
List-Decoding of Polar Codes

Ido Tal and Alexander Vardy
University of California San Diego

9500 Gilman Drive, La Jolla, CA 92093, USA

Problem and goal

Channel polarization is slow. For short to moderate code lengths,
polar codes have disappointing performance.

10−5

10−4

10−3

10−2

10−1

B
it

er
ro

r
ra

te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

successive cancellation, n = 2048, k = 1024
LDPC (Wimax standard, n = 2304)

Legend:

In this talk, we present a generalization of the SC decoder which
greatly improves performance at short code lengths.

Avenues for improvement

From here onward, consider a polar code of length n = 2048 and rate
R = 0.5, optimized for a BPSK-AWGN channel with Eb/N0 = 2.0 dB.

10−5

10−4

10−3

10−2

10−1

B
it

er
ro

r
ra

te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

successive cancellation, n = 2048, k = 1024
LDPC (Wimax standard, n = 2304)

Legend:

Why is our polar code under-performing?
Is the SC decoder under-performing?
Are the polar codes themselves weak at this length?

A critical look at successive cancellation

Successive Cancellation Decoding

for i = 0, 1, . . . , n− 1 do
if ûi is frozen then set ûi accordingly;
else

if Wi(yn−1
0 , ûi−1

0 |0) > Wi(yn−1
0 , ûi−1

0 |1) then
set ûi ← 0;

else
set ûi ← 1 ;

Potential weaknesses (interplay):
Once an unfrozen bit is set, there is “no going back”. A bit that
was set at step i can not be changed at step j > i.
Knowledge of the value of future frozen bits is not taken into
account.

List decoding of polar codes

Key idea: Each time a decision on ûi is needed, split the current de-
coding path into two paths: try both ûi = 0 and ûi = 1.

L = 4

0 1

When the number of paths grows beyond a prescribed threshold L, dis-
card the worst (least probable) paths, and keep only the L best paths.

At the end, select the single most likely path.

List decoding of polar codes

Key idea: Each time a decision on ûi is needed, split the current de-
coding path into two paths: try both ûi = 0 and ûi = 1.

L = 4

0 1

0 01 1

When the number of paths grows beyond a prescribed threshold L, dis-
card the worst (least probable) paths, and keep only the L best paths.

At the end, select the single most likely path.

List decoding of polar codes

Key idea: Each time a decision on ûi is needed, split the current de-
coding path into two paths: try both ûi = 0 and ûi = 1.

L = 4

0 1

0 01 1

0 1 1 000 1 1

When the number of paths grows beyond a prescribed threshold L, dis-
card the worst (least probable) paths, and keep only the L best paths.

At the end, select the single most likely path.

List decoding of polar codes

Key idea: Each time a decision on ûi is needed, split the current de-
coding path into two paths: try both ûi = 0 and ûi = 1.

L = 40 1

0 01 1

0 1 1 000 1 1

When the number of paths grows beyond a prescribed threshold L, dis-
card the worst (least probable) paths, and keep only the L best paths.

At the end, select the single most likely path.

List decoding of polar codes

Key idea: Each time a decision on ûi is needed, split the current de-
coding path into two paths: try both ûi = 0 and ûi = 1.

L = 40 1

0 01 1

0 1 1 000 1 1

1 0 1 00 0 1 1

When the number of paths grows beyond a prescribed threshold L, dis-
card the worst (least probable) paths, and keep only the L best paths.

At the end, select the single most likely path.

List decoding of polar codes

Key idea: Each time a decision on ûi is needed, split the current de-
coding path into two paths: try both ûi = 0 and ûi = 1.

L = 40 1

0 01 1

0 1 1 000 1 1

1 0 1 00 0 1 1

When the number of paths grows beyond a prescribed threshold L, dis-
card the worst (least probable) paths, and keep only the L best paths.

At the end, select the single most likely path.

List-decoding: complexity issues

The idea of branching while decoding is not new. In fact a very similar
idea was applied for Reed-Muller codes.

I. Dumer, K. Shabunov, Soft-decision decoding of Reed-Muller codes:
recursive lists, IEEE Trans. on Information Theory, 52, pp. 1260–1266, 2006.

