
Distributed Data Classification in Sensor Networks

Ittay Eyal
Technion, Israel Institute of

Technology
Haifa 32000

Israel
ittay@tx.technion.ac.il

Idit Keidar
Technion, Israel Institute of

Technology
Haifa 32000

Israel
idish@ee.technion.ac.il

Raphael Rom
Technion, Israel Institute of

Technology
Haifa 32000

Israel
rom@ee.technion.ac.il

ABSTRACT
Low overhead analysis of large distributed data sets is neces-
sary for current data centers and for future sensor networks.
In such systems, each node holds some data value, e.g., a
local sensor read, and a concise picture of the global system
state needs to be obtained. In resource-constrained environ-
ments like sensor networks, this needs to be done without
collecting all the data at any location, i.e., in a distributed
manner. To this end, we define the distributed classification
problem, in which numerous interconnected nodes compute
a classification of their data, i.e., partition these values into
multiple collections, and describe each collection concisely.

We present a generic algorithm that solves the distributed
classification problem and may be implemented in various
topologies, using different classification types. For example,
the generic algorithm can be instantiated to classify values
according to distance, like the famous k-means classification
algorithm.

However, the distance criterion is often not sufficient to
provide good classification results. We present an instantia-
tion of the generic algorithm that describes the values as a
Gaussian Mixture (a set of weighted normal distributions),
and uses machine learning tools for classification decisions.
Simulations show the robustness and speed of this algorithm.

We prove that any implementation of the generic algo-
rithm converges over any connected topology, classification
criterion and collection representation, in fully asynchronous
settings.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS—Distributed Systems

General Terms
Algorithms, Theory.

Keywords
Distributed classification, Gossip.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

1. INTRODUCTION
To analyze large data sets, it is common practice to em-

ploy classification [6]: In classification, the data values are
partitioned into several collections, and each collection is de-
scribed concisely using a summary. This classical problem
in machine learning is solved using various heuristic tech-
niques, which typically base their decisions on a view of the
complete data set, stored in some central database.

However, it is sometimes necessary to perform classifica-
tion on data sets that are distributed among a large number
of nodes. For example, in a grid computing system, load
balancing can be implemented by having heavily loaded ma-
chines stop serving new requests. But this requires analysis
of the load of all machines. If, e.g., half the machines have
a load of about 10%, and the other half is 90% utilized,
the system’s state can be summarized by partitioning the
machines into two collections — lightly loaded and heavily
loaded. A machine with 60% load is associated with the
heavily loaded collection, and should stop taking new re-
quests. But, if the collection averages were instead 50% and
80%, it would have been associated with the former, i.e.,
lightly loaded, and would keep serving new requests. An-
other scenario is that of sensor networks with thousands of
nodes monitoring conditions like seismic activity or temper-
ature [1, 19].

In both of these examples, there are strict constraints
on the resources devoted to the classification mechanism.
Large-scale computation clouds allot only limited resources
to monitoring, so as not to interfere with their main opera-
tion, and sensor networks use lightweight nodes with mini-
mal hardware. These constraints render the collection of all
data at a central location infeasible, and therefore rule out
the use of centralized classification algorithms.

In this paper, we address the problem of distributed clas-
sification. To the best of our knowledge, this paper is the
first to address this problem in a general fashion. A more
detailed account of previous work appears in Section 2, and
a formal definition of the problem appears in Section 3.

A solution to distributed classification ought to summarize
data within the network. There exist distributed algorithms
that calculate scalar aggregates, such as sum and average,
of the entire data set [13, 10]. In contrast, a classification
algorithm must partition the data into collections, and sum-
marize each collection separately. In this case, it seems like
we are facing a Catch-22 [12]: Had the nodes had the sum-
maries, they would have been able to partition the values by
associating each one with the summary it fits best. Alter-
natively, if each value was labeled a collection identifier, it

would have been possible to distributively calculate the sum-
mary of each collection separately, using the aforementioned
aggregation algorithms.

In Section 4 we present a generic distributed classification
algorithm to solve this predicament. Our algorithm captures
a large family of algorithms that solve various instantiations
of the problem — with different approaches to classifica-
tion, classifying values from any multidimensional domain
and with different data distributions, using various summary
representations, and running on arbitrary connected topolo-
gies. In our algorithm, all nodes obtain a classification of
the complete data set without actually hearing all the data
values. The double bind described above is overcome by
implementing adaptive compression: A classification can be
seen as a lossy compression of the data, where a collection of
similar values can be described succinctly, whereas a concise
summary of dissimilar values loses a lot of information. Our
algorithm tries to distribute the values between the nodes.
At the beginning, it uses minimal compression, since each
node has only little information to store and send. Once a
significant amount of information is obtained, a node may
perform efficient compression, joining only similar values. A
common approach to classification, taken for example by the
k-means algorithm, summarizes each collection by its cen-
troid (average of the values in the collection) and partitions
the values based on distance. Such a solution is a possible
implementation of our generic algorithm.

Since the summary of collections as centroids is often in-
sufficient in real life, machine learning solutions typically
also take the variance into account, and summarize val-
ues as a weighted set of Gaussians (normal distributions),
which is called a Gaussian Mixture (GM) [18]. In Section 5,
we present a novel distributed classification algorithm that
employs this approach, also as an instance of our generic
algorithm. The GM algorithm makes classification deci-
sions using a popular machine learning heuristic, Expectation
Maximization (EM) [5]. We present in Section 5.3 simula-
tion results demonstrating the effectiveness of this approach.
These results show that the algorithm converges with high
speed. It can provide a rich description of multidimensional
data sets. Additionally, it can detect and remove outlying
erroneous values, thereby enabling robust calculation of the
average.

