
Q-Cut - Dynamic Discovery of Sub-Goals in
Reinforcement Learning

Ishai Menache, Shie Mannor, and Nahum Shimkin

Department of Electrical Engineering
Technion, Israel Institute of Technology

Haifa 32000, Israel
{imenache,shie}@tx.technion.ac.il

shimkin@ee.technion.ac.il

Abstract. We present the Q-Cut algorithm, a graph theoretic approach
for automatic detection of sub-goals in a dynamic environment, which
is used for acceleration of the Q-Learning algorithm. The learning agent
creates an on-line map of the process history, and uses an efficient Max-
Flow/Min-Cut algorithm for identifying bottlenecks. The policies for
reaching bottlenecks are separately learned and added to the model in a
form of options (macro-actions). We then extend the basic Q-Cut algo-
rithm to the Segmented Q-Cut algorithm, which uses previously identified
bottlenecks for state space partitioning, necessary for finding additional
bottlenecks in complex environments. Experiments show significant per-
formance improvements, particulary in the initial learning phase.

1 Introduction

Reinforcement Learning (RL) is a promising approach for building autonomous
agents that improve their performance with experience. A fundamental problem
of its standard algorithms, is that although many tasks can asymptotically be
learned by adopting the Markov Decision Process (MDP) framework and using
Reinforcement Learning techniques, in practice they are not solvable in rea-
sonable time. “Difficult” tasks are usually characterized by either a very large
state space, or a lack of immediate reinforcement signals. There are two prin-
cipal approaches for addressing these problems: The first approach is to apply
generalization techniques, which involve low order approximations of the value
function (e.g., [14], [16]). The second approach is through task decomposition,
using hierarchical or related structures. The main idea of hierarchical Reinforce-
ment Learning methods (e.g., [4], [6], [18]) is to decompose the learning task
into simpler subtasks, which is a natural procedure also performed by humans.
By doing so, the overall task is “better understood” and learning is acceler-
ated. A major challenge as learning progresses is to be able to automatically
define the required decomposition, as in many cases the decomposition is not
straightforward and cannot be obtained a-priori.

One common way of defining subtasks (statically or dynamically) is in the
state-space context (e.g., [7], [11], [15]): The learning agent identifies landmark

states, which are worthwhile reaching, and learns sub-policies for that purpose.
This approach relies on the understanding that the path towards achieving a
complex goal is through intermediate stages which are represented by states. If
those states are discovered, and the policy to reach them is separately learned,
the overall learning procedure may become simpler and faster.

The purpose of this work is to dynamically find the target states which may
usefully serve as subgoals. One approach is to choose states which have a non-
typical reinforcement (a high reinforcement gradient, for example, as in [7]). This
approach is not applicable in domains which suffer from delayed reinforcement
(for example, a maze with ten rooms and one goal). Another approach is to
choose states based on their frequency of appearance (see [7] and also [11]). The
rule of thumb here is that states that have been visited often should be considered
as the target of subtasks, as the agent will probably repeatedly visit them in the
future, and may save time having local policies for reaching those states. The
latter approach is refined in [11] by adding the success condition to the frequency
measure: States will serve as subgoals if they are visited frequently enough on
successful but not on unsuccessful paths. These states are defined as bottlenecks
in the state space, a term that we will adopt. A problem with frequency based
solutions is that the agent needs excessive exploration of the environment in
order to distinguish between bottlenecks and “regular” states, so that options
are defined (and learned) at relatively advanced stages of the learning process.

The algorithm that will be presented here is based on considering bottlenecks
as the “border states” of strongly connected areas. If an agent knows how to reach
the bottleneck states, and uses this ability, its search in the state space will be
more efficient. The common characteristic of the methods that were presented
above is that the criterion of choosing a state as a bottleneck is local, i.e., based
on certain qualities of the state itself. We shall look for a global criterion that
chooses bottlenecks by viewing all state transitions. The Q-Cut algorithm, which
will be shortly presented, is based on saving the MDP’s history in a graph
structure (where nodes represent states and arcs represent state transitions)
and performing a Max-Flow/Min-Cut algorithm on that graph in order to find
bottleneck states, which will eventually serve as the target of sub-goals.

