Stronger Polarization for the Deletion Channel

Dar Arava, Ido Tal

Technion

Big picture first

A polar coding scheme for the deletion channel where the:

- Deletion channel has constant deletion probability δ
- Fix a hidden-Markov input distribution ${ }^{1}$
- Code rate converges to information rate
- Achieves capacity
- Error probability decays like $2^{-\Lambda^{\gamma}}$, where $\gamma<\frac{1}{2}$ and Λ is the codeword length
- Prior art [TPFV] ${ }^{2}$: Same, apart for $\gamma<\frac{1}{3}$

[^0]
Key ideas

Encoding

- [TPFV]: break codeword into blocks using guard bands
- We do as well, but with different parameters

Decoding

- [TPFV]: use guard bands to break received word into blocks
- [TPFV]: build a trellis for each block
- We build a trellis for the whole received word

Analysis

- Use [TPFV] as "boot-strap"
- Use "walking-to-running" lemma

Our setting

- Trimming: \mathbf{Y}^{*} removes leading and trailing 0's from \mathbf{Y}

$$
(00110010)^{*}=(11001)
$$

Our setting

- Trimming: \mathbf{Y}^{*} removes leading and trailing 0's from \mathbf{Y}

$$
(00110010)^{*}=(11001)
$$

-Why add guard bands?
-Why trimming?

Guard bands

- We transform \mathbf{X} into $g(\mathbf{X}) \triangleq g\left(\mathbf{X}, n_{0}, \xi\right)$
- n_{0} and $\xi>0$ are fixed
- \mathbf{X} is of length $N=2^{n}$
- The result: blocks of length $N_{0}=2^{n_{0}}$, interspaced by GBs

Example: $n=n_{0}+2$

Guard bands

- Recursion for $\mathbf{X}=\mathbf{X}_{\mathbf{I}} \odot \mathbf{X}_{\| I}$:

$$
\begin{aligned}
& n>n_{0} \Longrightarrow g(\mathbf{X})=\underbrace{g\left(\mathbf{X}_{I}\right)}_{\mathbf{G}_{\|}} \odot \underbrace{\stackrel{\ell_{n}}{000 \ldots 00} \odot \underbrace{g\left(\mathbf{X}_{I I}\right)}_{\cong \mathbf{G}_{\| I}}}_{\cong \mathbf{G}_{\Delta}} \\
& n \leq n_{0} \Longrightarrow g(\mathbf{X})=\mathbf{X} \text { (stopping condition) }
\end{aligned}
$$

Guard bands

- Recursion for $\mathbf{X}=\mathbf{X}_{\mathbf{I}} \odot \mathbf{X}_{\| I}$:

$$
\begin{aligned}
& n>n_{0} \Longrightarrow g(\mathbf{X})=\underbrace{g\left(\mathbf{X}_{1}\right)}_{\mathbf{G}_{\|}} \odot \underbrace{\stackrel{\ell_{n}}{000 \ldots 00} \odot \underbrace{g\left(\mathbf{X}_{\text {II }}\right)}_{\triangleq \mathbf{G}_{\| I}}}_{\triangleq \mathbf{G}_{\Delta}} \\
& n \leq n_{0} \Longrightarrow g(\mathbf{X})=\mathbf{X} \text { (stopping condition) }
\end{aligned}
$$

- Are not harmful: Middle GB length is $\ell_{n} \triangleq\left\lfloor 2^{(1-\xi)(n-1)}\right\rfloor$, s.t. the effect on the rate vanishes for a large enough n_{0} :

$$
\frac{N}{\Lambda} \triangleq \frac{|\mathbf{X}|}{|g(\mathbf{X})|} \xrightarrow{n \rightarrow \infty} 1
$$

- Will come in handy: With GBs, it is easier to separate the output to independent blocks.

Guard bands, deletion, and trimming

Guard bands, deletion, and trimming

More notation:

- The Arıkan transform of \mathbf{X} is $\mathbf{U}=\mathcal{A}(\mathbf{X})$
- $\mathbf{V} \triangleq \mathcal{A}\left(\mathbf{X}_{\mathrm{I}}\right)$ and $\mathbf{V}^{\prime} \triangleq \mathcal{A}\left(\mathbf{X}_{\text {II }}\right)$
- $U_{2 j-1}=V_{j}+V_{j}^{\prime}\left({ }^{\prime}-'\right)$ and $U_{2 j}=V_{j}^{\prime}\left({ }^{\prime}+{ }^{\prime}\right)$

Evolution of Z for the trim-deletion channel

First, a relation between these two Bhattacharyya parameters:

