
d
 O

u
tl
ie

rs
 [
%

]

Missed Outliers [%]

(b)

Fig. 3: Effect of the separation of erroneous sam-

ples on the calculation of the average: A 1,000 val-

ues are sampled from two Gaussian distributions

(Figure 3a). As the erroneous samples’ distribution

moves away from the good one, the regular aggre-

gation error grows linearly. However, once the dis-

tance is large enough, our protocol can remove the

erroneous samples, which results in an accurate es-

timation of the mean.

is higher than fmin. The protocol mistakes those

to belong to fG and allows them to influence the

mean. That being said, for all ∆’s, the error re-

mains small, confirming the conventional wisdom

that “clustering is either easy or not interesting”.

Crash robustness and convergence speed We next

examine how crash failures impact the results ob-

tained by our protocol. Figure 4 shows that the

algorithm is indifferent to crashes of nodes. The

source data is similar to the one above, with ∆ =

10. After each round, each node crashes with prob-

ability 0.05. We show the average node estimation

error of the mean in each round. As we have seen

above, our protocol achieves a lower error then the

regular one.

11

Figure 4 also demonstrates the convergence speed

of our algorithm. With and without crashes, the

convergence speed of our algorithm is equivalent to

that of the regular average aggregation algorithm.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Round

A
ve

ra
ge

 E
rr

or

No crashes, robust
No crashes, regular
With crashes, robust
With crashes, regular

Fig. 4: The effect of crashes on convergence speed

and on the accuracy of the mean.

5.2.3 Scalability

To evaluate convergence time we measure the num-

ber of rounds until the estimations at the differ-

ent nodes are the same. The samples are taken

from a Gaussian mixture of two Gaussians of the

same weight with variance 1 at distance 5 from

each other. Since there is no scalar convergence

value, the ε − δ measure which is used, e.g., for

analysing Push-Sum, is not applicable to this sce-

nario. Instead, we use the Kolmogorov-Smirnov

(KS) statistic as the measure of difference between

two distributions3. For a range of network sizes,

we let the algorithm run until the maximal KS-

statistic between the estimations of any pair of

nodes4 falls below an arbitrary threshold of 0.01.

The results for a complete topology and a grid

topology (with samples taken independently of the

grid coordinates) are shown in figures 5a and 5b,

respectively. For each network size we show the

average convergence time with the 95% confidence

interval.

As expected, the scalability in a grid topology

is worse than in a complete topology. The trends

shown in these figures match those calculated by

Boyd et al. [3] for the Push-Sum algorithm.

3 The Kolmogorov-Smirnov statistic for two distribu-
tions is the maximal difference between their cumulative
distribution functions
4 To shorten simulation time, we calculate the statis-

tics for 4n random pairs of nodes.

6 Convergence Proof

We now prove that the generic algorithm presented

in Section 4 solves the distributed clustering prob-

lem. To prove convergence, we consider the pool

of all the clusters in the system, at all nodes and

communication channels. This pool is in fact, at

all times, a clustering of the set of all input values.

In Section 6.1 we prove that the pool of all clusters

converges, i.e., roughly speaking, it stops changing.

Then, in Section 6.2, we prove that the clusterings

in all nodes converge to the same destination.

6.1 Collective Convergence

In this section, we ignore the distributive nature

of the algorithm, and consider all the clusters in

the system (at both processes and communication

channels) at time t as if they belonged to a sin-

gle multiset pool(t). A run of the algorithm can

therefore be seen as a series of splits and merges

of clusters.

To argue about convergence, we first define the

concept of cluster descendants. Intuitively, for t1 ≤
t2, a cluster c2 ∈ pool(t2) is a descendant of a clus-

ter c1 ∈ pool(t1) if c2 is equal to c1, or is the result

of operations on c1. Formally:

Definition 5 (Cluster genealogy) We recursively

define the descendants of a cluster c ∈ pool(t).

First, at t, the descendant set is simply {c}. Next,

consider t1 > t.

