Strong Polarization for Shortened and Punctured Polar Codes

Boaz Shuval, Ido Tal

Technion

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- \triangleright Question: do shortened/punctured polar codes have the same error exponent as seminal polar codes?
- ▶ Answers:
	- ▶ ChatGPT 3: No (and we did not understand the explanation)
	- ▶ ChatGPT 4: Yes (and we did not understand the explanation)

KORK ERKER ADAM ADA

▶ Co-pilot: Yes, see Shuval & Tal's recent paper

Big picture first

- ▶ Seminal polar codes have probability of error $\approx 2^{-\sqrt{N}}$, where $N = 2^n$
- ▶ Polar codes can be either shortened or punctured to lengths M that are not powers of 2
- \blacktriangleright We analyze:
	- \triangleright the shortening method of Wang and Liu, and
	- \triangleright the puncturing method of Niu, Chen, and Lin
- \blacktriangleright Main result:
	- ► In both cases, the probability of error is $\approx 2^{-\sqrt{M}}$
	- ▶ No restriction on M
	- ▶ We are not assuming a symmetric channel nor a symmetric input

KORKARYKERKER POLO

Theorem

Let X be a random vector of length M with i.i.d. entries, each sampled from an input distribution $p(x)$. Let Y be the result of passing **X** through a BM channel $W(y|x)$. Let **U** of length M be the result of transforming X via either the shortening transform or the puncturing transform. Fix $0 < \beta < 1/2$. Then,

$$
\lim_{M\to\infty}\frac{1}{M}\left|\left\{i:Z(U_i|U^{i-1},\mathbf{Y})<2^{-M^{\beta}}\right\}\right|=1-H(X|Y),
$$

$$
\lim_{M\to\infty}\frac{1}{M}\left|\left\{i:K(U_i|U^{i-1})<2^{-M^{\beta}}\right\}\right|=H(X).
$$

Reminder: Bhattacharyya parameter and total variation

$$
Z(X|Y) = \sum_{y} P(Y=y) \cdot \sqrt{P(X=0|Y=y)P(X=1|Y=y)}
$$

$$
K(X|Y) = \sum_{y} P(Y=y) \cdot |P(X=0|Y=y) - P(X=1|Y=y)|
$$

Shortening and puncturing

Shortening a general code C :

- \blacktriangleright Pick an index set S
- ▶ Subcode: $c \in \mathcal{C}$ such that

 $i \in \mathcal{S} \Longrightarrow c_i = 0$

▶ Do not transmit indices in S

Puncturing a general code C :

 \blacktriangleright Pick an index set $\mathcal P$

Use all
$$
c \in \mathcal{C}
$$
...

▶ Do not transmit indices in P

For polar codes (Wang and Liu) For polar codes (Niu, Chen, and Lin):

 $\mathcal{S} = \{ \overleftarrow{\mathcal{N}-1}, \overleftarrow{\mathcal{N}-2}, \ldots,$ \leftarrow \leftarrow $\overleftarrow{N-(N-M)}\}$ $\mathcal{P} = \{\overleftarrow{0}, \overleftarrow{1}, \ldots, \overleftarrow{N-M-1}\}$

KORKARYKERKER POLO

Notation for the polar transform

For a binary vector $\mathbf{x} = \begin{bmatrix} x_0 & x_1 & \cdots & x_{N-1} \end{bmatrix}$ of length $N = 2^n$

$$
\begin{bmatrix} x_0 & x_1 & \cdots & x_{N-1} \end{bmatrix}^{[0]} = \begin{bmatrix} x_0 \oplus x_1 & x_2 \oplus x_3 & \cdots & x_{N-2} \oplus x_{N-1} \end{bmatrix}
$$

and

$$
\begin{bmatrix} x_0 & x_1 & \cdots & x_{N-1} \end{bmatrix}^{[1]} = \begin{bmatrix} x_1 & x_3 & \cdots & x_{N-1} \end{bmatrix},
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Notation for the polar transform