$\underline{n-1}$ polarization steps:
$Z\left(V_{j} \mid V_{1}^{j-1}, \mathbf{Y}_{1}^{*}\right)=Z\left(V_{j}^{\prime} \mid V_{1}^{\prime j-1}, \mathbf{Y}_{\| 1}^{*}\right)$
$\mathbf{X}_{\mathbf{I}}=\mathcal{A}(\mathbf{V})$
g

Evolution of Z for the trim-deletion channel

Lemma (evolution of Z): Some fine print. There exist $m_{0}^{\text {th }}(\xi)$ and $m^{\text {th }}(\xi, \delta)$ s.t. for $n_{0} \geq m_{0}^{\text {th }}$ and all $n \geq \max \left\{m^{\text {th }}, n_{0}+1\right\}$ the following holds. Let $1 \leq i \leq N$ and $j=\lfloor(i+1) / 2\rfloor$. Then,

$$
\begin{aligned}
Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}^{*}\right) & \leq \frac{3}{2} N \cdot Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}_{1}^{*}, \mathbf{Y}_{I I}^{*}\right)+2^{-N^{\frac{2}{3}}} \\
& \leq \begin{cases}\frac{3}{2} N \cdot 2 \cdot Z\left(V_{j} \mid V_{1}^{j-1}, \mathbf{Y}_{1}^{*}\right)+2^{-N^{\frac{2}{3}}} & \text { if } b_{n}=0\left({ }^{\prime}-'\right) \\
\frac{3}{2} N \cdot Z\left(V_{j} \mid V_{1}^{j-1}, \mathbf{Y}_{1}^{*}\right)^{2}+2^{-N^{\frac{2}{3}}} & \text { if } b_{n}=1\left({ }^{\prime}+{ }^{\prime}\right)\end{cases}
\end{aligned}
$$

For binary $b_{1}, b_{2}, \ldots, b_{n}, \quad i=1+\sum_{k=1}^{n} b_{k} 2^{n-k}$.

A corresponding random process

Let B_{1}, B_{2}, \ldots be i.i.d. uniformly distributed Bernoulli random variables. Fix constants $\kappa \geq 1, d \geq 0, \gamma>\frac{1}{2}$ and $m^{\text {th }}>0$. Let $Z_{0}, Z_{1}, Z_{2}, \ldots$ be a random process s.t. for all $n \geq m^{\text {th }}$,

$$
Z_{n+1} \leq \begin{cases}\kappa N^{d} \cdot Z_{n}+2^{-N^{\gamma}} & \text { if } B_{n+1}=0\left({ }^{\prime}-'\right) \\ \kappa N^{d} \cdot Z_{n}{ }^{2}+2^{-N^{\gamma}} & \text { if } B_{n+1}=1\left({ }^{\prime}+'\right)\end{cases}
$$

Walking-to-running lemma

(Z evolution)

$$
Z_{n+1} \leq \begin{cases}\kappa N^{d} \cdot Z_{n}+2^{-N^{\gamma}} & \text { if }\left('^{\prime}-'\right) \\ \kappa N^{d} \cdot Z_{n}^{2}+2^{-N^{\gamma}} & \text { if }\left('^{\prime}+'\right)\end{cases}
$$

If:
If:
(walking speed)

$$
\begin{gathered}
n_{\mathrm{w}} \geq n_{\mathrm{w}}^{\mathrm{th}} \\
\mid---------- \\
Z_{n_{\mathrm{w}}} \leq 2^{-\left(2^{n_{\mathrm{w}}}\right)^{\nu}}
\end{gathered}
$$

Then:
(running speed)

$$
\nu>0, \beta \in(0,1 / 2) \quad \begin{array}{r}
Z_{n}<2^{-N^{\beta}} \\
w \cdot p . \geq 1-\epsilon
\end{array}
$$

Walking-to-running lemma

Given:

(Z evolution)

$$
m^{\mathrm{th}} \quad Z_{n+1} \leq \begin{cases}\kappa N^{d} \cdot Z_{n}+2^{-N^{\gamma}} & \text { if }\left({ }^{(}-{ }^{\prime}\right) \\ \kappa N^{d} \cdot Z_{n}^{2}+2^{-N^{\gamma}} & \text { if }\left({ }^{\prime}+{ }^{\prime}\right)\end{cases}
$$

If:

$$
n_{\mathrm{w}} \geq n_{\mathrm{w}}^{\mathrm{th}}
$$

(walking speed)

$$
\begin{aligned}
& \\
& Z_{n_{\mathrm{w}}} \leq 2^{-\left(2^{n_{\mathrm{w}}}\right)^{\nu}}
\end{aligned}
$$

Then:
(running speed)
In our case:

- Z_{n} corresponds to $Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}^{*}\right)$.

$$
\begin{aligned}
Z_{n} & <2^{-N^{\beta}} \\
\text { w.p. } & \geq 1-\epsilon
\end{aligned}
$$

- Walking speed is by [TPFV], and the evolution of $Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}^{*}\right)$ was stated in the previous lemma.