In order to understand the use of the Max-Flow/Min-Cut algorithm (see [1])
in the context of Reinforcement Learning, let us first briefly review the graph
theoretic problem it solves. Consider a capacitated directed network G = (N, A)
(N is the set of nodes and A is the set of arcs) with a non negative capacity cij

associated with each arc (i, j) ∈ A. The Max-Flow problem is to determine the
maximum amount of flow that can be sent from a source node s ∈ N to a sink
node t ∈ N , without exceeding the capacity of any arc. An s-t cut is a set of arcs,
the deletion of which disconnects the network into two parts, Ns and Nt, where
s ∈ Ns and t ∈ Nt. The problem of finding the s-t cut with the minimal capacity
among all s-t cuts is called the s-t Min-Cut problem. It is well known that the
s-t Min-Cut problem and the Max-Flow problem are equivalent ([1]). There are
quite a few algorithms for solving the Max-Flow problem. The running time is in
general a low polynomial in the number of nodes and arcs, making the algorithms

an attractive choice for solving a variety of optimization problems (see [1] for
further details on the Max-Flow algorithms and associated applications), and
recently also for enabling efficient use of unlabeled data in classification tasks
(see [3]). The specific method which we will use in our experiments is Preflow-
Push (described in [8]), which has a time complexity of O(n3), where n is the
number of nodes.

G

G

Fig. 1. Simple two room mazes. Goal is marked as “G”. After reaching the goal, the
agent is positioned somewhere in the left room.

We shall use the Min-Cut procedure for identifying bottlenecks. This process
reflects a natural and intuitive characterization of a bottleneck: If we view an
MDP as a flow problem, where nodes are states and arcs are state transitions,
bottlenecks represent “accumulation” nodes, where many paths coincide. Those
nodes separate different parts of the state space, and therefore should be defined
as intermediate goal states to support the transition between loosely connected
areas. In addition, using a global criterion enables finding the best bottlenecks
considerably faster. In order to explain this claim, consider the upper maze of
Figure 1. Assume the agent always starts in the left room, and Goal is located in
the right room. If the agent visited the wide passage between the rooms, the Min-
Cut algorithm will identify it as a bottleneck, even if the number of visits is low in
comparison to frequently visited states of the left room. In addition, consider the
lower maze of Figure 1. If, for example, the agent reached the goal a significant
number of times and used one of the passages in most trials, the cut will still
choose both passages as bottlenecks. In both cases, the efficient discovery of
bottlenecks is used for forming new options, accelerating the learning procedure.

After introducing the basic algorithm we suggest to use the cut procedure
for recursive decomposition of the state space. By dividing the state space to
segments the overall learning task is simplified. Each of these segments is smaller
than the complete state space and may be considered separately.

The paper is organized as follows: In Section 2 we describe the Reinforcement
Learning setup, extended to use options. Section 3 presents the Q-Cut algorithm.
In Section 4 we extend the basic algorithm to the Segmented Q-Cut algorithm.
Some concluding remarks are drawn in Section 5.

2 Reinforcement Learning with Options

We consider a discrete time MDP with a finite number of states S and a finite
number of actions A. At each time step t, the learning agent is in some state
st ∈ S and interacts with the (unknown) environment by choosing an action at

from the set of available actions at state st, A(st), causing a state transition to
st+1 ∈ S. The environment credits the agent for that transition through a scalar
reward rt. The goal of the agent is to find a mapping from states to actions,
called a policy, which maximizes the expected discounted reward over time,
E{∑∞

t=0 γtrt}, where γ < 1 is the discount factor. A commonly used algorithm
in RL is Q-Learning ([5]). The basic idea behind Q-Learning is to update the
Q-function at every time epoch. This function maps every state action pair
to the expected reward for taking this action at that state, and following an
optimal strategy for all other future states. It turns out that the learned Q-
function directly approximates the optimal action-value function (asymptotical
convergence is guaranteed under technical conditions, see [2]), without the need
to explicitly learn a model of the environment. The formula for the update is:

Q(st, at) := Q(st, at) + α(n(t, st, at))
(

rt + γ max
a∈A(st+1)

Q(st+1, a)−Q(st, at)
)

where α(n(t, st, at)) is the learning rate function which depends on n(t, st, at),
the number of appearances of (st, at) until time t.