For a binary vector $\mathbf{x} = \begin{bmatrix} x_0 & x_1 & \cdots & x_{N-1} \end{bmatrix}$ of length $N = 2^n$

$$
\begin{bmatrix} x_0 & x_1 & \cdots & x_{N-1} \end{bmatrix}^{[0]} = \begin{bmatrix} x_0 \oplus x_1 & x_2 \oplus x_3 & \cdots & x_{N-2} \oplus x_{N-1} \end{bmatrix}
$$

and

$$
\begin{bmatrix} x_0 & x_1 & \cdots & x_{N-1} \end{bmatrix}^{[1]} = \begin{bmatrix} x_0 \triangleright x_1 & x_2 \triangleright x_3 & \cdots & x_{N-2} \triangleright x_{N-1} \end{bmatrix},
$$

where

$$
\alpha\rhd\beta\triangleq\beta
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Notation for the polar transform

 \blacktriangleright Let $N = 2^n$

▶ Polar transform:

$$
\mathbf{x} = \begin{bmatrix} x_0 & x_1 & \cdots & x_{N-1} \end{bmatrix} \Longrightarrow \mathbf{u} = \begin{bmatrix} u_0 & u_1 & \cdots & u_{N-1} \end{bmatrix}
$$

 \blacktriangleright Definition: for an index

$$
i=(b_{n-1},b_{n-2},\ldots,b_0)_2=\sum_{j=0}^{n-1}b_j2^j
$$

we have

$$
u_i = \mathbf{x}^{[\stackrel{\leftarrow}{\mathbf{b}}]} = \left(\cdots \left(\left(\mathbf{x}^{[b_{n-1}]}\right)^{[b_{n-2}]}\right)\cdots\right)^{[b_0]}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Notation for shortening and puncturing

Recall that

 $\alpha \triangleright \beta \triangleq \beta$

We now generalize the $\alpha \oplus \beta$ and $\alpha \triangleright \beta$ operations to

 $\alpha, \beta \in \{0, 1, s, p\}$

Intuition:

- \triangleright s is another name for 0
- ▶ p signifies a bit with arbitrary value

Two definitions of the polar shortening transform

First definition:

$$
\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

\n
$$
\bar{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 1 & s & 0 & s & 1 & s \end{bmatrix}
$$

\n
$$
\bar{\mathbf{x}}^{[0]} = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix} \quad \bar{\mathbf{x}}^{[1]} = \begin{bmatrix} 1 & s & s & s \end{bmatrix}
$$

\n
$$
\bar{\mathbf{x}}^{[00]} = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad \bar{\mathbf{x}}^{[01]} = \begin{bmatrix} 1 & 1 \end{bmatrix} \quad \bar{\mathbf{x}}^{[10]} = \begin{bmatrix} 1 & s \end{bmatrix} \quad \bar{\mathbf{x}}^{[11]} = \begin{bmatrix} s & s \end{bmatrix}
$$

\n
$$
\bar{\mathbf{u}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & s & s & s \end{bmatrix}
$$

Two definitions of the polar shortening transform

Second definition:

$$
\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

$$
\bar{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}
$$

$$
\bar{\mathbf{x}}^{[0]} = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix} \quad \bar{\mathbf{x}}^{[1]} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}
$$

$$
\bar{\mathbf{x}}^{[00]} = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad \bar{\mathbf{x}}^{[01]} = \begin{bmatrix} 1 & 1 \end{bmatrix} \quad \bar{\mathbf{x}}^{[10]} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad \bar{\mathbf{x}}^{[11]} = \begin{bmatrix} 0 & 0 \end{bmatrix}
$$

$$
\bar{\mathbf{u}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}
$$

$$
\mathbf{u} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}
$$

Two definitions of the polar puncturing transform

Suppose $M = 5$, and so $N = 2^{\lceil \log_2 M \rceil} = 8$

$$
\mathcal{P}=\{\overleftarrow{0},\overleftarrow{1},\ldots,\overleftarrow{N-M-1}\}=\{\overleftarrow{0},\overleftarrow{1},\overleftarrow{2}\}=\{0,4,2\}
$$

