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▶ Question: do shortened/punctured polar codes have the same
error exponent as seminal polar codes?

▶ Answers:
▶ ChatGPT 3: No (and we did not understand the explanation)
▶ ChatGPT 4: Yes (and we did not understand the explanation)
▶ Co-pilot: Yes, see Shuval & Tal’s recent paper



Big picture first

▶ Seminal polar codes have probability of error ≈ 2−
√
N , where

N = 2n

▶ Polar codes can be either shortened or punctured to lengths
M that are not powers of 2

▶ We analyze:
▶ the shortening method of Wang and Liu, and
▶ the puncturing method of Niu, Chen, and Lin

▶ Main result:
▶ In both cases, the probability of error is ≈ 2−

√
M

▶ No restriction on M
▶ We are not assuming a symmetric channel nor a symmetric

input



Theorem
Let X be a random vector of length M with i.i.d. entries, each
sampled from an input distribution p(x). Let Y be the result of
passing X through a BM channel W (y |x). Let U of length M be
the result of transforming X via either the shortening transform or
the puncturing transform. Fix 0 < β < 1/2. Then,

lim
M→∞

1

M

∣∣∣{i : Z (Ui |U i−1,Y) < 2−Mβ
}∣∣∣ = 1− H(X |Y ),

lim
M→∞

1

M

∣∣∣{i : K (Ui |U i−1) < 2−Mβ
}∣∣∣ = H(X ).

Reminder: Bhattacharyya parameter and total variation

Z (X |Y ) =
∑
y

P(Y = y) ·
√
P(X = 0|Y = y)P(X = 1|Y = y)

K (X |Y ) =
∑
y

P(Y = y) ·
∣∣P(X = 0|Y = y)− P(X = 1|Y = y)

∣∣



Shortening and puncturing

Shortening a general code C:
▶ Pick an index set S
▶ Subcode: c ∈ C such

that

i ∈ S =⇒ ci = 0

▶ Do not transmit indices
in S

For polar codes
(Wang and Liu)

S = {
←−−
N−1,

←−−
N−2, . . . ,

←−−−−−−−−
N−(N −M)}

Puncturing a general code C:
▶ Pick an index set P
▶ Use all c ∈ C. . .

▶ Do not transmit indices
in P

For polar codes
(Niu, Chen, and Lin):

P = {←−0 ,
←−
1 , . . . ,

←−−−−−−
N −M−1}



Notation for the polar transform

For a binary vector x =
[
x0 x1 · · · xN−1

]
of length N = 2n

[
x0 x1 · · · xN−1

][0]
=

[
x0 ⊕ x1 x2 ⊕ x3 · · · xN−2 ⊕ xN−1

]
and[

x0 x1 · · · xN−1

][1]
=

[

x0 ▷

x1

x2 ▷

x3 · · ·

xN−2 ▷

xN−1

]
,

where
α ▷ β ≜ β



Notation for the polar transform
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Notation for the polar transform

▶ Let N = 2n

▶ Polar transform:

x =
[
x0 x1 · · · xN−1

]
=⇒ u =

[
u0 u1 · · · uN−1

]
▶ Definition: for an index

i = (bn−1, bn−2, . . . , b0)2 =
n−1∑
j=0

bj2
j

we have

ui = x[
←
b ] =

(
· · ·

((
x[bn−1]

)[bn−2]
)
· · ·

)[b0]



Notation for shortening and puncturing

Recall that
α ▷ β ≜ β

We now generalize the α⊕ β and α ▷ β operations to

α, β ∈ {0, 1, s, p}

⊕ 0 1 s p

0 0 1 0 ∅
1 1 0 1 ∅
s ∅ ∅ s ∅
p p p p p

▷ 0 1 s p

0 0 1 s ∅
1 0 1 s ∅
s ∅ ∅ s ∅
p 0 1 s p

.

Intuition:

▶ s is another name for 0

▶ p signifies a bit with arbitrary value



Two definitions of the polar shortening transform

⊕ 0 1 s p

0 0 1 0 ∅
1 1 0 1 ∅
s ∅ ∅ s ∅
p p p p p

▷ 0 1 s p

0 0 1 s ∅
1 0 1 s ∅
s ∅ ∅ s ∅
p 0 1 s p

.