The centroids and GM algorithms are but two examples of
our generic algorithm; in all instances, nodes independently
strive to estimate the classification of the data. This raises
a question that has not been dealt with before: does this
process converge? One of the main contributions of this
paper, presented in Section 6, is a formal proof that indeed
any implementation of our generic algorithm converges, s.t.
all nodes in the system learn the same classification of the
complete data set. We prove that convergence is ensured
under a broad set of circumstances: arbitrary asynchrony,
an arbitrary connected topology, and no assumptions on the
distribution of the values.

Note that in the abstract settings of the generic algorithm,
there is no sense in defining the destination classification
the algorithm converges to precisely, or in arguing about
its quality, since these are application-specific and usually
heuristic in nature. Additionally, due to asynchrony and
lack of constraints on topology, it is also impossible to bound
the convergence time.

In summary, this paper makes the following contributions:

• It formally defines the problem of classification in a
distributed environment (Section 3).

• It provides a generic algorithm that captures a range of
algorithms solving this problem in a variety of settings
(Section 4).

• It provides a novel distributed classification algorithm
based on Gaussian Mixtures, which uses machine learn-
ing techniques to make classification decisions (Sec-
tion 5).

• It proves that the generic algorithm converges in very
broad circumstances, over any connected topology, us-
ing any classification criterion, in fully asynchronous
settings (Section 6).

2. RELATED WORK
Kempe et al. [13] and Nath et al. [16] present approaches

for calculating aggregates such as sums and means using
gossip. These approaches cannot be directly used to perform
classification, though this work draws ideas from [13], in
particular the concept of weight diffusion, and the tracing
of value weights.

In the field of machine learning, classification has been
extensively studied for centrally available data sets (see [6]
for a comprehensive survey). In this context, parallelization
is sometimes used, where multiple processes classify partial
data sets. Parallel classification differs from distributed clas-
sification in that all the data is available to all processes, or
is carefully distributed among them, and communication is
cheap.

Centralized classification solutions typically overcome the
Catch-22 issue explained in the introduction by running mul-
tiple iterations. They first estimate a solution, and then try
to improve it by re-partitioning the values to create a better
classification. K-means [15] and Expectation Maximization
[5] are examples of such algorithms. Datta et al. [4] imple-
ment the k-means algorithm distributively, whereby nodes
simulate the centralized version of the algorithm. Kowalczyk
and Vlassis [14] do the same for Gaussian Mixture estima-
tion by having the nodes distributively simulate Expectation
Maximization. These algorithms require multiple aggrega-
tion iterations, each similar in length to one complete run of
our algorithm. The message size in these algorithms is simi-
lar to ours, dependent only on the parameters of the dataset,
and not on the number of nodes. Finally, they demonstrate
convergence through simulation only, but do not provide a
convergence proof.

Haridasan and van Renesse [11] and Sacha et al. [17] es-
timate distributions in sensor networks by estimating his-
tograms. Unlike this paper, these solutions are limited to
single dimensional data values. Additionally, both use mul-
tiple iterations to improve their estimations. While these al-
gorithms are suitable for certain distributions, they are not
applicable for classification, where, for example, small sets
of distant values should not be merged with others. They
also do not prove convergence.

3. MODEL AND PROBLEM DEFINITIONS

3.1 Network Model
The system consists of a set of n nodes, connected by com-

munication channels, s.t. each node i has a set of neighbors
neighborsi ⊂ {1, · · · , n}, to which it is connected. The
channels form a static directed connected network. Com-
munication channels are asynchronous but reliable links: A
node may send messages on a link to a neighbor, and even-
tually every sent message reaches its destination. Messages
are not duplicated and no spurious messages are created.

Time is discrete, and an execution is a series of events
occurring at times t = 0, 1, 2, · · · .

3.2 The Distributed Classification Problem
At time 0, each node i takes an input vali — a value

from a domain D. In all the examples in this paper, D
is a d-dimensional Cartesian space D = Rd (with d ∈ N).
However, in general, D may be any domain.

A weighted value is a pair 〈val, α〉 ∈ D × (0, 1], where α is
a weight associated with a value val. We associate a weight
of 1 to a whole value, so, for example, 〈vali, 1/2〉 is half of
node i’s value. A set of weighted values is called a collection:

Definition 1 (Collection). A collection c is a set of
weighted values with unique values. The collection’s weight,
c.weight, is the sum of the value weights:

c.weight
∆
=

X
〈val,α〉∈c

α .

A collection may be split into two new collections, each
consisting of the same values as the original collection, but
associated with half their original weights. Similarly, multi-
ple collections may be merged to form a new one, consisting
of the union of their values, where each value is associated
with the sum of its weights in the original collections.

A collection can be concisely described by a summary in
a domain S, using a function f that maps collections to
their summaries: f : (D × (0, 1])∗ → S. The domain S is
a pseudo-metric space (like metric, except the distance be-
tween distinct points may be zero), with a distance function
dS : S2 → R.

A collection c may be partitioned into several collections,
each holding a subset of its values and summarized sepa-
rately1. The set of weighted summaries of these collections
is called a classification of c. Weighted values in c may be
split among collections, so that different collections contain
portions of a given value. The sum of weights associated
with a value val in all collections is equal to the sum of
weights associated with val in c. Formally:

Definition 2 (Classification). A Classification C of
a collection c into J collections {cj}Jj=1 is the set of weighted

summaries of these collections: C = {〈f(cj), cj .weight〉}Jj=1

s.t.

∀val :
X

〈val,α〉∈c

α =

JX
j=1

0@ X
〈val,α〉∈cj

α

1A .

A classification of a value set {valj}lj=1 is a classification of

the collection {〈valj , 1〉}lj=1.
1Note that partitioning a collection is different from splitting
it, because, when a collection is split, each part holds the
same values.