Our contribution
We consider list decoding of polar codes.
However, in a naive implementation, the time would be
O(L · n2).
We show that this can be done in O(L · n log n) time and
O(L · n) space.

We will return to the complexity issue later. For now, let’s see how
decoding performance is affected.

Approaching ML performance

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1

Legend:

List-decoding performance quickly approaches that of
maximum-likelihood decoding as a function of list-size.
Good: our decoder is essentially optimal.
Bad: Still not competitive with LDPC. . .
Conclusions: Must somehow “fix” the polar code.

Approaching ML performance

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1
n= 2048, L= 2

Legend:

List-decoding performance quickly approaches that of
maximum-likelihood decoding as a function of list-size.
Good: our decoder is essentially optimal.
Bad: Still not competitive with LDPC. . .
Conclusions: Must somehow “fix” the polar code.

Approaching ML performance

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1
n= 2048, L= 2
n= 2048, L= 4

Legend:

List-decoding performance quickly approaches that of
maximum-likelihood decoding as a function of list-size.
Good: our decoder is essentially optimal.
Bad: Still not competitive with LDPC. . .
Conclusions: Must somehow “fix” the polar code.

Approaching ML performance

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1
n= 2048, L= 2
n= 2048, L= 4
n= 2048, L= 8

Legend:

List-decoding performance quickly approaches that of
maximum-likelihood decoding as a function of list-size.
Good: our decoder is essentially optimal.
Bad: Still not competitive with LDPC. . .
Conclusions: Must somehow “fix” the polar code.

Approaching ML performance

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1
n= 2048, L= 2
n= 2048, L= 4
n= 2048, L= 8
n= 2048, L= 16

Legend:

List-decoding performance quickly approaches that of
maximum-likelihood decoding as a function of list-size.
Good: our decoder is essentially optimal.
Bad: Still not competitive with LDPC. . .
Conclusions: Must somehow “fix” the polar code.

Approaching ML performance

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1
n= 2048, L= 2
n= 2048, L= 4
n= 2048, L= 8
n= 2048, L= 16
n= 2048, L= 32

Legend:

List-decoding performance quickly approaches that of
maximum-likelihood decoding as a function of list-size.
Good: our decoder is essentially optimal.
Bad: Still not competitive with LDPC. . .
Conclusions: Must somehow “fix” the polar code.

Approaching ML performance

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1
n= 2048, L= 2
n= 2048, L= 4
n= 2048, L= 8
n= 2048, L= 16
n= 2048, L= 32
n= 2048, ML bound

Legend:

List-decoding performance quickly approaches that of
maximum-likelihood decoding as a function of list-size.

Good: our decoder is essentially optimal.
Bad: Still not competitive with LDPC. . .
Conclusions: Must somehow “fix” the polar code.

Approaching ML performance

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1
n= 2048, L= 2
n= 2048, L= 4
n= 2048, L= 8
n= 2048, L= 16
n= 2048, L= 32
n= 2048, ML bound

Legend:

List-decoding performance quickly approaches that of
maximum-likelihood decoding as a function of list-size.
Good: our decoder is essentially optimal.
Bad: Still not competitive with LDPC. . .

Conclusions: Must somehow “fix” the polar code.

Approaching ML performance

10−4

10−3

10−2

10−1

W
or

d
er

ro
r

ra
te

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio (Eb/N0) [dB]

n= 2048, L= 1
n= 2048, L= 2
n= 2048, L= 4
n= 2048, L= 8
n= 2048, L= 16
n= 2048, L= 32
n= 2048, ML bound

Legend:

List-decoding performance quickly approaches that of
maximum-likelihood decoding as a function of list-size.
Good: our decoder is essentially optimal.
Bad: Still not competitive with LDPC. . .
Conclusions: Must somehow “fix” the polar code.

A simple concatenation scheme

Recall that the last step of decoding was “pick the most likely
codeword from the list”.
An error: the transmitted codeword is not the most likely
codeword in the list.
However, very often, the transmitted codeword is still a member
of the list.
We need a “genie” to single-out the transmitted codeword.
Idea: Let there be k + r unfrozen bits. Of these,

Use the first k bits to encode information.
Use the last r unfrozen bits to encode the CRC value of the first k
bits.
Pick the most probable codeword on the list with correct CRC.