Suppose M = 5, and so N = 2⌈log2 M⌉ = 8

S = {
←−−
N−1,

←−−
N−2, . . . ,

←−−−−−−−−
N−(N −M)} = {←−7 ,

←−
6 ,
←−
5 } = {7, 3, 5}

First definition:

x =
[
0 1 1 0 1

]
x̄ =

[
0 1 1 s 0 s 1 s

]
x̄[0] =

[
1 1 0 1

]
x̄[1] =

[
1 s s s

]
x̄[00] =

[
0 1

]
x̄[01] =

[
1 1

]
x̄[10] =

[
1 s

]
x̄[11] =

[
s s

]
ū =

[
1 1 0 1 1 s s s

]
u =

[
1 1 0 1 1

]



Two definitions of the polar shortening transform

⊕ 0 1 s p

0 0 1 0 ∅
1 1 0 1 ∅
s ∅ ∅ s ∅
p p p p p

▷ 0 1 s p

0 0 1 s ∅
1 0 1 s ∅
s ∅ ∅ s ∅
p 0 1 s p

.

Suppose M = 5, and so N = 2⌈log2 M⌉ = 8

S = {
←−−
N−1,

←−−
N−2, . . . ,

←−−−−−−−−
N−(N −M)} = {←−7 ,

←−
6 ,
←−
5 } = {7, 3, 5}

Second definition:

x =
[
0 1 1 0 1

]
x̄ =

[
0 1 1 0 0 0 1 0

]
x̄[0] =

[
1 1 0 1

]
x̄[1] =

[
1 0 0 0

]
x̄[00] =

[
0 1

]
x̄[01] =

[
1 1

]
x̄[10] =

[
1 0

]
x̄[11] =

[
0 0

]
ū =

[
1 1 0 1 1 0 0 0

]
u =

[
1 1 0 1 1

]



Two definitions of the polar puncturing transform

⊕ 0 1 s p

0 0 1 0 ∅
1 1 0 1 ∅
s ∅ ∅ s ∅
p p p p p

▷ 0 1 s p

0 0 1 s ∅
1 0 1 s ∅
s ∅ ∅ s ∅
p 0 1 s p

.

Suppose M = 5, and so N = 2⌈log2 M⌉ = 8

P = {←−0 ,
←−
1 , . . . ,

←−−−−−−
N−M − 1} = {←−0 ,←−1 ,

←−
2 } = {0, 4, 2}

First definition:

x =
[

0 1 1 0 1
]

x̃ =
[
p 0 p 1 p 1 0 1

]
x̃[0] =

[
p p p 1

]
x̃[1] =

[
0 1 1 1

]
x̃[00] =

[
p p

]
x̃[01] =

[
p 1

]
x̄[10] =

[
1 0

]
x̃[11] =

[
1 1

]
ũ =

[
p p p 1 1 0 0 1

]
u =

[
1 1 0 0 1

]



Two definitions of the polar puncturing transform

⊕ 0 1 s p

0 0 1 0 ∅
1 1 0 1 ∅
s ∅ ∅ s ∅
p p p p p

▷ 0 1 s p

0 0 1 s ∅
1 0 1 s ∅
s ∅ ∅ s ∅
p 0 1 s p

.

Suppose M = 5, and so N = 2⌈log2 M⌉ = 8

P = {←−0 ,
←−
1 , . . . ,

←−−−−−−
N−M − 1} = {←−0 ,←−1 ,

←−
2 } = {0, 4, 2}

Second definition:

x =
[

0 1 1 0 1
]

x̃ =
[
1 0 0 1 1 1 0 1

]
x̃[0] =

[
1 1 0 1

]
x̃[1] =

[
0 1 1 1

]
x̃[00] =

[
0 1

]
x̃[01] =

[
1 1

]
x̄[10] =

[
1 0

]
x̃[11] =

[
1 1

]
ũ =

[
1 1 0 1 1 0 0 1

]
u =

[
1 1 0 0 1

]



Second definition, for now

▶ We now think of shortening/puncturing using the second
definition

x̄ =
[
0 1 1 0 0 0 1 0

]
x̃ =

[
1 0 0 1 1 1 0 1

]
▶ The first definition will come into play later. . .