The number of collections in a classification is bounded
by a system parameter k.

A classification algorithm strives to partition the samples
into classes in a way that optimizes some criterion, for exam-
ple, minimizes some distance metric among values assigned
to the same class (as in k-means). In this paper, we are not
concerned with the nature of this criterion, and leave it up
to the application to specify the choice thereof

A classification algorithm maintains at every time t a clas-
sification classificationi(t), yielding an infinite series of clas-
sifications. For such a series, we define convergence:

Definition 3 (Classification Convergence). A se-
ries of classificationsn

{〈f(cj(t)), cj(t).weight〉}Jt
j=1

o∞
t=1

converges to a destination classification, which is a set of
l collections {destx}lx=1, if for every t ∈ 0, 1, 2, · · · there
exists a mapping ψt between the Jt collections at time t
and the l collections in the destination classification ψt :
{1, · · · , Jt} → {1, · · · , l}, such that:

1. The summaries converge to the collections to which
they are mapped by ψt:

max
j

˘
dS(f(cj(t)), f(destψt(j)))

¯ t→∞−−−→ 0 .

2. For each collection x in the destination classification,
the relative amount of weight in all collections mapped
to x converges to x’s relative weight in the classifica-
tion:

∀1 ≤ x ≤ l :

P
{j|ψt(j)=x} cj(t).weightPJt

j=1 cj(t).weight

t→∞−−−→

→ destx.weightPl
y=1 desty.weight

.

We are now ready to define the problem addressed in this
paper, where a set of nodes strive to learn a common clas-
sification of their inputs. As previous works on aggregation
in sensor networks [13, 16, 2], we define a converging prob-
lem, where nodes continuously produce outputs, and these
outputs converge to such a common classification.

Definition 4 (Distributed Classification). Each
node i takes an input vali at time 0 and maintains a classi-
fication classificationi(t) at each time t, s.t. there exists
a classification of the input values {vali}ni=1 to which the
classifications in all nodes converge.

4. GENERIC CLASSIFICATION
ALGORITHM

We now present our generic algorithm that solves the Dis-
tributed Classification Problem. At each node, the algo-
rithm builds a classification, which converges over time to
one that describes all input values of all nodes. In order to
avoid excessive bandwidth and storage consumption, the al-
gorithm maintains classifications as weighted summaries of
collections, and not the actual sets of weighted values. It
begins with a classification of its own input value. It then
periodically splits its classification into two new ones, which

Algorithm 1: Generic Distributed Data Classification Algorithm. Dashed frames show auxiliary code .

1 state
2 classificationi, initially {〈 valToSummary (vali), 1 , ei 〉}

3 Periodically do atomically
4 Choose j ∈ neighborsi (Selection has to ensure fairness)

5 old← classificationi
6 classificationi ←

S
c∈old{〈c.summary, half(c.weight) , half(c.weight)

c.weight
· c.aux 〉}

7 send (j,
S
c∈old{〈c.summary, c.weight− half(c.weight) ,

“
1− half(c.weight)

c.weight

”
· c.aux 〉})

8 Upon receipt of incoming do atomically
9 bigSet← classificationi ∪ incoming

10 M = partition (bigSet)

11 classificationi ←
S|M|
x=1

(
〈 mergeSet

“S
c∈Mx

{〈c.summary, c.weight〉}
”
,
P
c∈Mx

c.weight ,
P
c∈Mx

c.aux 〉

)

12 function half(α)
13 return the multiple of q which is closest to α/2.

have the same summaries but half the weights of the orig-
inals; it sends one classification to a neighbor, and keeps
the other. Upon receiving a classification from a neighbor,
a node merges it with its own, according to an application-
specific merge rule. The algorithm thus progresses as a series
of merge and split operations.

In Section 4.1, we present the generic distributed classifi-
cation algorithm. It is instantiated with a domain S of sum-
maries used to describe collections, and with application-
specific functions that manipulate summaries and make clas-
sification decisions. As an in-line example, we present an
algorithm that summarizes collections as their centroids —
the averages of their weighted values.

In Section 4.2, we enumerate a set of requirements on the
functions the algorithm is instantiated with. We then show
that in any instantiation of the generic algorithm with func-
tions that meet these requirements, the weighted summaries
of collections are the same as those we would have obtained,
had we applied the algorithm’s operations on the original
collections, and then summarized the results.

4.1 Algorithm
The algorithm maintains at each node an estimate of the

classification of the complete set of values. Each collection
c is stored as a weighted summary. By slight abuse of ter-
minology, we refer by the term collection to both a set of
weighted values c, and its summary–weight pair

〈c.summary, c.weight〉.

The algorithm for node i is shown in Algorithm 1 (at this
stage, we ignore the parts in dashed frames). The algorithm
is generic, and it is instantiated with S and the functions
valToSummary , partition and mergeSet . The func-
tions of the centroids example are given in Algorithm 2. The
summary domain S in this case is the same as the value do-
main, i.e., Rd.

Initially, each node produces a classification with a single
collection, based on the single value it has taken as input
(Line 2). The weight of this collection is 1, and its summary
is produced by the function valToSummary : D → S, which

encapsulates f . In the centroids example, the initial
summary is the input value (Algorithm 2, valToSummary

function).
A node occasionally sends data to a neighbor (Algorithm 1,

Lines 3–7): It first splits its classification into two new ones.
For each collection in the original classification, there is
a matching collection in each of the new ones, with the
same summary, but with approximately half the weight.
Weight is quantized, limited to multiples of a system pa-
rameter q (q, 2q, 3q, · · ·). This is done in order to avoid a
scenario where it takes infinitely many transfers of infinites-
imal weight to transfer a finite weight from one collection to
another (Zeno effect). We assume q is small enough to avoid
quantization errors: q � 1

n
. In order to respect the quanti-

zation requirement, the weight is not multiplied by exactly
0.5, but by the closest factor for which the resulting weight
is a multiple of q (function half in Algorithm 1). One of
the collections is attributed the result of half and the other
is attributed the complement, so that the sum of weights is
equal to the original, and system-wide conservation of weight
is maintained.