First definition:

$$
\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

$$
\tilde{\mathbf{x}} = \begin{bmatrix} p & 0 & p & 1 & p & 1 & 0 & 1 \end{bmatrix}
$$

$$
\tilde{\mathbf{x}}^{[0]} = \begin{bmatrix} p & p & p & 1 \end{bmatrix} \quad \tilde{\mathbf{x}}^{[1]} = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}
$$

$$
\tilde{\mathbf{x}}^{[00]} = \begin{bmatrix} p & p \end{bmatrix} \quad \tilde{\mathbf{x}}^{[01]} = \begin{bmatrix} p & 1 \end{bmatrix} \quad \tilde{\mathbf{x}}^{[10]} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad \tilde{\mathbf{x}}^{[11]} = \begin{bmatrix} 1 & 1 \end{bmatrix}
$$

$$
\tilde{\mathbf{u}} = \begin{bmatrix} p & p & p & 1 & 1 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\mathbf{u} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \end{bmatrix}
$$

Two definitions of the polar puncturing transform

Suppose $M = 5$, and so $N = 2^{\lceil \log_2 M \rceil} = 8$

$$
\mathcal{P}=\{\overleftarrow{0},\overleftarrow{1},\ldots,\overleftarrow{N-M-1}\}=\{\overleftarrow{0},\overleftarrow{1},\overleftarrow{2}\}=\{0,4,2\}
$$

Second definition:

$$
\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

$$
\tilde{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

$$
\tilde{\mathbf{x}}^{[0]} = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix} \quad \tilde{\mathbf{x}}^{[1]} = \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}
$$

$$
\tilde{\mathbf{x}}^{[00]} = \begin{bmatrix} 0 & 1 \end{bmatrix} \quad \tilde{\mathbf{x}}^{[01]} = \begin{bmatrix} 1 & 1 \end{bmatrix} \quad \tilde{\mathbf{x}}^{[10]} = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad \tilde{\mathbf{x}}^{[11]} = \begin{bmatrix} 1 & 1 \end{bmatrix}
$$

$$
\tilde{\mathbf{u}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}
$$

$$
\mathbf{u} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \end{bmatrix}
$$

Second definition, for now

 \triangleright We now think of shortening/puncturing using the second definition

$$
\bar{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}
$$

$$
\tilde{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

 \blacktriangleright The first definition will come into play later...

Distributions

▶ Denote the probability distribution of "regular" input-output as

$$
W(x; y) = P(X = x, Y = y)
$$

- \triangleright What about shortening/puncturing?
- ▶ Shortening:
	- \blacktriangleright Input is forced to be 0
	- \triangleright No corresponding output

$$
S(x; y) = \begin{cases} 1, & x = 0, y = ? \\ 0, & \text{otherwise} \end{cases}
$$

▶ Puncturing:

- ▶ Input is arbitrary
- ▶ No corresponding output

$$
P(x; y) = \begin{cases} \frac{1}{2}, & x \in \{0, 1\}, y = ?\\ 0, & \text{otherwise} \end{cases}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

The '−' and '+' operations on joint distributions

▶ Denote

$$
\mathcal{X} = \{0,1\}
$$

▶ Let $A(x_0; y_0)$ be a joint distribution on $(x_0, y_0) \in \mathcal{X} \times \mathcal{Y}_0$ ▶ Let $B(x_0; y_1)$ be a joint distribution on $(x_1, y_1) \in \mathcal{X} \times \mathcal{Y}_1$ ▶ The '−' operation:

$$
(A \boxtimes B)(u_0; y_0, y_1) = \sum_{x_1 \in \mathcal{X}} A(u_0 \oplus x_1; y_0) B(x_1; y_1)
$$

 \blacktriangleright The '+' operation:

$$
(A \circledast B)(u_1; u_0, y_0, y_1) = A(u_0 \oplus u_1; y_0)B(u_1; y_1)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The 'degradation' relation