We now recall the extension of Q-Learning to Macro-Q-Learning (or learn-
ing with options, see [12] and [15]). Following an option means that the agent
executes a sequence of (primitive) actions (governed by a “local” policy) until a
termination condition is met. Formally, an option is defined by a triplet 〈I, π, β〉,
where: I is the options input set, i.e., all the states from which the option can be
initiated; π is the option’s policy, mapping states belonging to I to actions; β is
the termination condition over states (β(s) denotes the termination probability
of the option when reaching state s). When the agent is following an option,
it must follow it until it terminates. Otherwise it can choose either a primitive
action or initiate an option, if available (we shall use the notation A′(st) for de-
noting all choices, i.e., the collection of primitives and options available at state
st). Macro-Q-Learning [12] supplies a value for every combination of state and
choice. The update rule for an option ot, initiated at state st, becomes:

Q(st, ot) := Q(st, ot) + α(n(t, st, ot))(γk max
a′∈A′(st+k)

Q(st+k, a′)

−Q(st, ot) + rt + γrt+1 + . . . γk−1rt+k−1)

where k is the actual duration of ot. The update rule for a primitive action
remains the same as in standard Q-Learning.

3 The Q-Cut Algorithm

The basic idea of the Q-Cut algorithm is to choose two states, s, t, which will
serve as source and target nodes for the Max-Flow/Min-Cut algorithm, and
perform the cut. If the cut is “good” (we shall define a criterion for its quality),
the agent establishes new options for reaching the discovered bottlenecks. The
whole procedure is outlined in Figure 3. We add the details for the steps of the
algorithm below.

Repeat:

– Interact with environment and learn using Macro-Q Learning
– Save state transition history
– If activating cut conditions are met, choose s, t ∈ S

perform Cut Procedure(s,t)

Fig. 2. Outline of the Q-Cut Algorithm.

Cut Procedure(s,t)

– Translate state transition history to a graph representation
– Find a Minimum Cut partition [Ns, Nt] between nodes s and t
– If the cut’s quality is “good”

Learn the option for reaching new derived bottlenecks
from every state in Ns,using Experience-Replay

Fig. 3. The Cut Procedure.

Choosing s and t: The procedure for choosing s and t is task dependent.
Generally, it is based on some distance metric between states (e.g., states that
are separated in time or in some state space metric), or on the identification
of states with special significance (such as the start state or the goal state).
In some cases, choice of s and t is more apparent. Consider, for example,
the mazes of Figure 1, under the following experiment: The agent tries to
reach the goal in the right room, and when the goal is reached, the agent is
transferred back to somewhere in the left room. A natural selection of s and
t in this case, is to choose s as one of the states in the “returning area” and
t as the goal. The reason for this choice is that the agent is interested in the
bottlenecks along its path from start to goal.
Activating cut conditions: The agent may decide to perform a cut proce-
dure at a constant rate, which is significantly lower than the actual experi-
ence frequency (in order to allow a meaningful change of the map of process

history between sequential cuts), and might depend on the available compu-
tational resources. Another alternative is to perform a cut when good source
and target candidates are found according to the procedure for choosing s
and t.
Building the graph from history: Each visited state becomes a node
in the graph. Each observed transition i → j (i, j ∈ S), is translated to
an arc (i, j) in the graph. We still need to determine the capacity of the
arc. Few alternatives are possible. First, capacity may be frequency based,
which means setting the capacity of (i, j) to n(i → j), where n(i → j)
stands for the number of transitions from i to j. Second, the capacity may
be fixed, i.e., assigning a constant capacity (say of 1) to every transition, no
matter how many times it occurred. The problem with the frequency-based
definition is that we strengthen the capacity of frequently visited areas (e.g.,
early transitions near the source state, where the policy is actually random)
over rarely visited areas (e.g., states that are visited just before performing
the cut), thus making it more difficult to find the true bottlenecks. Fixed
capacity is lacking in the sense that the same significance is attached to all
transitions from some state i ∈ S, a deviation from the actual dynamics
the agent faces. Our choice is a compromise between the two alternatives.
The capacity is based on the relative frequency, i.e., the capacity of an arc
(i, j) is set to the ratio n(i→j)