The node then keeps one of the new classifications, re-
placing its original one (Line 6), and sends the other to some
neighbor j (Line 7). The selection of neighbors has to ensure
fairness in the sense that in an infinite run, each neighbor
is chosen infinitely often; this can be achieved, e.g., using
round robin. Alternatively, the node may implement gossip
communication patterns: It may choose a random neigh-
bor and send data to it (push), or ask it for data (pull), or
perform a bilateral exchange (push-pull).

When a message with a neighbor’s classification reaches
the node, an event handler (Lines 8–11) is called. It first
combines the two classifications of the nodes into a set bigSet
(Line 9). Then, an application-specific function partition

divides the collections in bigSet into sets M = {Mx}|M|x=1

(Line 10). The collections in each of the sets in M are
merged into a single collection, together forming the new
classification of the node (Line 11). The summary of each
merged collection is calculated by another application-speci-

Algorithm 2: Centroid Functions

1 function valToSummary (val)
2 return val

3 function mergeSet (collections)

4 return

0B@ X
〈avg,m〉 ∈
collections

m

1CA
−1

×
X

〈avg,m〉 ∈
collections

m·avg

5 function partition (bigSet)
6 M = bigSet
7 if there are sets in M with weight q then merge

them arbitrarily with others
8 while |M | > k do
9 let Mx and My be the (different) elements of

M whose centroids are closest
10 M = M \ {Mx,My} ∪ (Mx ∪My)

11 return M

fic function, mergeSet , and its weight is the sum of weights
of the merged collections.

To conform with the restrictions of k and q, the partition
function must guarantee that (1) |M | ≤ k; and (2) no Mx in-
cludes a single collection of weight q (that is, every collection
of weight q is merged with at least one other collection).

Note that the parameter k forces lossy compression of the
data, since merged values cannot later be separated. At the
beginning, only a small number of data values is known to
the node, so it performs only a few (easy) classification de-
cisions. As the algorithm progresses, the number of values
described by the node’s classification increases. By then, it
has enough knowledge of the data set, so as to perform cor-
rect classification decisions, and achieve a high compression
ratio without losing valuable data.

In the centroids algorithm, the summary of the merged
set is the weighted average of the summaries of the merged
collections, calculated by the implementation of mergeSet

shown in Algorithm 2. Merging decisions are based on the
distance between collection centroids. Intuitively, it is best
to merge close centroids, and keep distant ones separated.
This is done greedily by partition (shown in Algorithm 2)
which repeatedly merges the closest sets, until the k bound is
reached.

4.2 Auxiliaries and Instantiation
Requirements

4.2.1 Instantiation requirements
To phrase the requirements, we describe a collection in
〈D, (0, 1]〉∗ as a vector in the Mixture Space — the space Rn
(n being the number of input values), where each coordinate
represents one input value. A collection is described in this
space as a vector whose j’th component is the weight asso-
ciated with valj in that collection. A vector in the mixture
space precisely describes a collection. We can therefore view
f as a mapping from mixture space vectors of collections to
collection summaries, i.e., f : Rn → S. From this point on,
we use f in this manner.

We define the distance function dM : (Rn)2 → R between
two vectors in the mixture space to be the angle between

them. Collections consisting of similar weighted values are
close in the mixture space (according to dM). Their sum-
maries should be close in the summary space (according to
dS), with some scaling factor ρ. Simply put — collections
consisting of similar values (i.e., close in dM) should have
similar summaries (i.e., close in dS). Formally:

R1 For any input value set,

∃ρ : ∀v1, v2 ∈ (0, 1]n : dS(f(v1), f(v2)) ≤ ρ ·dM (v1, v2).

In the centroids algorithm, we define dS to be the L2 dis-
tance between the centroids of collections. This fulfills re-
quirement R1 (a proof can be found in [9]).

In addition, operations on summaries must preserve the
relation to the collections they describe. Intuitively, this
means that maintaining summaries is similar to performing
the various operations on the value set, and then summariz-
ing the results.

R2 Values are mapped by f to their summaries:

∀i, 1 ≤ i ≤ n : valToSummary (vali) = f(ei).

R3 Summaries are oblivious to weight scaling:

∀α > 0, v ∈ (0, 1]n : f(v) = f(αv).

R4 Merging a summarized description of collections is equiv-
alent to merging these collections and then summariz-
ing the result:

mergeSet

 [
v∈V

〈{f(v), ‖v‖1〉}

!
= f

 X
v∈V

v

!
.

4.2.2 Auxiliary correctness
We show that the weighted summaries maintained by the

algorithm to describe collections that are merged and split,
indeed do so. To do that, we define an auxiliary algorithm.
This is an extension of Algorithm 1 with the auxiliary code
in the dashed frames. Collections are now triplets, contain-
ing, in addition to the summary and weight, the collection’s
mixture space vector c.aux.

At initialization (Line 2), the auxiliary vector at node i is
ei (a unit vector whose i’th component is 1). When split-
ting a collection (Lines 6–7), the vector is factored by about
1/2 (the same ratio as the weight). When merging a set of
collections, the mixture vector of the result is the sum of the
original collections’ vectors (Line 11).