▶ For two joint distributions $A(x_0; y_0)$ and $B(x_0; y_1)$, denote

$$
A\overset{d}{\sqsubseteq}B
$$

if A is (stochastically) degraded with respect to B ▶ That is, if there exists $Q(y_0|y_1)$ over $y_0 \times y_1$ such that

$$
A(x_0; y_0) = \sum_{y_1} B(x_0; y_1) Q(y_0|y_1)
$$

KID KA KERKER E VOOR

► Goal: generalize " \sqsubseteq " to some " \sqsubseteq " so that for general A, B $A \otimes B \subseteq A \subseteq A \otimes B$, $A \otimes B \subseteq B \subseteq A \otimes B$

The 'input permutation' relation

 \triangleright We say that A has undergone an input permutation, resulting in A' if there exists a function $f:\mathcal{Y}_0\to\mathcal{X}$ such that

$$
A'(x_0; y_0) = A(x_0 \oplus f(y_0); y_0)
$$

 \blacktriangleright We denote this by

$$
A' \overset{p}{\sqsubseteq} A
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The 'inferior' relation

- ▶ We define that $A \sqsubseteq B$ if we can identify a finite sequence of 'degradation' and 'input permutation' relations that will lead to A from B
- ▶ In other words, there exists $0 \le t < \infty$, a sequence of joint distributions $C_1, C_2, \ldots, C_{t-1}$, and a sequence $r_1, r_2, \ldots, r_t \in \{d, p\}$ such that

$$
A \overset{r_1}{\sqsubseteq} C_1 \overset{r_2}{\sqsubseteq} C_2 \overset{r_3}{\sqsubseteq} \cdots \overset{r_{t-1}}{\sqsubseteq} C_{t-1} \overset{r_t}{\sqsubseteq} B
$$

Key properties of the 'inferior' relation

 $A \sqsubset B$ if there exists $0 \le t < \infty$, a sequence of joint distributions $C_1, C_2, \ldots, C_{t-1}$, and a sequence $r_1, r_2, \ldots, r_t \in \{d, p\}$ such that

$$
A \overset{r_1}{\sqsubseteq} \mathit{C}_1 \overset{r_2}{\sqsubseteq} \mathit{C}_2 \overset{r_3}{\sqsubseteq} \cdots \overset{r_{t-1}}{\sqsubseteq} \mathit{C}_{t-1} \overset{r_t}{\sqsubseteq} B
$$

Key properties:

▶ Transitivity:

$$
A \sqsubseteq B \quad \text{and} \quad B \sqsubseteq C \Longrightarrow A \sqsubseteq C
$$

▶ Z, K, and H monotonicity:

 $A \sqsubset B \Longrightarrow Z(A) > Z(B)$, $K(A) < K(B)$, $H(A) > H(B)$

▶ Preservation by polar operations:

$$
A' \sqsubseteq A \quad \text{and} \quad B' \sqsubseteq B \Longrightarrow
$$

$$
A' \boxtimes B' \sqsubseteq A \boxtimes B \quad \text{and} \quad A' \otimes B' \sqsubseteq A \otimes B.
$$

 \blacktriangleright The two extremes: For any A,

 $P \sqsubset A \sqsubset S$

KORKAR KERKER SAGA

Look familiar?

▶ If $A \sqsubseteq B$ and $B \sqsubseteq A$ then we will treat A and B as equivalent \blacktriangleright The following holds, up to equivalence:

▶ Look familiar?

Look familiar?

▶ If $A \sqsubseteq B$ and $B \sqsubseteq A$ then we will treat A and B as equivalent \blacktriangleright The following holds, up to equivalence:

▶ Look familiar?

$$
\blacktriangleright \ \ \text{Yes! For } a, b \in \{0, 1\},
$$

KO K K Ø K K E K K E K V K K K K K K K K K

The advantages of good bookkeeping

$$
\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

\n
$$
\bar{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 1 & s & 0 & s & 1 & s \end{bmatrix} \qquad \tilde{\mathbf{x}} = \begin{bmatrix} p & 0 & p & 1 & p & 1 & 0 & 1 \end{bmatrix}
$$