Distributions
▶ Denote the probability distribution of “regular” input-output

as
W (x ; y) = P(X = x ,Y = y)

▶ What about shortening/puncturing?
▶ Shortening:

▶ Input is forced to be 0
▶ No corresponding output

S(x ; y) =

{
1, x = 0, y =?

0, otherwise

▶ Puncturing:
▶ Input is arbitrary
▶ No corresponding output

P(x ; y) =

{
1
2 , x ∈ {0, 1}, y =?

0, otherwise



The ‘−’ and ‘+’ operations on joint distributions

▶ Denote
X = {0, 1}

▶ Let A(x0; y0) be a joint distribution on (x0, y0) ∈ X × Y0
▶ Let B(x0; y1) be a joint distribution on (x1, y1) ∈ X × Y1
▶ The ‘−’ operation:

(A � B)(u0; y0, y1) =
∑
x1∈X

A(u0 ⊕ x1; y0)B(x1; y1)

▶ The ‘+’ operation:

(A⊛ B)(u1; u0, y0, y1) = A(u0 ⊕ u1; y0)B(u1; y1)



The ‘degradation’ relation

▶ For two joint distributions A(x0; y0) and B(x0; y1), denote

A
d
⊑ B

if A is (stochastically) degraded with respect to B

▶ That is, if there exists Q(y0|y1) over Y0 × Y1 such that

A(x0; y0) =
∑
y1

B(x0; y1)Q(y0|y1)

▶ Goal: generalize “
d
⊑” to some “⊑” so that for general A, B

A � B ⊑ A ⊑ A⊛ B , A � B ⊑ B ⊑ A⊛ B



The ‘input permutation’ relation

▶ We say that A has undergone an input permutation, resulting
in A′ if there exists a function f : Y0 → X such that

A′(x0; y0) = A(x0 ⊕ f (y0); y0)

▶ We denote this by

A′ p
⊑ A



The ‘inferior’ relation

▶ We define that A ⊑ B if we can identify a finite sequence of
‘degradation’ and ‘input permutation’ relations that will lead
to A from B

▶ In other words, there exists 0 ≤ t <∞, a sequence of joint
distributions C1,C2, . . . ,Ct−1, and a sequence
r1, r2, . . . , rt ∈ {d, p} such that

A
r1
⊑ C1

r2
⊑ C2

r3
⊑ · · ·

rt−1

⊑ Ct−1

rt
⊑ B



Key properties of the ‘inferior’ relation
A ⊑ B if there exists 0 ≤ t <∞, a sequence of joint distributions
C1,C2, . . . ,Ct−1, and a sequence r1, r2, . . . , rt ∈ {d, p} such that

A
r1
⊑ C1

r2
⊑ C2

r3
⊑ · · ·

rt−1

⊑ Ct−1

rt
⊑ B

Key properties:
▶ Transitivity:

A ⊑ B and B ⊑ C =⇒ A ⊑ C

▶ Z, K, and H monotonicity:

A ⊑ B =⇒ Z (A) ≥ Z (B), K (A) ≤ K (B), H(A) ≥ H(B)

▶ Preservation by polar operations:

A′ ⊑ A and B ′ ⊑ B =⇒
A′ � B ′ ⊑ A � B and A′ ⊛ B ′ ⊑ A⊛ B.

▶ The two extremes: For any A,

P ⊑ A ⊑ S



Look familiar?

▶ If A ⊑ B and B ⊑ A then we will treat A and B as equivalent

▶ The following holds, up to equivalence:

� B S P

A A � B A P

S B S P

P P P P

⊛ B S P

A A⊛ B S A
S S S S

P B S P

▶ Look familiar?

▶ Yes! For a, b ∈ {0, 1},

⊕ b s p

a a⊕ b a p

s b s p

p p p p

▷ b s p

a a ▷ b s a
s s s s

p b s p



Look familiar?

▶ If A ⊑ B and B ⊑ A then we will treat A and B as equivalent

▶ The following holds, up to equivalence:

� B S P

A A � B A P

S B S P

P P P P

⊛ B S P

A A⊛ B S A
S S S S

P B S P

▶ Look familiar?