Assume the t1’th operation in the execution is

splitting (and sending) (Lines 3–7) a set of clusters

{cx}lx=1 ⊂ pool(t1 − 1). This results in two new

sets of clusters, {c1x}lx=1 and {c2x}lx=1, being put in

pool(t1) instead of the original set. If a cluster cx
is a descendant of c at t1 − 1, then the clusters c1x
and c2x are descendants of c at t1.

Assume the t1’th operation is a (receipt and)

merge (Lines 8–11), then some m (1 ≤ m ≤ k) sets

of clusters {Mx}mx=1 ⊂ pool(t1−1) are merged and

are put in pool(t1) instead of the merged ones. For

every Mx, if any of its clusters is a descendant of

c at t1−1, then its merge result is a descendant of

c at t1.

By slight abuse of notation, we write v ∈ pool(t)

when v is the mixture vector of a cluster c, and

c ∈ pool(t); vector genealogy is similar to cluster

genealogy.

We now state some definitions and the lem-

mas used in the convergence proof. We prove that,

eventually, the descendants of each vector in the

12

100 150 200 250 300 350 400
0

5

10

15

20

25

30

Number of nodes

S
te

p
s
 t

o
 c

o
n

v
e

rg
e

(a)

100 150 200 250 300 350 400
0

50

100

150

200

Number of nodes

S
te

p
s
 t

o
 c

o
n

v
e

rg
e

(b)

Fig. 5: Convergence time of the distributed clustering algorithm as a function of the number of nodes

(a) in a fully connected topology and (b) in a grid topology.

pool converge (normalized) to one destination. To

do that, we investigate the angles between a vector

v and the axes unit vectors. Note that all angles

are between zero and π/2. For i ∈ {1, . . . , d}, we

call the angle between v and the i’th axis v’s i’th

reference angle and denote it by ϕvi . We denote by

ϕi,max(t) the maximal i’th reference angle over all

vectors in the pool at time t:

ϕi,max(t)
∆
= max
v∈pool(t)

ϕvi .

We now show that the i’th reference angle is

monotonically decreasing for any 1 ≤ i ≤ n. To

achieve this, we use Lemma 2 which states that

the sum of two vectors has an i’th reference angle

not larger than the larger i’th reference angle of

the two. Its proof is deferred to Appendix A.

Lemma 2 (Decreasing reference angle) The

sum of two vectors in the mixture space is a vector

with a smaller i’th reference angle than the larger

i’th reference angle of the two, for any 1 ≤ i ≤ n.

We are now ready to prove that the maximal

reference angle is monotonically decreasing:

Lemma 3 For 1 ≤ i ≤ n, ϕi,max(t) is monotoni-

cally decreasing.

Proof The pool changes in split and merge oper-

ations. In case of a split, the new vectors have

the same angles as the split one, so ϕi,max is un-

changed. In case of a merge, a number of vectors

are replaced by their sum. This can be seen as the

result of a series of steps, each of which replaces

two vectors by their sum. The sum of two vectors

is a vector with a no larger i’th reference angle

than the larger of the i’th reference angles of the

two (Lemma 2). Therefore, whenever a number of

vectors are replaced by their sum, the maximal

reference angle may either remain the same of de-

crease.

Since the maximal reference angles are bounded

from below by zero, Lemma 3 shows that they con-

verge, and we can define

ϕ̂i,max
∆
= lim
t→∞

ϕi,max(t) .

By slight abuse of terminology, we say that the

i’th reference angle of a vector v ∈ pool(t) con-

verges to ϕ, if for every ε there exists a time t′,

after which the i’th reference angles of all of v’s

descendants are in the ε neighborhood of ϕ.

We proceed to show that there exists a time af-

ter which the pool is partitioned into clusters, and

the vectors from each cluster merge only with one

another. Moreover, the descendants of all vectors

in a cluster converge to the same reference angle.

