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Big picture first

A polar coding scheme for the deletion channel where the:

▸ Deletion channel has constant deletion probability δ

▸ Fix a hidden-Markov input distribution1

▸ Code rate converges to information rate

▸ Achieves capacity

▸ Error probability decays like 2−Λ
γ
, where γ < 1

2 and Λ is the
codeword length

▸ Prior art [TPFV]2: Same, apart for γ < 1
3

1i.e., a function of an aperiodic, irreducible, finite-state Markov chain
2I. Tal, H. D. Pfister, A. Fazeli, A. Vardy, “Polar Codes for the Deletion

Channel: Weak and Strong Polarization”
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Key ideas

Encoding

▸ [TPFV]: break codeword into blocks using guard bands

▸ We do as well, but with different parameters

Decoding

▸ [TPFV]: use guard bands to break received word into blocks

▸ [TPFV]: build a trellis for each block

▸ We build a trellis for the whole received word

Analysis

▸ Use [TPFV] as “boot-strap”

▸ Use “walking-to-running” lemma
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Our setting

X
g

add GBs
G

DC
deletion

Y
TC

trimming
Y∗

TDC

▸ Trimming: Y∗ removes leading and trailing 0’s from Y

(00110010)∗ = (11001)

▸ Why add guard bands?

▸ Why trimming?
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Guard bands

▸ We transform X into g(X) ≜ g(X,n0, ξ)
▸ n0 and ξ > 0 are fixed
▸ X is of length N = 2n

▸ The result: blocks of length N0 = 2n0 , interspaced by GBs

Example: n = n0 + 2

X(1) 00...0 X(2) 00........0 X(3) 00...0 X(4)

g(X)

N0 ℓn0+1
N0 ℓn0+2

N0 ℓn0+1
N0



5 / 18

Guard bands

▸ Recursion for X = XI ⊙XII:

n > n0 Ô⇒ g(X) = g(XI)
²

GI

⊙
ℓnzÐÐÐÐx

000 . . .00
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜G∆

⊙g(XII)
´¹¹¹¹¹¸¹¹¹¹¹¹¶
≜GII

n ≤ n0 Ô⇒ g(X) = X (stopping condition)

▸ Are not harmful: Middle GB length is ℓn ≜ ⌊2(1−ξ)(n−1)⌋, s.t.
the effect on the rate vanishes for a large enough n0:

N

Λ
≜ ∣X∣
∣g(X)∣

n→∞ÐÐÐ→ 1

▸ Will come in handy: With GBs, it is easier to separate the
output to independent blocks.
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Guard bands, deletion, and trimming

X XI XII

G = g(X) GI G∆ GII

Y YI Y∆ YII

Y∗

g g g

DC DC DCDC

TC

More notation:
▸ The Arıkan transform of X is U = A(X)
▸ V ≜ A(XI) and V′ ≜ A(XII)
▸ U2j−1 = Vj +V ′j (‘−’) and U2j = V ′j (‘+’)
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Evolution of Z for the trim-deletion channel
First, a relation between these two Bhattacharyya parameters:

X = A(U) XI = A(V)

G GI

Y YI

Y∗ Y∗I

n polarization steps:

Z(Ui ∣U i−1
1 ,Y∗)

n − 1 polarization steps:

Z(Vj ∣V j−1
1 ,Y∗I ) = Z(V ′j ∣V ′1

j−1
,Y∗II)

g

DC

TC

g

DC

TC
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Evolution of Z for the trim-deletion channel

Lemma (evolution of Z): Some fine print. There exist mth
0 (ξ)

and mth(ξ, δ) s.t. for n0 ≥ mth
0 and all n ≥ max{mth,n0 + 1} the

following holds. Let 1 ≤ i ≤ N and j = ⌊(i + 1)/2⌋. Then,

Z(Ui ∣U i−1
1 ,Y∗) ≤ 3

2
N ⋅ Z(Ui ∣U i−1

1 ,Y∗I ,Y
∗
II) + 2−N

2
3

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

3
2N ⋅ 2 ⋅ Z(Vj ∣V j−1

1 ,Y∗I ) + 2−N
2
3 if bn = 0 (‘−’)