▶ Yes! For a, b ∈ {0, 1},

⊕ b s p

a a⊕ b a p

s b s p

p p p p

▷ b s p

a a ▷ b s a
s s s s

p b s p



The advantages of good bookkeeping

x =
[
0 1 1 0 1

]
x̄ =

[
0 1 1 s 0 s 1 s

]
ū =

[
1 1 0 1 1 s s s

]
u =

[
1 1 0 1 1

]
For 0 ≤ i ≤ M,

Z (Ui |U i−1,Y) =

Z (Ūi |Ū i−1, Ȳ)

K (Ui |U i−1,Y) =

K (Ūi |Ū i−1, Ȳ)

x =
[

0 1 1 0 1
]

x̃ =
[
p 0 p 1 p 1 0 1

]
ũ =

[
p p p 1 1 0 0 1

]
u =

[
1 1 0 0 1

]
For 0 ≤ i ≤ M,

Z (Ui |U i−1,Y) =

Z (Ũi+N−M |Ũ i+N−M−1, Ỹ)

K (Ui |U i−1,Y) =

K (Ũi+N−M |Ũ i+N−M−1, Ỹ)
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Main Theorem, reworded

Theorem
Let W (x ; y) be a joint distribution over X ×Y. Let X,Y be a pair
of random vectors of length M, with each (Xi ,Yi ) sampled
independently from W . Let U of length M be the result of
transforming X via either the shortening transform or the
puncturing transform. Fix 0 < β < 1/2 and ϵ > 0. Then, there
exists M0 such that for all M ≥ M0 ,

1

M

∣∣∣{i : Z (Ui |U i−1,Y) < 2−Mβ
}∣∣∣ > 1− H(X |Y )− ϵ,

1

M

∣∣∣{i : K (Ui |U i−1,Y) < 2−Mβ
}∣∣∣ > H(X |Y )− ϵ.



A halfway lemma

Lemma
Let W (x ; y), X, Y, and U be as in the main theorem. Fix
0 < β′ < 1/2 and ϵ′ > 0. Fix integers t > 0 and
a ∈ {2t−1 + 1, 2t−1 + 2, . . . , 2t}. There exists n0 such that for all

n ≥ n0, if M = a · 2n−t , then for N = 2n,

1

M

∣∣∣{i : Z (Ui |U i−1,Y) < 2−Nβ′
}∣∣∣ > 1− H(X |Y )− ϵ′,

1

M

∣∣∣{i : K (Ui |U i−1,Y) < 2−Nβ′
}∣∣∣ > H(X |Y )− ϵ′.



Proof of halfway lemma – part 1

A0 ∼ (X0,Y0)

A1 ∼ (X1,Y1)

A2 ∼ (X2,Y2)

...

AN−2 ∼ (XN−2,YN−2)

AN−1 ∼ (XN−1,YN−1)

A0 � A1

A2 � A3

...

AN−2 � AN−1

A0 ⊛ A1

A2 ⊛ A3

...

AN−2 ⊛ AN−1

−

+

−

+

−

+

· · ·

· · ·

· · ·

· · ·



Proof of halfway lemma – part 1

A ∼ (X0,Y0)

A ∼ (X1,Y1)

A ∼ (X2,Y2)

...

A ∼ (XN−2,YN−2)

A ∼ (XN−1,YN−1)

A � A

A � A

...

A � A

A⊛ A

A⊛ A

...

A⊛ A

−

+

−

+

−

+

· · ·

· · ·

· · ·

· · ·



Proof of halfway lemma – part 1

A ∼ (X0,Y0)

A ∼ (X1,Y1)

A ∼ (X2,Y2)

...

A ∼ (XN−2,YN−2)

A ∼ (XN−1,YN−1)

A � A

A � A

...

A � A

A⊛ A

A⊛ A

...

A⊛ A

−

+

−

+

−

+

· · ·

· · ·

· · ·

· · ·

When all Ai are equal: Arıkan & Telatar ‘09 gives fast polarization



Proof of halfway lemma – part 1

A ∼ (X0,Y0)

B ∼ (X1,Y1)

A ∼ (X2,Y2)

...