More specifically, we show that the vectors in the

pool are partitioned into clusters by the algorithm

according to the i’th reference angle their descen-

dants converge to (for any 1 ≤ i ≤ n). We further

show that, due to the quantization of weight, a

gap is formed between descendants that converge

to the maximal reference angle, and those that do

not, as those that do not remain within some min-

imum distance ε from ϕ̂i,max.

Since the i’th maximal reference angle converges

(Lemma 2), for every ε there exists a time after

which there are always vectors in the ε neighbor-

hood of ϕ̂i,max. The weight (sum of L1 norms of

vectors) in this neighborhood changes over time,

and due to the quantization of weight there ex-

ists a minimal weight qiε such that for every time

13

t there exists a time t′ > t when the weight in the

neighborhood is qiε.

The following observations immediately follow:

Observation 1 For every ε′ < ε, the relation qiε′ ≤
qiε holds. Moreover, qiε−qiε′ = l·q with l ∈ {0, 1, · · · }.

Observation 2 There exists an ε such that for

every ε′ < ε, the minimal weight in the ε′ neigh-

borhood of ϕ̂i,max is the same as for ε. That is,

qiε = qiε′ .

The next lemma shows that vectors from dif-

ferent sides of the gap are never merged. Its proof

is deferred to Appendix B.

Lemma 4 For any ε, there exists an ε′ < ε such

that if a vector vout lies outside the ε-neighborhood

of ϕ̂i,max (i.e., has a reference angle smaller than

ϕ̂i,max − ε), and a vector vin lies inside the ε′-

neighborhood (i.e., has a reference angle larger than

ϕ̂i,max − ε′), then their sum vsum lies outside the

ε′ neighborhood.

We are now ready to prove the that eventually

the vectors are partitioned.

Lemma 5 (Cluster formation) For every 1 ≤
i ≤ n, there exists a time ti and a set of vectors

Vi,max ⊂ pool(ti)

s.t. the i’th reference angles of the vectors converge

to ϕ̂i,max, and their descendants are merged only

with one another.

Proof For a given i, choose an ε such that for every

ε′ < ε the minimal weights are the same: qiε = qiε′ .

Such an ε exists according to Observation 2.

According to Lemma 4, there exists an ε̃ s.t.

the sum of a vector inside the ε̃ neighborhood and

a vector outside the ε neighborhood is outside the

ε̃ neighborhood. Choose such an ε̃.

Denote

vin,ε̃
∆
=

∑
v′∈Vin,ε̃

v′ , vout,ε
∆
=

∑
v′∈Vout,ε

v′ .

Since the Vout,ε vectors have reference angles out-

side the ε neighborhood, vout,ε is also outside the

ε neighborhood (Lemma 2). vin,ε̃ may either be in-

side the ε̃ neighborhood or outside it. If vin,ε̃ is

inside the ε̃ neighborhood, then the sum v is out-

side the ε neighborhood, due to the choice of ε̃. If

it is outside, then v is outside the ε̃ neighborhood

(Lemma 2 again).

Choose a ti s.t. ti > tε̃ and at ti the ε neigh-

borhood contains a weight qε. Since qε = qε̃, the

weight in the ε̃ neighborhood cannot be smaller

than qε̃, therefore the weight is actually in the ε̃

neighborhood.

We now show that all operations after ti keep

the descendants of the vectors that were in the ε̃

neighborhood at ti inside that neighborhood, and

never mix them with the other vector descendants,

all of which remain outside the ε neighborhood.

We prove by induction that the descendants of

the vectors that were inside the ε̃ at ti are always

in this neighborhood, and the descendants of the

vectors outside the ε neighborhood at ti are always

outside this neighborhood. The assumption holds

at ti. Assume it holds at tj . If the step is a send

operation (Lines 3–7), it does not change the an-

gle of the descendants, therefore the claim holds at

tj+1. If the step is a receive operation (Lines 8–11),

then vectors are merged. There is never a merger

of vectors from both inside the ε̃ neighborhood and

outside the ε neighborhood, since the result is out-

side the ε̃ neighborhood, leaving inside it a weight

smaller than qε̃. Due to the same reason, the sum

of vectors inside the ε̃ neighborhood is always in-

side this neighborhood. Finally, the sum of two

vectors outside the ε neighborhood is outside the

ε neighborhood (Lemma 2).