The following lemma shows that, at all times, the sum-
mary maintained by the algorithm is indeed that of the col-
lection described by its mixture vector:

Lemma 1 (Auxiliary Correctness). The generic al-
gorithm, instantiated by functions satisfying R2–R4, main-
tains the following invariant: For any collection c either in a
node’s classification (c ∈ classificationi) or in transit in
a communication channel, the following two equations hold:

f(c.aux) = c.summary (1)

‖c.aux‖1 = c.weight (2)

Proof. By induction on the global states of the system.

Basis Initialization puts at time 0, at every node i the aux-
iliary vector ei, a weight of 1, and the summary val-

ToSummary of value i. Requirement R2 thus ensures
that Equation 1 holds in the initial state, and Equa-
tion 2 holds since ‖ei‖ = 1. Communication channels
are empty.

Assumption At time j − 1 the invariant holds.

Step Transition j may be either send or receive. Each of
them removes collections from the set, and produces a
collection or two. To prove that at time j the invariant
holds, we need only show that in both cases the new
collection(s) maintain the invariant.

Send We show that the mapping holds for the kept
collection ckeep. A similar proof holds for the sent
one csend. Proof of Equation 1:

ckeep.summary
line 6

=

= c.summary
induction

assumption
=

= f(c.aux)
R3
=

= f

„
half(c.weight)

c.weight
· c.aux

« auxiliary
line 6=

= f(ckeep.aux)

Proof of Equation 2:

ckeep.weight
line 6

=

= half(c.weight) =

=
half(c.weight)

c.weight
· c.weight

induction
assumption

=

=
half(c.weight)

c.weight
· ‖c.aux‖1 =

=

‚‚‚‚half(c.weight)

c.weight
· c.aux

‚‚‚‚
1

auxiliary
line 6=

= ‖ckeep.aux‖1

Receive We prove that the mapping holds for each of
the m produced collections. Each collection cx is
derived from a set Mx. Proof of Equation 1:

cx.summary
line 11

=

= mergeSet

 [
c∈Mx

{〈c.summary, c.weight〉}

!induction
assump-

tion=

= mergeSet

 [
c∈Mx

{〈f(c.aux), ‖c.aux‖1〉}

!
R4
=

= f

 X
c∈Mx

c.aux

!
auxiliary
line 11=

= f (cx.aux)

Proof of Equation 2:

cx.weight
line 11

=

=
X
c∈Mx

c.weight
induction

assumption
=

=
X
c∈Mx

‖c.aux‖1 =

=

‚‚‚‚‚ X
c∈Mx

c.aux

‚‚‚‚‚
1

auxiliary
line 11=

= ‖cx.aux‖1

5. GAUSSIAN CLASSIFICATION
When classifying value sets from a metric space, the cen-

troids solution is seldom sufficient. Consider the example
shown in Figure 1, where we need to associate a new value
with one of two existing collections. Figure 1a shows the in-
formation that the centroids algorithm has for collections A
and B, and a new value. The algorithm would associate the
new value to collection A, on account of it being closer to its
centroid. However, Figure 1b shows the set of values that
produced the two collections. We see that it is more likely
that the new value in fact belongs to collection B, since it
has a much larger variance.

The field of machine learning suggests the heuristic of
classifying data using a Gaussian Mixture (a weighted set
of normal distributions), allowing for a rich and accurate
description of multivariate data. Figure 1b illustrates the
summary employed by GM: An ellipse depicts an equiden-
sity line of the Gaussian summary of each collection. Given
these Gaussians, one can easily classify the new value cor-
rectly.

We present in Section 5.1 the GM algorithm — a new dis-
tributed classification algorithm, implementing the generic
one by representing collections as Gaussians, and classifica-
tions as Gaussian Mixtures. Contrary to the classical ma-
chine learning algorithms, ours performs the classification
without collecting the data in a central location. Nodes use
the popular machine learning tool of Expectation Maximiza-
tion to make classification decisions (Section 5.2). A taste
of the results achieved by our GM algorithm is given in Sec-
tion 5.3 via simulation. It demonstrates the classification
of multidimensional data and more. Note that due to the
heuristic nature of EM, the only possible evaluation of our
algorithm’s quality is empirical.

5.1 Gaussian Mixture Classification
The summary of a collection is the tuple 〈µ, σ〉, comprised

of the average of the weighted values in the collection µ ∈ Rd
(where D = Rd the value space), and their covariance ma-
trix σ ∈ Rd×d. Together with the weight, a collection is
described by a weighted Gaussian, and a classification con-
sists of a weighted set of Gaussians, or a Gaussian Mixture.

The mapping f of a vector is the tuple 〈µ, σ〉 of the aver-
age and covariance matrix of the collection represented by
the normalized vector. We define dS as in the centroids al-
gorithm. The function valToSummary (val) returns a collec-
tion with an average equal to val, a zero covariance matrix,
and a weight of 1. The function mergeSet takes a set

(a) Centroids and a new value (b) Gaussians and a new value

Figure 1: Associating a new value when collections are summarized (a) as centroids and (b) as Gaussians.

of weighted summaries and calculates the summary of the
merged set. A complete description of the functions and a
proof that they conform to R1–R4are deferred to the com-
plete version of this paper [9].

5.2 Expectation Maximization Partitioning
To complete the description of the GM algorithm, we now

explain the partition function. When a node has accu-
mulated more than k collections, it needs to merge some of
them. In principle, it would be best to choose collections to
merge according to Maximum Likelihood, which is defined
in this case as follows: We denote a Gaussian Mixture of x
Gaussians x-GM. Given a too large set of l ≥ k collections,
an l-GM, the algorithm tries to find the k-GM probability
distribution for which the l-GM has the maximal likelihood.
However, computing Maximum Likelihood is NP-hard. We
therefore instead follow common practice and approximate
it with the Expectation Maximization algorithm [15].