Walking-to-running lemma

Lemma (walking-to-running): Let $Z_{0}, Z_{1}, Z_{2}, \ldots$ be a random process s.t. for all $n \geq m^{\text {th }}$,

$$
Z_{n+1} \leq \begin{cases}\kappa N^{d} \cdot Z_{n}+2^{-N^{\gamma}} & \text { if } B_{n+1}=0\left({ }^{\prime}-'\right) \\ \kappa N^{d} \cdot Z_{n}^{2}+2^{-N^{\gamma}} & \text { if } B_{n+1}=1\left({ }^{\prime}+\prime\right) .\end{cases}
$$

Fix $\beta \in\left(0, \frac{1}{2}\right)$, the "running speed" parameter, and $\nu>0$, the "walking speed" parameter. For all $\epsilon>0$ there exists a threshold $n_{\mathrm{w}}^{\mathrm{th}}=n_{\mathrm{w}}^{\mathrm{th}}\left(\epsilon, \beta, \nu, \kappa, d, \gamma, m^{\mathrm{th}}\right) \geq m^{\text {th }}$ such that if for some $n_{\mathrm{w}} \geq n_{\mathrm{w}}^{\mathrm{th}}$ we are assured "walking speed":

$$
Z_{n_{\mathrm{w}}} \leq 2^{-\left(2^{n_{\mathrm{w}}}\right)^{\nu}}
$$

then there exists $n_{\mathrm{r}}^{\mathrm{th}}=n_{\mathrm{r}}^{\mathrm{th}}\left(\epsilon, \beta, \nu, \kappa, d, n_{\mathrm{w}}\right)>n_{\mathrm{w}}$ such that above this threshold, with high probability, we are indefinitely at "running speed":

$$
\mathbb{P}\left(Z_{n}<2^{-N^{\beta}}, \quad \forall n \geq n_{\mathrm{r}}^{\mathrm{th}}\right) \geq 1-\epsilon
$$

The Guard Band in the Middle (GBM) event

GBM

Under the GBM event:

$$
\mathbf{Y}^{*}=\mathbf{Y}_{1}^{*} \odot \frac{L_{0}}{000 \ldots 00} \odot \mathbf{Y}_{\|}^{*}
$$

The Guard Band in the Middle (GBM) event

GBM

Under the GBM event:
$\mathbf{Y}^{*}=\mathbf{Y}_{1}^{*} \odot \stackrel{L_{0}}{000 \ldots 00} \odot \mathbf{Y}_{\|}^{*}$

ᄀGBM

this is a "bad" event...

Bounding Z

We will show:

$$
Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}^{*}\right) \leq \underbrace{Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}^{*}, G B M\right)}_{\leq \frac{3}{2} N \cdot Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}_{i}^{*}, \mathbf{Y}_{\| i}^{*}\right)}+\underbrace{\sqrt{\mathbb{P}(\neg G B M)}}_{\leq 2^{-N^{2 / 3}}}
$$

Bounding Z

$$
Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}^{*}\right)=\sum_{u_{1}^{i-1}, \mathbf{y}^{*}} \sqrt{\begin{array}{l}
\mathbb{P}\left(U_{i}=0, U_{1}^{i-1}=u_{1}^{i-1} \mathbf{Y}^{*}=\mathbf{y}^{*}\right) \\
\times \mathbb{P}\left(U_{i}=1, U_{1}^{i-1}=u_{1}^{i-1}, \mathbf{Y}^{*}=\mathbf{y}^{*}\right)
\end{array}}
$$

Bounding Z

$$
Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}^{*}\right)=\sum_{u_{1}^{i-1}, \mathbf{y}^{*}} \sqrt{\begin{array}{l}
\mathbb{P}\left(U_{i}=0, U_{1}^{i-1}=u_{1}^{i-1}, \mathbf{Y}^{*}=\mathbf{y}^{*}\right) \\
\times \mathbb{P}\left(U_{i}=1, U_{1}^{i-1}=u_{1}^{i-1}, \mathbf{Y}^{*}=\mathbf{y}^{*}\right)
\end{array}}
$$

The law of total probability:

$$
=\sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\begin{array}{l}
\left(\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \mathrm{GBM}\right)+\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right)\right) \\
\times\left(\mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}, \mathrm{GBM}\right)+\mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right)\right)
\end{array}}
$$

Rearranging:

$$
\begin{aligned}
& \leq \sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}, \mathrm{GBM}\right)} \\
& \quad+\sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\begin{array}{l}
\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \\
+\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}\right)
\end{array}}
\end{aligned}
$$