3
2N ⋅ Z(Vj ∣V j−1

1 ,Y∗I )
2

+ 2−N
2
3 if bn = 1 (‘+’)

For binary b1,b2, . . . ,bn, i = 1 +∑n
k=1 bk2

n−k .
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A corresponding random process

Let B1,B2, . . . be i.i.d. uniformly distributed Bernoulli random
variables. Fix constants κ ≥ 1,d ≥ 0, γ > 1

2 and mth > 0. Let
Z0,Z1,Z2, . . . be a random process s.t. for all n ≥ mth,

Zn+1 ≤
⎧⎪⎪⎨⎪⎪⎩

κNd ⋅ Zn +2−N
γ

if Bn+1 = 0 (‘−’)
κNd ⋅ Zn

2+2−Nγ
if Bn+1 = 1 (‘+’) .
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Walking-to-running lemma

Given:
(Z evolution)

mth Zn+1 ≤
⎧⎪⎪⎨⎪⎪⎩

κNd ⋅ Zn + 2−N
γ

if (‘−’)
κNd ⋅ Z 2

n + 2−N
γ

if (‘+’)

If:
(walking speed)

nw ≥ nthw

Znw ≤ 2−(2
nw)ν

Then:
(running speed)

nthr

Zn < 2−N
β

w .p. ≥ 1 − ϵ

ν > 0 , β ∈ (0,1/2)

In our case:
▸ Zn corresponds to Z(Ui ∣U i−1

1 ,Y∗).
▸ Walking speed is by [TPFV], and the evolution of

Z(Ui ∣U i−1
1 ,Y∗) was stated in the previous lemma.
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Walking-to-running lemma
Lemma (walking-to-running): Let Z0,Z1,Z2, . . . be a random
process s.t. for all n ≥ mth,

Zn+1 ≤
⎧⎪⎪⎨⎪⎪⎩

κNd ⋅ Zn + 2−N
γ

if Bn+1 = 0 (‘−’)
κNd ⋅ Z 2

n + 2−N
γ

if Bn+1 = 1 (‘+’) .

Fix β ∈ (0, 12), the “running speed” parameter, and ν > 0, the
“walking speed” parameter. For all ϵ > 0 there exists a threshold
nthw = nthw (ϵ, β, ν, κ,d , γ,mth) ≥ mth such that if for some nw ≥ nthw
we are assured “walking speed”:

Znw ≤ 2−(2
nw)ν ,

then there exists nthr = nthr (ϵ, β, ν, κ,d ,nw) > nw such that above
this threshold, with high probability, we are indefinitely at “running
speed”:

P (Zn < 2−N
β

, ∀n ≥ nthr ) ≥ 1 − ϵ .
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The Guard Band in the Middle (GBM) event

GBM

Y∗

middle

left right

TC TC

Y∗IIY∗I

Under the GBM event:

Y∗ = Y∗I ⊙
L0zÐÐÐÐx

000 . . .00 ⊙Y∗II
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The Guard Band in the Middle (GBM) event

GBM

Y∗

middle

left right

TC TC

Y∗IIY∗I

Under the GBM event:

Y∗ = Y∗I ⊙
L0zÐÐÐÐx

000 . . .00 ⊙Y∗II

¬GBM

Y∗

middle

left right

TC TC

this is a “bad” event...
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Bounding Z

We will show:

Z(Ui ∣U i−1
1 ,Y∗) ≤ Z(Ui ∣U i−1

1 ,Y∗,GBM)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤ 3

2
N ⋅ Z(Ui ∣U

i−1
1 ,Y∗

I
,Y∗

II
)

+
√
P(¬GBM)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤ 2−N2/3
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Bounding Z

Z(Ui ∣U i−1
1 ,Y∗) = ∑

ui−11 ,y∗

¿
ÁÁÀP(Ui = 0,U i−1

1 = ui−11 ,Y∗ = y∗)
× P(Ui = 1,U i−1

1 = ui−11 ,Y∗ = y∗)

The law of total probability:

= ∑
ui−11 ,y

¿
ÁÁÀ(P(0,ui−11 ,y,GBM) + P(0,ui−11 ,y,¬GBM))

×(P(1,ui−11 ,y,GBM) + P(1,ui−11 ,y,¬GBM))