Due to the choice of ε, for every ε′ < ε̃ there

exists a time after which there are vectors of weight

qε in the ε′ neighborhood of ϕ̂i,max. According to

what was shown above, these are descendants of

the set of vectors Vin,ε̃ that are never mixed with

vectors that are not descendants thereof. This set

is therefore the required Vi,max.

We next prove that the pool of auxiliary vectors

converges:

Lemma 6 (Auxiliary collective convergence)

There exists a time t, such that the normalized

descendants of each vector in pool(t) converge to

a specific destination vector, and merge only with

descendants of vectors that converge to the same

destination.

Proof By Lemmas 3 and 5, for every 1 ≤ i ≤ n,

there exist a maximal i’th reference angle, ϕ̂i,max,

a time, ti, and a set of vectors, Vi,max ⊂ pool(ti),

s.t. the i’th reference angles of the vectors Vi,max

converge to ϕ̂i,max, and the descendants of Vi,max

are merged only with one another.

The proof continues by induction. At ti we con-

sider the vectors that are not descendants of Vi,max ∈
pool(ti). The descendants of these vectors are never

merged with the descendants of the Vi,max vectors.

Therefore, the proof applies to them with a new

14

maximal i’th reference angle. This can be applied

repeatedly, and since the weight of the vectors is

bounded from below by q, we conclude that there

exists a time t after which, for every vector v in

the pool at time t′ > t, the i’th reference of v con-

verges. Denote that time tconv,i.

Next, let tconv = max{tconv,i|1 ≤ i ≤ n}. After

tconv, for any vector in the pool, all of its reference

angles converge. Moreover, two vectors are merged

only if all of their reference angles converge to the

same destination. Therefore, at tconv, the vectors in

pool(tconv) can be partitioned into disjoint sets s.t.

the descendants of each set are merged only with

one another and their reference angles converge to

the same values. For a cluster x of vectors whose

reference angles converge to (ϕxi)ni=1, its destina-

tion in the mixture space is the normalized vector

(cosϕxi)ni=1.

We are now ready to derive the main result of

this section.

Corollary 1 The clustering series pool(t) converges.

Proof Lemma 6 shows that the pool of vectors is

eventually partitioned into clusters. This applies

to the weighted summaries pool as well, due to the

correspondence between summaries and auxiliaries

(Lemma 1).

For a cluster of clusters, define its destination

cluster as follows: Its weight is the sum of weights

of clusters in the cluster at tconv, and its summary

is that of the mixture space destination of the clus-

ter’s mixture vectors. Using requirement R1, it is

easy to see that after tconv, the clustering series

pool(∗) converges to the set of destination clusters

formed this way.

6.2 Distributed Convergence

We show that the clusterings in each node converge

to the same clustering of the input values.

Lemma 7 There exists a time tdist after which

each node holds at least one cluster from each clus-

ter of clusters.

Proof First note that after tconv, once a node has

obtained a cluster that converges to a destination

x, it will always have a cluster that converges to

this destination, since it will always have a descen-

dant of that cluster — no operation can remove it.

Consider a node i that obtains a cluster that

converges to a destination x. It eventually sends a

descendant thereof to each of its neighbors due to

the fair choice of neighbors. This can be applied

repeatedly and show that, due to the connectiv-

ity of the graph, eventually all nodes hold clusters

converging to x.

Boyd et al. [3] analyzed the convergence of weight

based average aggregation. The following lemma

can be directly derived from their results:

Lemma 8 In an infinite run of Algorithm 1, after

tdist, at every node, the relative weight of clusters

converging to a destination x converges to the rel-

ative weight of x (in the destination clustering).