Bounding the first sum

$$
\sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{Y}^{*}=\mathbf{y}, \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{Y}^{*}=\mathbf{y}, \mathrm{GBM}\right)}
$$

Bounding the first sum

$$
\sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{Y}^{*}=\mathbf{y}, \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{Y}^{*}=\mathbf{y}, \mathrm{GBM}\right)}
$$

Under GBM, knowing \mathbf{Y}^{*} is equivalent to knowing $\mathbf{Y}_{1}^{*}, \mathbf{Y}_{\|}^{*}$ and L_{0} :

$$
=\sum_{\ell=1}^{\frac{3}{2} N} \sum_{u_{1}^{i-1}, \mathbf{y}^{\prime}, \mathbf{y}^{\prime \prime}} \sqrt{\begin{array}{l}
\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{Y}_{1}^{*}=\mathbf{y}^{\prime}, \mathbf{Y}_{\|}^{*}=\mathbf{y}^{\prime \prime}, L_{0}=\ell, \mathrm{GBM}\right) \\
\times \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{Y}_{1}^{*}=\mathbf{y}^{\prime}, \mathbf{Y}_{\|}^{*}=\mathbf{y}^{\prime \prime}, L_{0}=\ell, \mathrm{GBM}\right)
\end{array}}
$$

"Throwing away" $\left\{L_{0}=\ell, G B M\right\}$:

$$
\leq \frac{3}{2} N \cdot \underbrace{\sum_{u_{1}^{i-1}, \mathbf{y}^{\prime}, \mathbf{y}^{\prime \prime}} \sqrt{\begin{array}{l}
\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{Y}_{1}^{*}=\mathbf{y}^{\prime}, \mathbf{Y}_{\| I}^{*}=\mathbf{y}^{\prime \prime}\right) \\
\times \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{Y}_{1}^{*}=\mathbf{y}^{\prime}, \mathbf{Y}_{\|}^{*}=\mathbf{y}^{\prime \prime}\right)
\end{array}} . .}_{=Z\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}_{1}^{*}, \mathbf{Y}_{\| 1}^{*}\right)}
$$

Bounding the second sum

$$
\sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\begin{array}{l}
\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \\
+\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}\right)
\end{array}}
$$

Bounding the second sum

$$
\sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\begin{array}{l}
\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \\
+\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}\right)
\end{array}}
$$

Relaxing constraints:

$$
\leq \sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\begin{array}{l}
\mathbb{P}\left(u_{1}^{i-1}, \mathbf{y}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \\
+\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \cdot \mathbb{P}\left(u_{1}^{i-1}, \mathbf{y}\right)
\end{array}}
$$

Total probability:

$$
=\sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\mathbb{P}\left(u_{1}^{i-1}, \mathbf{y}\right) \cdot \mathbb{P}\left(u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right)}
$$

Jensen:

$$
\leq \sqrt{\mathbb{P}(\neg \mathrm{GBM})}
$$

Bounding the second sum

$$
\sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\begin{array}{l}
\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \\
+\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}\right)
\end{array}}
$$

Relaxing constraints:

$$
\leq \sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\begin{array}{l}
\mathbb{P}\left(u_{1}^{i-1}, \mathbf{y}\right) \cdot \mathbb{P}\left(1, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \\
+\mathbb{P}\left(0, u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right) \cdot \mathbb{P}\left(u_{1}^{i-1}, \mathbf{y}\right)
\end{array}}
$$

Total probability:

$$
=\sum_{u_{1}^{i-1}, \mathbf{y}} \sqrt{\mathbb{P}\left(u_{1}^{i-1}, \mathbf{y}\right) \cdot \mathbb{P}\left(u_{1}^{i-1}, \mathbf{y}, \neg \mathrm{GBM}\right)}
$$

Jensen:

$$
\leq \sqrt{\mathbb{P}(\neg \mathrm{GBM})}
$$

this is small, since GBM is the 'typical' case: $\stackrel{[T P F V]}{\leq} 2^{-N \frac{2}{3}}$

Decoding

- Decoding complexity $O\left(\wedge^{4}\right)$
- Decoding is similar to [TPFV], but the trellis corresponds to the whole received word (including the guard bands):

Decoding

Our decoder

Simulation Results

$$
K=64, N=256, \text { Block Length }=621, \text { Rate }=0.10
$$

$$
\left(n_{0}=3, \xi=0.15\right)
$$

$K=64, N=256$, Block Length $=461$, Rate $=0.14$ ($n_{0}=5, \xi=0.15$)

[^0]: ${ }^{1}$ i.e., a function of an aperiodic, irreducible, finite-state Markov chain
 ${ }^{2}$ I. Tal, H. D. Pfister, A. Fazeli, A. Vardy, "Polar Codes for the Deletion Channel: Weak and Strong Polarization"