n(i) , where n(i) is the number of visits at state
i. Experiments show that capacity based on relative frequency achieves the
best performance in terms of bottleneck identification.
Determining the cut’s quality: The idea behind the design of the quality
factor is that we are interested only in “significant” s-t cuts, meaning those
with small number of arcs (forming a small number of bottlenecks) on the one
hand, and enough states both in Ns and Nt (s ∈ Ns and t ∈ Nt) on the other
hand. Let |Ns| and |Nt| be the number of states in Ns and Nt, respectively.
If |Ns| is too small, we need not bother defining an option from a small set.
On the other hand, if |Nt| is small the meaning is that the area of states
that we wish to enable easy access to will not contribute much to the overall
exploration effort. In summary, we look for a small number of bottleneck
states, separating significant balanced areas in the state space. Based on
the above analysis, the quality factor of a cut is the ratiocut bipartitioning
metric (See [9] and [17]). We define Q[Ns, Nt] , |Ns||Nt|

A(Ns,Nt)
where A(Ns, Nt)

is the number of arcs connecting both sets, and consider cuts whose quality
factor is above a predetermined threshold. The threshold may be determined
beforehand based on appropriate analysis of the problem domain. It is also
possible to change it in the course of learning (e.g., lower it if no “significant”
cuts were found).
Learning an option: If the cut’s quality is “good”, then the minimal cut
(i.e., a set of arcs) is translated into a set of bottleneck states by picking
state j for each min-cut arc (i, j), with j ∈ Nt. After bottlenecks have
been identified, the local policy for reaching each bottleneck is learned by
an Experience Replay [10] procedure. Dynamic programming iterations are

performed on all states belonging to Ns, using the recorded interaction with
the environment. The bottleneck itself is given an artificial positive reward
for the policy learning sake.

3.1 Experimental Results

We illustrate the Q-Cut algorithm on the two simple grids of Figure 1. The
experiment conditions are the same as in [11]: The agent starts each trial at a
random location in the left room. It succeeds in moving in the chosen direction
with probability 0.9. It receives a reward of 1 at the goal, and zero otherwise.
The agent uses an ε-greedy policy, where ε = 0.1. The learning rate was also set
to 0.1, and the discount factor γ to 0.9. A Cut Procedure was executed every
1000 steps, choosing t as the goal state and s as a random state in the left room.
If the cut’s quality was good according to the above mentioned criterion, a new
option was learned and added to the agent’s set of choices. The performance of
the Q-Cut algorithm is depicted in Figure 4, which presents a 50-runs average
of the number of steps to goal as a function of the episode. Comparing Q-
Cut to standard Q-Learning (using the same learning parameters) emphasizes
the strength of our algorithm: Options, due to bottleneck discovery are defined
extremely fast, leading to noticeable performance improvement within 2 to 3
episodes. In comparison, the frequency based solution of [11] that was applied
to the upper maze of Figure 1 yielded significant improvement within about
25 episodes. As a consequence, the goal is found a lot faster than by other
algorithms, with near-optimal performance reached within 20 to 30 episodes.

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600
One−passage maze

Episode

S
te

p
s
 t

o
 G

o
a

l

Q−Learning
Q−Cut

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200
Two−passage maze

Episode

S
te

p
s
 t

o
 G

o
a

l

Q−Learning
Q−Cut

Fig. 4. Performance curves for Q-Cut compared to standard Q-Learning. The left
graph presents simulation results for the upper maze of Fig. 1, the right graph presents
simulation results for the lower maze of the same figure. The graphs depict the number
of steps to goal vs. episode number (averaged over 50 runs).

Q-Learning Q-Cut

G G

G G

Fig. 5. State frequency maps for both mazes of Fig. 1 (upper maps describe the upper
maze of Fig. 1). All measurements are averaged over 50 runs, and were taken each
time after 25 episodes. Bright areas describe more frequently visited states. We can
see that in both mazes, the Q-Learning agent suffers from exhaustive exploration of
the left room. On the other hand, the Q-Cut agent learns the right path towards the
bottlenecks, and therefore the bottlenecks themselves are the most visited states of the
environment.

