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Problem and goal

@ Channel polarization is slow. For short to moderate code lengths,
polar codes have disappointing performance.

Legend:
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@ In this talk, we present a generalization of the SC decoder which
greatly improves performance at short code lengths.



Avenues for improvement

From here onward, consider a polar code of length n = 2048 and rate
R = 0.5, optimized for a BPSK-AWGN channel with E;, /Ny = 2.0dB.
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e Why is our polar code under-performing?

o Is the SC decoder under-performing?
o Are the polar codes themselves weak at this length?




A critical look at successive cancellation

Successive Cancellation Decoding

fori=0,1,...,n—1do
if 11; is frozen then set u; accordingly;
else
if Wi(ya=1,5710) > Wi(ya', 75 ![1) then
| setu; < 0;
else
| setu; «+ 1;

Potential weaknesses (interplay):

@ Once an unfrozen bit is set, there is “no going back”. A bit that
was set at step i can not be changed at step j > i.

e Knowledge of the value of future frozen bits is not taken into
account.



Key idea: Each time a decision on 7; is needed, split the current de-
coding path into two paths: try both u; = 0 and u; = 1.
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List decoding of polar codes

Key idea: Each time a decision on 1; is needed, split the current de-
coding path into two paths: try both i1; = 0 and u; = 1.

When the number of paths grows beyond a prescribed threshold L, dis-
card the worst (least probable) paths, and keep only the L best paths.

’ At the end, select the single most likely path.




List-decoding: complexity issues

The idea of branching while decoding is not new. In fact a very similar
idea was applied for Reed-Muller codes.

I. Dumer, K. Shabunov, Soft-decision decoding of Reed-Muller codes:
recursive lists, IEEE Trans. on Information Theory, 52, pp. 1260-1266, 2006.

Our contribution
e We consider list decoding of polar codes.

e However, in a naive implementation, the time would be
O(L - n?).

e We show that this can be done in O(L - nlogn) time and
O(L - n) space.

We will return to the complexity issue later. For now, let’s see how
decoding performance is affected.



: ‘ ‘ ‘ i Legend:

1071 4 | —~—n=2048,L=1
il
B 102k 4
g10
v
E 103
o107 ¢ 3
=

104F 3

Il Il Il
1.0 15 2.0 25 3.0

Signal-to-noise ratio (E;/Ny) [dB]



‘ ‘ ‘ Legend:
1071 e E ——n=2048, L=1
[ £ E|
" d ——n=2048, L=2
il
B 102k 4
g10
v
E 10
o107 ¢ E
=
104 g 3
Il Il Il
1.0 15 2.0 25 3.0

Signal-to-noise ratio (E,/ Np) [dB]



‘ ‘ ‘ Legend:
101k 1 | —n=2048,L=1
- 1| ~—n=2048,L=2
g102¢ ] | = n=2048,L=4
3
B0k :
=
104F 3
Il Il Il
1.0 1.5 2.0 2.5 3.0

Signal-to-noise ratio (E,/ Np) [dB]



‘ ‘ ‘ i Legend:
wloflg E ——n=2048, L=1
s F ] ——n=2048, L=2
510-2L _ ——n=2048, L =4
£ ——11=2048, L =8
% 1073 F E
=

1074 g 3
Il Il Il
1.0 15 2.0 25 3.0

Signal-to-noise ratio (E;/Ny) [dB]



‘ ‘ ‘ i Legend:
wloflg E ——n=2048, L=1
‘5 F ] ——n=2048, L=2
510-2L i ——n=2048, L =4
g ——1n=2048, L=8
B, 0 ] ——n=2048, L=16
g 10

1074 g E
Il Il Il
1.0 15 2.0 25 3.0

Signal-to-noise ratio (E;/Ny) [dB]



‘ ‘ ‘ i Legend:

1018 1 | ——n=2048,L=1
- 1| ——n=2048,L=2
502l ] | ——n=2048,L=4
£ ——1=2048, L =8
5 1 | ——n=2048,L=16
§10 —— 1 =2048, L =232

104 E

1 1 1
1.0 1.5 2.0 2.5 3.0

Signal-to-noise ratio (E;/Ny) [dB]



Approaching ML performance
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@ List-decoding performance quickly approaches that of
maximume-likelihood decoding as a function of list-size.
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—e— 1 =2048, ML bound

@ List-decoding performance quickly approaches that of
maximume-likelihood decoding as a function of list-size.