We are now ready to prove the main result of

this section.

Theorem 1 Algorithm 1, with any implementa-

tion of the functions valToSummary, partition

and mergeSet that conforms to Requirements R1–

R4, solves the Distributed clustering Problem (Def-

inition 4).

Proof Corollary 1 shows that pool of all clusters

in the system converges to some clustering dest,

i.e., there exist mappings ψt from clusters in the

pool to the elements in dest, as in Definition 3.

Lemma 7 shows that there exists a time tdist, after

which each node obtains at least one cluster that

converges to each destination.

After this time, for each node, the mappings

ψt from the clusters of the node at t to the dest

clusters show convergence of the node’s clustering

to the clustering dest (of all input values). Corol-

lary 1 shows that the summaries converge to the

destinations, and Lemma 8 shows that the relative

weight of all clusters that are mapped to a certain

cluster x in dest converges to the relative weight

of x.

7 Conclusion

We address the problem of distributed data clus-

tering, where nodes obtain values and must calcu-

late a clustering thereof. We presented a generic

distributed data clustering algorithm that solves

the problem efficiently by employing adaptive in-

network compression. The algorithm is completely

generic and captures a wide range of algorithms

for various instances of the problem. We presented

a specific instance thereof — the Gaussian Mix-

ture algorithm, where clusters are maintained as

weighted Gaussians, and merging decisions are done

using the Expectation Maximization heuristic. Fi-

nally, we provided a proof that any implementation

of the algorithm converges.

15

Acknowledgements We thank Yoram Moses and Nathaniel
Azuelos for their valuable advice.

This work was partially supported by the Technion
Funds for Security Research, by the Israeli Ministry of
Industry, Trade and Labor Magnet Consortium, and by
European Union Grant No. 216366.

A Decreasing Reference Angle

We prove Lemma 2, showing that the sum of two vec-
tors results in a vector with a reference angle not larger
than those of the original vectors. The proof considers
the 3-dimensional space spanned by the two summed
vectors and the i’th axis. We show in Lemma 9 that it
is sufficient to consider the angles of the two vectors in
a 2-dimensional space they span.

Recall we denote by ‖v‖p the Lp norm of v. For
simplicity, we denote the Euclidean (L2) norm by ‖v‖ .
Denote by v1 ·v2 the scalar product of the vectors v1 and
v2. Then the angle between two vectors in the mixture
space is:

arccos

(
va · vb
‖va‖ · ‖vb‖

)
We now show that we may prove for 2-dimensions

rather than 3:

Lemma 9 (Reduction to 2 dimensions) In a 3 dimen-
sional space, let va and vb be two vectors lying on the XY

plane with angles not larger than π/2 with the X axis, and

va’s angle with the X axis is larger than that of vb. Let ve
be a vector in the XZ plane whose angle with the X axis is

smaller than π/2 and with the Z axis not larger than π/2.
Then vb’s angle with ve is smaller than that of va.

Proof Let us express the angle of the vector va on the
XY plane with ve using the angle of the vector with the
X axis, i.e., with the projection of ve on the XY plane,
as shown in Figure 6. Denote the end point of the vector
by A, and the origin by O. Construct a perpendicular
line to the X axis passing through A. Denote the point of
intersection Ẽ. From Ẽ take a perpendicular line to the
XY plane, until intersecting ve. Denote that intersection
point E. OE is the vector ei and OẼ is its projection on
the XY axis. Denote the angle AOE by ϕa and AOẼ by
ϕ̃a. Denote the angle EOẼ by ϕ̃e.

Fig. 6: The angles of the vectors va and ve.