Rearranging:

≤ ∑
ui−11 ,y

√
P(0,ui−11 ,y,GBM) ⋅ P(1,ui−11 ,y,GBM)

+ ∑
ui−11 ,y

¿
ÁÁÀP(0,ui−11 ,y,GBM) ⋅ P(1,ui−11 ,y,¬GBM)

+ P(0,ui−11 ,y,¬GBM) ⋅ P(1,ui−11 ,y)



14 / 18

Bounding Z

Z(Ui ∣U i−1
1 ,Y∗) = ∑

ui−11 ,y∗

¿
ÁÁÀP(Ui = 0,U i−1

1 = ui−11 ,Y∗ = y∗)
× P(Ui = 1,U i−1

1 = ui−11 ,Y∗ = y∗)

The law of total probability:

= ∑
ui−11 ,y

¿
ÁÁÀ(P(0,ui−11 ,y,GBM) + P(0,ui−11 ,y,¬GBM))

×(P(1,ui−11 ,y,GBM) + P(1,ui−11 ,y,¬GBM))

Rearranging:

≤ ∑
ui−11 ,y

√
P(0,ui−11 ,y,GBM) ⋅ P(1,ui−11 ,y,GBM)

+ ∑
ui−11 ,y

¿
ÁÁÀP(0,ui−11 ,y,GBM) ⋅ P(1,ui−11 ,y,¬GBM)

+ P(0,ui−11 ,y,¬GBM) ⋅ P(1,ui−11 ,y)



15 / 18

Bounding the first sum

∑
ui−11 ,y

√
P(0,ui−11 ,Y∗ = y,GBM) ⋅ P(1,ui−11 ,Y∗ = y,GBM)

Under GBM, knowing Y∗ is equivalent to knowing Y∗I ,Y
∗
II and L0:

=
3
2
N

∑
ℓ=1

∑
ui−11 ,y′,y′′

¿
ÁÁÀP(0,ui−11 ,Y∗I = y′,Y∗II = y′′,L0 = ℓ,GBM)

× P(1,ui−11 ,Y∗I = y′,Y∗II = y′′,L0 = ℓ,GBM)

“Throwing away” {L0 = ℓ,GBM}:

≤ 3

2
N ⋅ ∑

ui−11 ,y′,y′′

¿
ÁÁÀP(0,ui−11 ,Y∗I = y′,Y∗II = y′′)

× P(1,ui−11 ,Y∗I = y′,Y∗II = y′′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Z(Ui ∣U
i−1
1 ,Y∗

I
,Y∗

II
)
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Bounding the second sum

∑
ui−11 ,y

¿
ÁÁÀP(0,ui−11 ,y,GBM) ⋅ P(1,ui−11 ,y,¬GBM)

+ P(0,ui−11 ,y,¬GBM) ⋅ P(1,ui−11 ,y)

Relaxing constraints:

≤ ∑
ui−11 ,y

¿
ÁÁÀP(ui−11 ,y) ⋅ P(1,ui−11 ,y,¬GBM)

+ P(0,ui−11 ,y,¬GBM) ⋅ P(ui−11 ,y)

Total probability:

= ∑
ui−11 ,y

√
P(ui−11 ,y) ⋅ P(ui−11 ,y,¬GBM)

Jensen: ≤
√
P(¬GBM)

this is small, since GBM is the ‘typical’ case:
[TPFV]
≤ 2−N

2
3
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Decoding

▸ Decoding complexity O(Λ4)
▸ Decoding is similar to [TPFV], but the trellis corresponds to

the whole received word (including the guard bands):

X(1) X(2) X(3) X(4)GB GB GB

N0 N0 N0 N0ℓn0+1 ℓn0+2 ℓn0+1

Y

T
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Decoding
Our decoder

X(1) X(2) X(3) X(4)GB GB GB

Y

N0 N0 N0 N0ℓn0+1 ℓn0+2 ℓn0+1

[TPFV] X(1)

X(2)

X(3)

X(4)

Y∗(1)

Y∗(2)

Y∗(3)

Y∗(4)

Y

partition
&

trimming

N0

N0

N0

N0
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Simulation Results