\n
$$
\bar{\mathbf{u}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & s & s & s \end{bmatrix} \qquad \tilde{\mathbf{u}} = \begin{bmatrix} p & p & p & 1 & 1 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
\mathbf{u} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & s & s & s \end{bmatrix} \qquad \mathbf{u} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \end{bmatrix}
$$

\nFor $0 \le i \le M$,
\n
$$
Z(U_i|U^{i-1}, \mathbf{Y}) = Z(U_i|U^{i-1}, \mathbf{Y}) = Z(U_i|U^{i-1}, \mathbf{Y}) = Z(\tilde{U}_{i+N-M}|\tilde{U}^{i+N-M-1}, \tilde{\mathbf{Y}})
$$

$$
K(U_i|U^{i-1},\mathbf{Y}) =
$$

$$
K(\bar{U}_i|\bar{U}^{i-1},\bar{\mathbf{Y}})
$$

 $K(U_i|U^{i-1},\mathbf{Y})=$ $\mathcal{K}(\tilde{U}_{i+N-M}|\tilde{U}^{i+N-M-1}, \tilde{\mathbf{Y}})$

KO K K Ø K K E K K E K V K K K K K K K K K

The advantages of good bookkeeping

$$
\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

\n
$$
\bar{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}
$$

\n
$$
\bar{\mathbf{u}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}
$$

\n
$$
\mathbf{u} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}
$$

\nFor $0 \le i \le M$,

$$
Z(U_i|U^{i-1},\mathbf{Y}) =
$$

$$
Z(\bar{U}_i|\bar{U}^{i-1},\bar{\mathbf{Y}})
$$

$$
K(U_i|U^{i-1},\mathbf{Y}) =
$$

$$
K(\bar{U}_i|\bar{U}^{i-1},\bar{\mathbf{Y}})
$$

$$
\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

\n
$$
\tilde{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}
$$

\n
$$
\tilde{\mathbf{u}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}
$$

\n
$$
\mathbf{u} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \end{bmatrix}
$$

\nFor $0 \le i \le M$,

$$
Z(U_i|U^{i-1},\mathbf{Y}) =
$$

Z(\tilde{U}_{i+N-M}|\tilde{U}^{i+N-M-1},\tilde{\mathbf{Y}})

$$
K(U_i|U^{i-1},\mathbf{Y}) =
$$

$$
K(\tilde{U}_{i+N-M}|\tilde{U}^{i+N-M-1},\tilde{\mathbf{Y}})
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Main Theorem, reworded

Theorem

Let $W(x; y)$ be a joint distribution over $X \times Y$. Let **X, Y** be a pair of random vectors of length M, with each (X_i,Y_i) sampled independently from W . Let U of length M be the result of transforming X via either the shortening transform or the puncturing transform. Fix $0 < \beta < 1/2$ and $\epsilon > 0$. Then, there exists M_0 such that for all $M \geq M_0$,

$$
\frac{1}{M}\left|\left\{i:Z(U_i|U^{i-1},\mathbf{Y})<2^{-M^{\beta}}\right\}\right|>1-H(X|Y)-\epsilon,
$$
\n
$$
\frac{1}{M}\left|\left\{i:K(U_i|U^{i-1},\mathbf{Y})<2^{-M^{\beta}}\right\}\right|>H(X|Y)-\epsilon.
$$

KORKARYKERKER POLO

A halfway lemma

Lemma

Let $W(x; y)$, **X**, **Y**, and **U** be as in the main theorem. Fix $0 < \beta' < 1/2$ and $\epsilon' > 0$. Fix integers $t > 0$ and $a \in \{2^{t-1}+1, 2^{t-1}+2, \ldots, 2^{t}\}$. There exists n_0 such that for <u>all</u> $n \geq n_0$, if $M = a \cdot 2^{n-t}$, then for $N = 2^n$,

$$
\frac{1}{M}\left|\left\{i:Z(U_i|U^{i-1},\mathbf{Y})<2^{-N^{\beta'}}\right\}\right|>1-H(X|Y)-\epsilon',
$$
\n
$$
\frac{1}{M}\left|\left\{i:K(U_i|U^{i-1},\mathbf{Y})<2^{-N^{\beta'}}\right\}\right|>H(X|Y)-\epsilon'.
$$