In order to clarify the inner working of Q-Cut, we added state frequency maps
for both mazes, under Q-Cut and also Q-Learning. Figure 5 presents “snapshots”
taken after 25 episodes. Bright areas represent states which were visited often
during the course of learning, while darker areas stand for less frequently visited
states. We conclude from the Q-Learning maps that the Q-Learning agent spent
major efforts in exploring the left room. On the other hand, having discovered
appropriate options, the Q-Cut agent wandered less in the left room, and used
shorter paths for the passages of the maze (which have the brightest color in
the Q-Cut frequency graphs). Being able to efficiently reach the right room, the
global policy for reaching the goal is learned in less time, significantly improving
performance.

4 The Segmented Q-Cut Algorithm

The Q-Cut algorithm works well when one bottleneck sequentially leads to the
other (for illustration, imagine a wide hallway of sequential rooms, where adja-
cent rooms are separated by one or more doors). In general, if cuts are always
performed on the entire set of visited states (which grows with time), chances of
finding good bottlenecks decrease. Consider the more complex maze of Fig. 6.
To solve the above mentioned problem, we may divide the state space into dif-
ferent segments, using bottlenecks that were already found. If, for example, the
agent has found Bottlenecks 2 and 3, it may use them to divide the state space
into two segments, where the first contains states from the two upper left rooms
and the second contains all other states. In that way, cuts may be performed
separately on each segment, improving the chances of locating other bottlenecks
(Bottleneck 1, for example). The above idea is the basis for the Segmented Q-

S

G

1
 2

3

5

4
S

6

Fig. 6. A 6-room maze. In each episode the agent starts at a random location in the
upper left room. Bottleneck states are numbered for illustration reasons.

Cut algorithm. The agent uses the discovered bottlenecks (each of which may
consist of a collection of states) as a segmentation tool. We use here a “divide
and conquer” approach: Work on smaller segments of states in order to find ad-
ditional bottlenecks and define corresponding new options. The pseudo-code for
the algorithm is presented in Figure 7. Instead of working with one set of states,
Segmented Q-Cut performs cuts on the segments that were created, based on
previously found bottlenecks. When a good quality cut is found (using the same
criterion as in Section 3), the segment is partitioned into two new segments. New
cuts will be performed in each of these segments separately. Before performing
cuts, each segment is extended to include newly visited states, belonging to the
segment. The extension is achieved by a graph connectivity test (a simple O(nm)
search in the graph, where n is the number of states and m is the number of
arcs representing state transitions), where arcs that belong to a certain valid cut

Initialize:

– Create an empty segment N0

– Include starting state s0 in segment N0

– Include starting state s0 in S(N0)

Repeat:

– Interact with environment/Learn using Macro-Q Learning
– Save state transition history
– For each segment N , if activating cut conditions are met: Cut Procedure(N)

Fig. 7. The Segmented Q-Cut algorithm.

Cut Procedure(N)

– Extend segment N by connectivity testing
– Translate state transition history of segment N to a graph representation
– For each s ∈ S(N) Perform Min-Cut on the extended segment (s as source,

choice of t is task depended)
– If the cut’s quality is good (bottlenecks are found)

• Separate the extended N into two segments Ns and Nt

• Learn the Option for reaching the bottlenecks from every state in Ns,
using Experience Replay

• Save new bottlenecks in S(Nt)

Fig. 8. The Cut Procedure for a segment.

are removed for the connectivity testing procedure. Performing a cut procedure
on a segment N means activating the Min-Cut algorithm on several (s, t) pairs,
where the sources s ∈ S(N) are the bottleneck states leading to the segment.
The targets are chosen as in the Q-Cut algorithm, based on some distance metric
from their matching s.

4.1 Experimental Results

The Segmented Q-Cut algorithm was tested on the six-room maze of Figure 6.
The agent always started at a random location in the upper left room. Learn-
ing parameters were the same as in the experiments made on the simple maze
examples. Results with comparison to Q-Learning are summarized in Figure 9.
The Segmented Q-Cut has a clear advantage over Q-Learning.

It is interesting to note when in the course of learning the agent found the real
bottlenecks of the environment. On average, a first bottleneck was discovered at
the middle of the first episode, the second at beginning of the second episode,
and the third at the middle of the same episode. This indicates a fast discovery
and definition of subgoals (even before goal location is known), which accelerates
the learning procedure from early stages.