OẼ = |v| cos ϕ̃a

OE =
OẼ

cos ϕ̃e
=
|v| cos ϕ̃a

cos ϕ̃e

EẼ = OẼ tan ϕ̃e = |v| cos ϕ̃a tan ϕ̃e

AẼ = |v| sin ϕ̃a

AE =
√
EẼ2 +AẼ2 =

√
(|v| cos ϕ̃a tan ϕ̃e)2 + (|v| sin ϕ̃a)2

Now we can use the law of cosines to obtain:

ϕa = arccos
OA2 +OE2 −AE2

2 ·OA ·OE
= arccos(cos ϕ̃a cos ϕ̃e)

(3)

Since 0 ≤ ϕ̃a ≤ π/2 and 0 ≤ ϕ̃e ≤ π/2, we see that
ϕa is monotonically increasing with ϕ̃a. We use similar
notation for the vector b, and since ϕ̃b < ϕ̃a, and both
are smaller than π/2, then:

cos ϕ̃a ≤ cos ϕ̃b

cos ϕ̃a cos ϕ̃e ≤ cos ϕ̃b cos ϕ̃e

arccos(cos ϕ̃a cos ϕ̃e) ≥ arccos(cos ϕ̃b cos ϕ̃e)

ϕa ≥ ϕb (4)

Now we return to the n dimensional mixture space.

Lemma 2 (restated) The sum of two vectors in the

mixture space is a vector with a smaller i’th reference angle

than the larger i’th reference angle of the two, for any 1 ≤
i ≤ n.

Proof Denote the two vectors va and vb, and their i’th
reference angles ϕa

i and ϕb
i , respectively. Assume with-

out loss of generality that ϕa
i ≥ ϕb

i . Denote the sum
vector by vc

It is sufficient to prove the above in the 3 dimen-
sional space spanned by va, vb and ei. Align the XYZ

axes such that va and vb lie on the XY plane and the
projection of ei on that plane is on the X axis. The vec-
tor vc lies on the XY plane, as it is a linear combination
of two vectors on the plane.

By Lemma 9, It is sufficient to show the angle of
vc with the projection of the reference vector is smaller
than the angle of va with the projection.

The angle between vc and the X axis is smaller than
va’s angle with it. The only two possible constructions
are shown in Figure 7.

B ε′ Exists

Lemma 4 (restated) For any ε, there exists an ε′ < ε

such that if a vector vout lies outside the ε-neighborhood of
ϕ̂i,max (i.e., has a reference angle smaller than ϕ̂i,max−ε),
and a vector vin lies inside the ε′-neighborhood (i.e., has

a reference angle larger than ϕ̂i,max − ε′), then their sum

vsum lies outside the ε′ neighborhood.

Proof Consider the 3 dimensional space spanned by vin,
vout and ei. Align the XYZ axes such that vin and vout

lie on the XY plane and the projection of ei on that
plane is aligned with the X axis. Denote this projection
by ẽi. vsum lies on the XY plane, as it is a linear combi-
nation of two vectors on the plane. Denote by ϕ̃i

in, ϕ̃i
out

16

(a) (b)

Fig. 7: The possible constructions of two vectors

va and vb and their sum vc, s.t. their angles with

the X axis are smaller than π/2 and va’s angle is

larger than vb’s angle.

and ϕ̃i
sum the angles between ẽi and the vectors vin, vout

and vsum, respectively. Denote by ϕ̃i
ei

the angle between
ei and its projection ẽi.

Consider some ε′ ≤ ε/2, so that the angle between
vin and vout is at least ε/2. Notice that the L2 norms
of vin and vout are bounded between q from below and√
s from above. Observing Figure 7 again, we deduce

that there is a lower bound on the difference between
the angles:

ϕ̃i
sum < ϕ̃i

in − x1 (5)

Due to the previous bound, and noting that all angles
are not larger than π/2, a constant x2 exists such that

cos ϕ̃i
in < cos ϕ̃i

sum − x2 . (6)

Since the reference angles of vin and vout are different,
at least one of them is smaller than π/2, therefore ϕ̃i

ei
<

π/2 for any such couple. Therefore, cos ϕ̃i
ei

is a bounded
size, and factoring Inequality 6 we deduce that there
exists a constant x3 such that

cos ϕ̃i
in cos ϕ̃i

ei
< cos ϕ̃i

sum cos ϕ̃i
ei
− x3 . (7)

We use the inverse cosine function with Inequality 7 to
finally deduce that there exists a constant x4 such that

arccos(cos ϕ̃i
in cos ϕ̃i

ei
) > arccos(cos ϕ̃i

sum cos ϕ̃i
ei

) + x4

(8)

ϕi
in > ϕi

sum + x4 (9)

Therefore, for a given ε, we choose

ε′ < min

{
1

2
x4,

1

2
ε

}
.