@ Good: our decoder is essentially optimal.

@ Bad: Still not competitive with LDPC...

@ Conclusions: Must somehow “fix” the polar code.




A simple concatenation scheme

@ Recall that the last step of decoding was “pick the most likely
codeword from the list”.

@ An error: the transmitted codeword is not the most likely
codeword in the list.

e However, very often, the transmitted codeword is still a member
of the list.

@ We need a “genie” to single-out the transmitted codeword.
@ Idea: Let there be k + r unfrozen bits. Of these,

e Use the first k bits to encode information.

e Use the last » unfrozen bits to encode the CRC value of the first k
bits.

e Pick the most probable codeword on the list with correct CRC.



Approaching LDPC performance

Simulation results for a polar code of length n = 2048 and rate R = 0.5, opti-
mized for a BPSK-AWGN channel with E, /Ny = 2.0dB.
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Approaching LDPC performance

Simulation results for a polar code of length n = 2048 and rate R = 0.5, opti-
mized for a BPSK-AWGN channel with E, /Ny = 2.0dB.

—_
2
-
T
|

—
2
S

—e— Successive cancellation
—— List-decoding (L = 32)
——-WiMax turbo (n =960)

. A

.
2
@

Bit error rate
I
s

—
2
o

[y

2
>
T

| |
1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio [dB]




Approaching LDPC performance

Simulation results for a polar code of length n = 2048 and rate R = 0.5, opti-
mized for a BPSK-AWGN channel with E, /Ny = 2.0dB.
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Polar codes (+CRC) under list decoding are competitive

with the best LDPC codes at lengths as short as n = 2048.



Quadratic complexity of list decoding

Naive implementation recap

In a naive implementation, the decoding paths are independent.
They don’t share information.

Each decoding path has a set of variables associated with it. For
example, at stage 7, each decoding path must remember the values
of the bits g, 11, ..., U;_1.

It turns out (as we shall see) that each decoding path has ®(n)
memory associated with it.

When a path is split in two, one decoding path is left with the
original variables while the other must be handed a copy of them.

Each copy operation takes O(n) time.
Thus, the overall time complexity is O(L - n2).
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A larger example

Key point
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Level t is written

to once every
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Level ¢ is written

to once every
O(2"~1) stages.

2 1 0
o o i o LN
A B B D A
o 8o o Y B XA

ug

Uy

3

uz

D> O O+ O O O+ O D> O

k
\
S

[~
N
—D
NI
463 N
A
b5

L

u12

U13

14

uys

> O O+ O D D> O+ O > O
& —4
—




Application to list decoding

@ In a naive implementation, at each split we make a copy of the
variables.
@ We can do better:

e At each split, flag the corresponding variables as belonging to both
paths.

e Give each path a unique variable (make a copy) only before that
variable will be written to.

e If a path is killed, deflag its corresponding variables.

@ Thus, instead of wasting a lot of time on copy operations at each
stage, we typically perform only a small number of copy
operations.

This was a mile high view, there are many details to be filled
(book-keeping, data structures), but the end result is a running time of
O(L - nlogn) with O(L - n) memory requirements.



Very recent results

Gross and Sarkis (MacGill University) have recently attained the

following results.

@ Full independent verification of our simulation data.

@ Further improvement of performance using systematic polar
codes.

Bit error rate

E. Arikan, Systematic polar codes, IEEE Comm. Letters, accepted for
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publication.

—e— Successive cancellation
—— List-decoding (L = 32)
——~-WiMax turbo (n=960)
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—— List + CRC-16 (n = 2048)
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