5.3 Simulation Results
Due to the heuristic nature of the Gaussian Mixture clas-

sification and of EM, the quality of their results is typically
evaluated experimentally. In this section, we briefly demon-
strate the effectiveness of our GM algorithm through sim-
ulation. First, we demonstrate the algorithm’s ability to
classify multidimensional data, which could be produced by
a sensor network. Then, we demonstrate a possible appli-
cation using the algorithm to calculate the average while
removing outliers and coping with node failures. This result
also demonstrates the convergence speed of the algorithm.

In both cases, we simulate a fully connected network of
1,000 nodes. Like previous works [7, 11], we measure progress
in rounds, where in each round each node sends a classifica-
tion to one neighbor. Nodes that receive classifications from
multiple neighbors accumulate all the received collections
and run EM once for the entire set.

More simulation results and analysis can be found in [8].

5.3.1 Multidimensional data classification
As an example input, we use data generated from a set

of three Gaussians in R2. Values are generated according to
the distribution shown in Figure 2a, where the ellipses are
equidensity contours of normal distributions. This input
might describe temperature readings taken by a set of sen-
sors positioned on a fence located by the woods, and whose
right side is close to a fire outbreak. Each value is comprised
of the sensor’s location x and the recorded temperature y.
The generated input values are shown in Figure 2b. We
run the GM algorithm with this input until its convergence;
k = 7 and q is set by floating point accuracy.

The result is shown in Figure 2c. The ellipses are equiden-
sity contours, and the x’s are singleton collections (with zero
variance). This result is visibly a usable estimation of the
input data.

(a) Distribution (b) Values (c) Result

Figure 2: Gaussian Mixture classification example. The
three Gaussians in Figure 2a were used to generate the data
set in Figure 2b. The GM algorithm produced the estima-
tion in Figure 2c.

5.3.2 Robustness

Outlier removal.
As an example application, we use the algorithm to cal-

culate a statistically robust average. We consider a sensor
network of 1,000 sensors reading values in R2. Most of these
values are sampled from a given Gaussian distribution and
we wish to calculate their average. Some values, however,
are erroneous, and are unlikely to belong to this distribu-
tion. They may be the result of a malfunctioning sensor, or
of a sensing error, e.g., an animal sitting on an ambient tem-
perature sensor. These values are called outliers and should
be removed from the statistics.

We use 950 values from the standard normal distribution,
i.e., with a mean (0, 0) and a unit covariance matrix I. Fifty
additional values are distributed normally with covariance
matrix 0.1·I and mean (0,∆), with ∆ ranging between 0 and
25. The distribution of all values is illustrated in Figure 3a.

For each value of ∆, the protocol is run until convergence.
We use k = 2, so that each node has at most 2 collections
at any given time — hopefully one for good values and one
for outliers.

The results are shown in Figure 3b. The dotted line shows
the average weight ratio belonging to outliers yet incorrectly
assigned to the good collection. Outliers are defined to be
values with probability density lower than fmin = 5 × 10−5

(for the standard normal distribution). The other two lines
show the error in calculating the mean, where error is the
average over all nodes of the distance between the estimated
mean and the true mean (0, 0). The solid line shows the

result of our algorithm, which removes outliers, while the
dashed line shows the result of regular average aggregation,
which does not.

We see that when the outliers are close to the good values,
the number of misses is large — the proximity of the collec-
tions makes their separation difficult. However, due to the
small distance, this mistake hardly influences the estimated
average. As the outliers’ mean moves further from the true
mean, the identification of outliers becomes accurate and
their influence is nullified.

Main Cluster

Outliers

(a)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
rr

or

Robust Error
Regular Error

0 5 10 15 20 25
0

20

40

60

80

100

∆
M

is
se

d
O

ut
lie

rs
 [%

]

Missed Outliers [%]

(b)

Figure 3: Effect of the separation of outliers on the calcu-
lation of the average: A 1,000 values are sampled from two
Gaussian distributions (Figure 3a). As the outliers’ distribu-
tion moves away from the good one, the regular aggregation
error grows linearly. However, once the distance is large
enough, our protocol can remove the outliers, which results
in an accurate estimation of the mean.

Note that even for large ∆’s, a certain number of outliers
is still missed. These are values from the good distribution,
relatively close to the main collection, yet with probability
density lower than fmin. The protocol mistakingly consid-
ers these to be good values. Additionally, around ∆ = 5
the miss rate is dropped to its minimum, yet the robust er-
ror does not. This is due to the fact that bad values are
located close enough to the good mean so that their prob-
ability density is higher than fmin. The protocol mistakes
those to belong to fG and allows them to influence the mean.
That being said, for all ∆’s, the error remains small, con-
firming the conventional wisdom that “classification is either
easy or not interesting”.

Crash robustness and convergence speed.
We next examine how crash failures impact the results

obtained by our protocol. Figure 4 shows that the outlier
removal mechanism is indifferent to crashes of nodes. The
source data is similar to the one above, with ∆ = 10. After
each round, each node crashes with probability 0.05. We
show the average node estimation error of the mean in each
round. As we have seen above, our protocol achieves a lower
error then the regular one.

Figure 4 also demonstrates the convergence speed of our
algorithm. With and without crashes, the convergence speed
of our algorithm is equivalent to that of the regular average
aggregation algorithm.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Round

A
ve

ra
ge

 E
rr

or

No crashes, robust
No crashes, regular
With crashes, robust
With crashes, regular

Figure 4: The effect of crashes on convergence speed and on
the accuracy of the mean.

6. CONVERGENCE PROOF
We now prove that the generic algorithm presented in Sec-

tion 4 solves the distributed classification problem. To prove
convergence, we consider a pool of all the collections in the
system, including all nodes and communication channels.
This pool is in fact, at all times, a classification of the set of
all input values. In Section 6.1 we prove that the pool of all
collections converges, i.e., roughly speaking, it stops chang-
ing. Then, in Section 6.2, we prove that the classifications
in all nodes converge to the same destination.