A ∼ (XN−2,YN−2)

B ∼ (XN−1,YN−1)

A � B

A � B

...

A � B

A⊛ B

A⊛ B

...

A⊛ B

−

+

−

+

−

+

· · ·

· · ·

· · ·

· · ·



Proof of halfway lemma – part 1

A ∼ (X0,Y0)

B ∼ (X1,Y1)

A ∼ (X2,Y2)

...

A ∼ (XN−2,YN−2)

B ∼ (XN−1,YN−1)

A � B

A � B

...

A � B

A⊛ B

A⊛ B

...

A⊛ B

−

+

−

+

−

+

· · ·

· · ·

· · ·

· · ·

When Ai have period 2: Arıkan & Telatar, ’09 applied after first
transform gives fast polarization



Proof of halfway lemma – part 1

A0 ∼ (X0,Y0)

A1 ∼ (X1,Y1)

A2 ∼ (X2,Y2)

...

AN−2 ∼ (XN−2,YN−2)

AN−1 ∼ (XN−1,YN−1)

A0 � A1

A2 � A3

...

AN−2 � AN−1

A0 ⊛ A1

A2 ⊛ A3

...

AN−2 ⊛ AN−1

−

+

−

+

−

+

· · ·

· · ·

· · ·

· · ·

Generally: if the Ai have period 2t , then we have fast polarization



Proof of halfway lemma – part 2

For S = {
←−−
N−1,

←−−
N−2, . . . ,

←−−−−−−−−
N−(N −M)}:

N/2t

N
Bit reversal

2t

W
S



Proof of main theorem – key properties of “⊑”
Recall key properties of “⊑” relation:

▶ The two extremes: For any A,

P ⊑ A ⊑ S

▶ Preservation by polar operations:

A′ ⊑ A and B ′ ⊑ B =⇒
A′ � B ′ ⊑ A � B and A′ ⊛ B ′ ⊑ A⊛ B.

▶ Transitivity:

A ⊑ B and B ⊑ C =⇒ A ⊑ C

▶ Z, K, and H monotonicity:

A ⊑ B =⇒ Z (A) ≥ Z (B), K (A) ≤ K (B), H(A) ≥ H(B)



Proof of main theorem

N/2t

N

Bit reversal
+ polar transform

W
S

i

Z (Ūi |Ū i−1, Ȳ)

≤ Z (Ūi |Ū i−1, Ȳ)

K (Ūi |Ū i−1, Ȳ)

≤ K (Ūi |Ū i−1, Ȳ)



Proof of main theorem

N/2t

N

Bit reversal
+ polar transform

W
S

i

Z (Ūi |Ū i−1, Ȳ)

≤ Z (Ūi |Ū i−1, Ȳ)

K (Ūi |Ū i−1, Ȳ)

≤ K (Ūi |Ū i−1, Ȳ)



Proof of main theorem

N/2t

N

Bit reversal
+ polar transform

W
S

i

“Worse” case

Z (Ūi |Ū i−1, Ȳ)

≤ Z (Ūi |Ū i−1, Ȳ)

K (Ūi |Ū i−1, Ȳ)

≤ K (Ūi |Ū i−1, Ȳ)



Proof of main theorem

N/2t

N

Bit reversal
+ polar transform

W
S

i

“Worse” case

Z (Ūi |Ū i−1, Ȳ)

≤ Z (Ūi |Ū i−1, Ȳ)

K (Ūi |Ū i−1, Ȳ)

≤ K (Ūi |Ū i−1, Ȳ)



Proof of main theorem

N/2t

N

Bit reversal
+ polar transform

W
S

i

“Worse” case

Z (Ūi |Ū i−1, Ȳ) ≤ Z (Ūi |Ū i−1, Ȳ)

K (Ūi |Ū i−1, Ȳ)

≤ K (Ūi |Ū i−1, Ȳ)



Proof of main theorem

N/2t

N

Bit reversal
+ polar transform

W
S

i

“Better” case

Z (Ūi |Ū i−1, Ȳ) ≤ Z (Ūi |Ū i−1, Ȳ)

K (Ūi |Ū i−1, Ȳ) ≤ K (Ūi |Ū i−1, Ȳ)