KORKARYKERKER POLO

≮ロト (何) (ミ) (ヨ) Þ QQ

イロト イ押 トイヨ トイヨト B QQ

When all A_i are equal: Arikan & Telatar '09 gives fast polarization

イロト イ押 トイヨ トイヨト B QQ

When A_i have period 2: Arikan & Telatar, '09 applied after first transform gives fast polarization**KORK ERKER ADA ADA KORA**

Gener[a](#page-26-0)lly: if [t](#page-32-0)he A_i [ha](#page-30-0)[ve](#page-32-0) period 2^t , then we have [f](#page-25-0)a[s](#page-31-0)t [po](#page-0-0)[la](#page-39-0)[riz](#page-0-0)[ati](#page-39-0)[on](#page-0-0) D. 299

For
$$
S = \{\overline{N-1}, \overline{N-2}, \ldots, \overline{N-(N-M)}\}
$$
:

イロト イ部 トイ君 トイ君 トー È 299 Proof of main theorem – key properties of " \square "

Recall key properties of "⊑" relation:

 \blacktriangleright The two extremes: For any A,

$$
P \sqsubseteq A \sqsubseteq S
$$

▶ Preservation by polar operations:

$$
A' \sqsubseteq A \quad \text{and} \quad B' \sqsubseteq B \Longrightarrow \\
A' \boxplus B' \sqsubseteq A \boxtimes B \quad \text{and} \quad A' \otimes B' \sqsubseteq A \otimes B.
$$

▶ Transitivity:

$$
A \sqsubseteq B \quad \text{and} \quad B \sqsubseteq C \Longrightarrow A \sqsubseteq C
$$

▶ Z, K, and H monotonicity:

 $A \subseteq B \Longrightarrow Z(A) \geq Z(B), K(A) \leq K(B), H(A) \geq H(B)$

KORKARYKERKER POLO

イロト イ母 トイミト イミト ニヨー りんぺ

$$
Z(\bar{U}_i|\bar{U}^{i-1},\bar{\mathbf{Y}})
$$

$$
K(\bar{U}_i|\bar{U}^{i-1},\bar{\mathbf{Y}})
$$

イロト イ母 トイミト イミト ニヨー りんぺ

$$
Z(\bar{U}_i|\bar{U}^{i-1},\bar{\mathbf{Y}})
$$

$$
K(\bar{U}_i|\bar{U}^{i-1},\bar{\mathbf{Y}})
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

"Worse" case

 $Z(\bar U_i | \bar U^{i-1}, \bar{\mathbf{Y}})$ $\mathcal{K}(\bar{U}_i | \bar{U}^{i-1}, \bar{\mathbf{Y}})$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

"Worse" case

 $Z(\bar U_i | \bar U^{i-1}, \bar{\mathbf{Y}})$ $\mathcal{K}(\bar{U}_i | \bar{U}^{i-1}, \bar{\mathbf{Y}})$

"Worse" case

 $Z(\bar{U}_i|\bar{U}^{i-1}, \bar{\mathbf{Y}}) \leq Z(\bar{U}_i|\bar{U}^{i-1}, \bar{\mathbf{Y}})$ $\mathcal{K}(\bar{U}_i | \bar{U}^{i-1}, \bar{\mathbf{Y}})$ K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

"Better" case

 $Z(\bar{U}_i|\bar{U}^{i-1}, \bar{\mathbf{Y}}) \leq Z(\bar{U}_i|\bar{U}^{i-1}, \bar{\mathbf{Y}})$ $\mathcal{K}(\bar{U}_i|\bar{U}^{i-1}, \bar{\mathbf{Y}}) \leq \mathcal{K}(\bar{U}_i|\bar{U}^{i-1}, \bar{\mathbf{Y}})$