6.1 Collective Convergence
In this section, we ignore the distributive nature of the

algorithm, and consider all the collections in the system (at
both processes and communication channels) at time t as if
they belonged to a single multiset pool(t). A run of the algo-
rithm can therefore be seen as a series of splits and merges
of collections.

To argue about convergence, we first define the concept of
collection descendants: for t1 ≤ t2, a collection c2 ∈ pool(t2)
is a descendant of a collection c1 ∈ pool(t1) if c2 is equal to
c1, or the result of operations on c1. Formally:

Definition 5 (Collection Genealogy). We recur-
sively define the descendants desc(A, ∗) of a collection set
A ∈ pool(t). First, at t, the descendants are simply A. Next,
consider t′ > t.

Assume the t′ operation in the execution is splitting (and
sending) (Lines 3–7) a set of collections {cx}lx=1 ⊂ pool(t′−
1). This results in two new sets of collections, {c1x}lx=1 and
{c2x}lx=1, being put in pool(t′) instead of the original set. If
a collection cx is a descendant at t′ − 1, then the collections
c1x and c2x are descendants at t′.

Assume the t′ operation is a (receipt and) merge (Lines 8–
11), then some m (1 ≤ m ≤ k) sets of collections {Mx}mx=1

are merged and are put in pool(t′) instead of the merged ones.
For every Mx, if any of its collections is a descendant at
t′ − 1, then its merge result is a descendant at t′.

Formally:

desc(A, t′)
∆
=

∆
=

8>>>>>>><>>>>>>>:

A t′ = t

desc(A, t′ − 1) \ {cx}lx=1 ∪Sl
x=1{{c

1
x, c

2
x}|cx ∈ desc(A, t′ − 1)}

t′ > t, opera-
tion t’ is split

desc(A, t′ − 1) \
Sm
x=1 Mx ∪Sm

x=1{cx|Mx ∩ desc(A, t′ − 1) 6= φ}
t′ > t, op. t’
is merge

By slight abuse of notation, we write v ∈ pool(t) when v is
the mixture vector of a collection c, and c ∈ pool(t); vector
genealogy is similar to collection genealogy.

We now state some definitions and the lemmas used in the
convergence proof. The proofs of some lemmas are deferred
to the complete version of this paper [9]. We prove that,
eventually, the descendants of each vector converge (nor-
malized) to a certain destination. To do that, we investigate
the angle between a vector v and the i’th axis unit vector,
which we call the i’th reference angle and denote ϕvi . We
denote by ϕi,max(t) the maximal i’th reference angle over all
vectors in the pool at time t:

ϕi,max(t)
∆
= max
v∈pool(t)

ϕvi .

Lemma 2. For 1 ≤ i ≤ n, ϕi,max(t) is monotonically de-
creasing.

Since the maximal reference angles are bounded from below
by zero, Lemma 2 shows that they converge, and we can
define

ϕ̂i,max
∆
= lim
t→∞

ϕi,max(t) .

By slight abuse of terminology, we say that the i’th refer-
ence angle of a vector v ∈ pool(t) converges to ϕ, if for every
ε there exists a time t′, after which the i’th reference angle
of all of v’s descendants is in the ε neighborhood of ϕ.

The next lemma shows that there exists a time after which
the pool is partitioned into classes, and the vectors from each
class merge only with one another. Moreover, the descen-
dants of all vectors in a class converge to the same reference
angle.

Lemma 3 (Class Formation). For every 1 ≤ i ≤ n,
there exists a time ti,max and a set of vectors

Vi,max ⊂ pool(ti,max)

s.t. the i’th reference angles of the vectors converge to ϕ̂i,max,
and their descendants are merged only with one another.

We next prove that the pool of auxiliary vectors converges:

Lemma 4 (Auxiliary Collective Convergence).
The set of auxiliary variables in the system converges, i.e.,
there exists a time t, s.t. the normalized descendants of each
vector in pool(t) converge to a specific destination vector,
and merge only with descendants of vectors that converge to
the same destination.

Proof. By Lemmas 2 and 3, for every 1 ≤ i ≤ n, there
exist a maximal i’th reference angle, ϕ̂i,max, a time, ti,max,
and a set of vectors, Vi,max ⊂ pool(ti,max), s.t. the i’th refer-
ence angles of the vectors Vi,max converge to ϕ̂i,max, and the
descendants of Vi,max are merged only with one another.

The proof continues by induction. At ti,max we consider
the vectors that are not in desc(Vi,max, ti,max). The descen-
dants of these vectors are never merged with the descendants
of the Vi,max vectors. Therefore, the proof applies to them
with a new maximal i’th reference angle. This can be applied
repeatedly, and since the weight of the vectors is bounded
from below by q, we conclude that there exists a time t after
which, for every vector v in the pool at time t′ > t, the i’th
reference of v converges. Denote that time tconv,i.

Next, let tconv = max{tconv,i|1 ≤ i ≤ n}. After tconv, for
any vector in the pool, all of its reference angles converge.
Moreover, two vectors are merged only if all of their refer-
ence angles converge to the same destination. Therefore, at
tconv, the vectors in pool(tconv) can be partitioned into dis-
joint sets s.t. the descendants of each set are merged only
with one another and their reference angles converge to the
same values. For a class x of vectors whose reference angles
converge to (ϕxi)ni=1, its destination in the mixture space is
the normalized vector (cosϕxi)ni=1.

We are now ready to derive the main result of this section.

Corollary 1. The classification series pool(t) converges.