0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

S
te

ps
 to

 G
oa

l

Episode

Q−Learning
Segmented Q−Cut

Fig. 9. Performance curves for Segmented Q-Cut compared to standard Q-Learning
for the six-room maze simulations. The graphs depict the number of steps to goal vs.
episode number. Results are averaged over 50 runs.

5 Conclusion

The Q-Cut algorithm (and its extension to the Segmented Q-Cut algorithm) is a
novel approach for solving complex Markov Decision Processes, which are char-
acterized by the lack of immediate reinforcement. Through very fast discovery
of bottlenecks, the agent immediately sets its own sub-goals on-line. By doing
so, exploration of different areas in the state space, which are weakly connected,
becomes easier, and as a by product learning is enhanced. The main strength
of the algorithm is the use of global information: Viewing the Markov Decision
Process as a map of nodes and arcs is a natural perspective for determining the
strategic states, which may be worth reaching. The Min-Cut algorithm is used
to efficiently find bottleneck states, which divide the observed state connectivity
graph into two disjoint segments. Experiments on grid-world problems indicate
the potential of the Q-Cut algorithm. The algorithm significantly outperforms
standard Q-Learning in different maze problems. An underlying assumption of
this work is that the off-line computational power is at hand, while actual expe-
rience might be expensive. Also note that the cut procedure is computationally
efficient and is required only once in a while.

The distinctive empirical results motivate the application of the Q-Cut al-
gorithm to a variety of problems where bottlenecks may arise. A car parking
problem, a robot learning to stand up (see [13]), and some scheduling problems,
are characterized by the existence of bottlenecks that must be reached in order
to complete the overall task. Performance of the algorithm in different learning
problems, specifically those with a large state-space, is under current study. Ad-
ditional algorithmic enhancements, such as alternative quality factors and region
merging mechanism should also be considered.

Acknowledgements. This research was supported by the fund for the promo-
tion of research at the Technion. The authors would like to thank Yaakov Engel
and Omer Ziv for helpful discussions.

References

1. R. K. Ahuja, T. L. Magnati, and J. B. Orlin. Network Flows Theory, Algorithms
and Applications. Prentice Hall Press, 1993.

2. D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-
tific, 1995.

3. A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph
mincuts. In Proceedings of the 18th International Conference on Machine Learning,
pages 19–26. Morgan Kaufmann, 2001.

4. P. Dayan and G. E. Hinton. Feudal reinforcement learning. In Advances in Neural
Information Processing Systems 5. Morgan Kaufmann, 1993.

5. P. Dayan and C. Watkins. Q-learning. Machine Learning, 8:279–292, 1992.
6. T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value func-

tion decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.
7. B. Digney. Learning hierarchical control structure for multiple tasks and changing

environments. In Proceedings of the Fifth Conference on the Simulation of Adaptive
Behavior: SAB 98, 1998.

8. A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
Journal of ACM, 35(4):921–940, October 1988.

9. D. J. Huang and A. B. Kahng. When clusters meet partitions: A new density-
based methods for circuit decomposition. In Proceedings of the European Design
and Test Conference, pages 60–64, 1995.

10. L. G. Lin. Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine Learning, 8(3):293–321, 1992.

11. A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement
learning using diverse density. In Proceedings of the 18th International Conference
on Machine Learning, pages 361–368. Morgan Kaufmann, 2001.

12. A. McGovern, R. S. Sutton, and A. H. Fagg. Roles of macro-actions in accelerating
reinforcement learning. In Proceedings of the 1997 Grace Hopper Celebration of
Women in Computing, pages 13–18, 1997.

13. J. Morimoto and K. Doya. Acquisition of stand-up behavior by a real robot us-
ing hierarchical reinforcement learning. In Proceedings of the 17th International
Conference on Machine Learning, pages 623–630. Morgan Kaufmann, 2000.

14. S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with soft state
aggregation. In Advances in Neural Information Processing Systems, volume 7,
pages 361–368. The MIT Press, 1995.

15. R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence,
112:181–211, 1999.

16. J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42(5):674–690,
1997.

17. Y. C. Wei and C. K. Cheng. Ratio cut partitioning for hierarchical designs.
IEEE/ACM Transaction on Networking, 10(7):911–921, 1991.

18. M. Wiering and J. Schmidhuber. HQ-learning. Adaptive Behavior, 6(2):219–246,
1997.