With this ε′, we obtain ϕi
sum < ϕ̂i,max − ε′, as needed.

References

1. Asada, G., Dong, M., Lin, T., Newberg, F., Pot-
tie, G., Kaiser, W., Marcy, H.: Wireless integrated
network sensors: Low power systems on a chip. In:
ESSCIRC (1998)

2. Birk, Y., Liss, L., Schuster, A., Wolff, R.: A local
algorithm for ad hoc majority voting via charge fu-
sion. In: DISC (2004)

3. Boyd, S.P., Ghosh, A., Prabhakar, B., Shah, D.:
Gossip algorithms: design, analysis and applica-
tions. In: INFOCOM (2005)

4. Datta, S., Giannella, C., Kargupta, H.: K-means
clustering over a large, dynamic network. In: SDM
(2006)

5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maxi-
mum likelihood from incomplete data via the em
algorithm. J. Royal Stat. Soc. 39(1) (1977). URL
http://www.jstor.org/stable/2984875

6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Clas-
sification, 2nd edn. Wiley-Interscience (2000)

7. Eugster, P.T., Guerraoui, R., Handurukande, S.B.,
Kouznetsov, P., Kermarrec, A.M.: Lightweight
probabilistic broadcast. In: DSN (2001)

8. Eyal, I., Keidar, I., Rom, R.: Distributed clustering
for robust aggregation in large networks. In: Hot-
Dep (2009)

9. Eyal, I., Keidar, I., Rom, R.: Distributed data clas-
sification in sensor networks. In: PODC (2010)

10. Flajolet, P., Martin, G.N.: Probabilistic counting al-
gorithms for data base applications. J. Comput.
Syst. Sci. 31(2) (1985)

11. Gurevich, M., Keidar, I.: Correctness of gossip-
based membership under message loss. SIAM J.
Comput. 39(8), 3830–3859 (2010)

12. Haridasan, M., van Renesse, R.: Gossip-based dis-
tribution estimation in peer-to-peer networks. In:
International Workshop on Peer-to-Peer Systems
(IPTPS 08) (2008)

13. Heller, J.: Catch-22. Simon & Schuster (1961)
14. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based

computation of aggregate information. In: FOCS
(2003)

15. Kowalczyk, W., Vlassis, N.A.: Newscast em. In:
NIPS (2004)

16. Macqueen, J.B.: Some methods of classification and
analysis of multivariate observations. In: Proceed-
ings of the Fifth Berkeley Symposium on Mathe-
matical Statistics and Probability (1967)

17. Mark Jelasity, M., Voulgaris, S., Guerraoui, R., Ker-
marrec, A.M., van Steen, M.: Gossip based peer
sampling. ACM Transactions on Computer Systems
25(3) (2007)

18. Nath, S., Gibbons, P.B., Seshan, S., Anderson, Z.R.:
Synopsis diffusion for robust aggregation in sensor
networks. In: SenSys (2004)

19. Sacha, J., Napper, J., Stratan, C., Pierre, G.: Re-
liable distribution estimation in decentralised envi-
ronments. Submitted for Publication (2009)

20. Salmond, D.J.: Mixture reduction algorithms for
uncertain tracking. Tech. rep., RAE Farnborough
(UK) (1988)

21. Warneke, B., Last, M., Liebowitz, B., Pister, K.:
Smart dust: communicating with a cubic-millimeter
computer. Computer 34(1) (2001). DOI
10.1109/2.895117

17