Proof. Lemma 4 shows that the pool of vectors is even-
tually partitioned into classes. This applies to the weighted
summaries pool as well, due to the correspondence between
summaries and auxiliaries (Lemma 1).

For a class of collections, define its destination collection
as follows: Its weight is the sum of weights of collections
in the class at tconv, and its summary is that of the mix-
ture space destination of the class’s mixture vectors. Using
requirement R1, it is easy to see that after tconv, the clas-
sification series pool(∗) converges to the set of destination
collections formed this way.

6.2 Distributed Convergence
We show that the classifications in each node converge to

the same classification of the input values.

Lemma 5. There exists a time tdist after which each node
holds at least one collection from each class.

Proof. First note that after tconv, once a node has ob-
tained a collection that converges to a destination x, it will
always have a collection that converges to this destination,
since it will always have a descendant of that collection —
no operation can remove it.

Consider a node i that obtains a collection that converges
to a destination x. It eventually sends a descendant thereof
to each of its neighbors due to the fair choice of neighbors.
This can be applied repeatedly and show that, due to the
connectivity of the graph, eventually all nodes hold collec-
tions converging to x.

Boyd et al. [3] analyzed the convergence of weight based
average aggregation. The following lemma can be directly
derived from their results:

Lemma 6. In an infinite run of Algorithm 1, after tdist,
at every node, the relative weight of collections converging
to a destination x converges to the relative weight of x (in
the destination classification).

We are now ready to prove the main result of this section.

Theorem 1. Algorithm 1, with any implementation of
the functions valToSummary , partition and mergeSet

that conforms to Requirements R1–R4, solves the Distributed
Classification Problem (Definition 4).

Proof. Corollary 1 shows that pool of all collections in
the system converges to some classification dest, i.e., there
exists mappings ψt from collections in the pool to the ele-
ments in dest, as in Definition 3. Lemma 5 shows that there
exists a time tdist, after which each node obtains at least one
collection that converges to each destination.

After this time, for each node, the mappings ψt from the
collections of the node at t to the dest collections show con-
vergence of the node’s classification to the classification dest
(of all input values). Corollary 1 shows that the summaries
converge to the destinations, and Lemma 6 shows that the
relative weight of all collections that are mapped to a certain
collection x in dest converges to the relative weight of x.

7. CONCLUSION
We presented the problem of distributed data classifica-

tion, where nodes obtain values and must calculate a clas-
sification thereof. We presented a generic distributed data
classification algorithm that solves the problem efficiently by
employing adaptive in-network compression. The algorithm
is completely generic and captures a wide range of algo-
rithms for various instances of the problem. We presented
a specific instance thereof — the Gaussian Mixture algo-
rithm, where collections are maintained as weighted Gaus-
sians, and merging decisions are done using the Expectation
Maximization heuristic. Finally, we provided a proof that
any implementation of the algorithm converges.

Acknowledgements
We thank Yoram Moses and Nathaniel Azuelos for their
valuable advice.

This work was partially supported by the Technion Funds
for Security Research, by the Israeli Ministry of Industry,
Trade and Labor Magnet Consortium, and by European
Union Grant No. 216366.

8. REFERENCES
[1] G. Asada, M. Dong, T. Lin, F. Newberg, G. Pottie,

W. Kaiser, and H. Marcy. Wireless integrated network
sensors: Low power systems on a chip. In ESSCIRC,
pages 9–16, sep 1998.

[2] Y. Birk, L. Liss, A. Schuster, and R. Wolff. A local
algorithm for ad hoc majority voting via charge
fusion. In DISC, pages 275–289, 2004.

[3] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Gossip algorithms: design, analysis and applications.
In INFOCOM, pages 1653–1664, 2005.

[4] S. Datta, C. Giannella, and H. Kargupta. K-means
clustering over a large, dynamic network. In SDM,
2006.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em
algorithm. J. Royal Stat. Soc., 39(1):1–38, 1977.

[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley-Interscience, 2nd edition, 2000.

[7] P. T. Eugster, R. Guerraoui, S. B. Handurukande,
P. Kouznetsov, and A.-M. Kermarrec. Lightweight
probabilistic broadcast. In DSN, pages 443–452, 2001.

[8] I. Eyal, I. Keidar, and R. Rom. Distributed clustering
for robust aggregation in large networks. In HotDep,
2009.

[9] I. Eyal, I. Keidar, and R. Rom. Distributed data
classification in sensor networks. Technical Report
CCIT 762, 2010.

[10] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput.
Syst. Sci., 31(2):182–209, 1985.

[11] M. Haridasan and R. van Renesse. Gossip-based
distribution estimation in peer-to-peer networks. In
International Workshop on Peer-to-Peer Systems
(IPTPS 08), February 2008.

[12] J. Heller. Catch-22. Simon & Schuster, 1961.

[13] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In FOCS,
pages 482–491, 2003.

[14] W. Kowalczyk and N. A. Vlassis. Newscast em. In
NIPS, 2004.

[15] J. B. Macqueen. Some methods of classification and
analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, pages 281–297, 1967.

[16] S. Nath, P. B. Gibbons, S. Seshan, and Z. R.
Anderson. Synopsis diffusion for robust aggregation in
sensor networks. In SenSys, pages 250–262, 2004.

[17] J. Sacha, J. Napper, C. Stratan, and G. Pierre.
Reliable distribution estimation in decentralised
environments. Submitted for Publication, 2009.

[18] D. J. Salmond. Mixture reduction algorithms for
uncertain tracking. Technical report, RAE
Farnborough (UK), January 1988.

[19] B. Warneke, M. Last, B. Liebowitz, and K. Pister.
Smart dust: communicating with a cubic-millimeter
computer. Computer, 34(1):44–51, Jan 2001.