Approaching LDPC performance
Simulation results for a polar code of length n = 2048 and rate R = 0.5, opti-
mized for a BPSK-AWGN channel with Eb/N0 = 2.0 dB.

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio [dB]

10−6

10−5

10−4

10−3

10−2

10−1

B
it

er
ro

r
ra

te Successive cancellation
List-decoding (L= 32)

Polar codes (+CRC) under list decoding are competitive
with the best LDPC codes at lengths as short as n = 2048.

Approaching LDPC performance
Simulation results for a polar code of length n = 2048 and rate R = 0.5, opti-
mized for a BPSK-AWGN channel with Eb/N0 = 2.0 dB.

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio [dB]

10−6

10−5

10−4

10−3

10−2

10−1

B
it

er
ro

r
ra

te Successive cancellation
List-decoding (L= 32)

WiMax turbo (n= 960)
WiMax LDPC (n= 2304)

Polar codes (+CRC) under list decoding are competitive
with the best LDPC codes at lengths as short as n = 2048.

Approaching LDPC performance
Simulation results for a polar code of length n = 2048 and rate R = 0.5, opti-
mized for a BPSK-AWGN channel with Eb/N0 = 2.0 dB.

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio [dB]

10−6

10−5

10−4

10−3

10−2

10−1

B
it

er
ro

r
ra

te Successive cancellation
List-decoding (L= 32)

WiMax turbo (n= 960)
WiMax LDPC (n= 2304)
List + CRC-16 (n= 2048)

Polar codes (+CRC) under list decoding are competitive
with the best LDPC codes at lengths as short as n = 2048.

Quadratic complexity of list decoding

Naive implementation recap

In a naive implementation, the decoding paths are independent.
They don’t share information.
Each decoding path has a set of variables associated with it. For
example, at stage i, each decoding path must remember the values
of the bits û0, û1, . . . , ûi−1.
It turns out (as we shall see) that each decoding path has Θ(n)
memory associated with it.
When a path is split in two, one decoding path is left with the
original variables while the other must be handed a copy of them.
Each copy operation takes O(n) time.
Thus, the overall time complexity is O(L · n2).

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

? ?

? ?

? ?

? ?

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

? X

? X

? ?

? ?

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

X X

? X

? ?

? ?

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

X X

? X

X ?

? ?

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

X X

? X

X ?

? ?

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

X X

X X

X ?

? ?

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

X X

X X

X ?

? ?

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

X X

X X

X ?

X ?

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

X X

X X

X ?

X ?

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

X X

X X

X X

X X

A closer look at successive cancellation

u0

u1

x0 → y0

x1 → y1

probability pair variable

boolean variable (bit)

(P(y0|x0 = 0), P(y0|x0 = 1))

x̂0

(P(y1|x1 = 0), P(y1|x1 = 1))

x̂1

(P(y0y1|u0 = 0), P(y0y1|u0 = 1))

û0

(P(y0y1 û0|u1 = 0), P(y0y1 û0|u1 = 1))

û1

X X

X X

X X

X X

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

The memory
needed to hold
the variables at
level t is O(n/2t).

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

A larger example

Key point

Level t is written
to once every
O(2m−t) stages.

y0u0

y1u1

y2u2

y3u3

y4u4

y5u5

y6u6

y7u7

y8u8

y9u9

y10u10

y11u11

y12u12

y13u13

y14u14

y15u15

4 3 2 1 0

Application to list decoding

In a naive implementation, at each split we make a copy of the
variables.
We can do better:

At each split, flag the corresponding variables as belonging to both
paths.
Give each path a unique variable (make a copy) only before that
variable will be written to.
If a path is killed, deflag its corresponding variables.

Thus, instead of wasting a lot of time on copy operations at each
stage, we typically perform only a small number of copy
operations.

This was a mile high view, there are many details to be filled
(book-keeping, data structures), but the end result is a running time of
O(L · n log n) with O(L · n) memory requirements.

Very recent results

Gross and Sarkis (MacGill University) have recently attained the
following results.

Full independent verification of our simulation data.
Further improvement of performance using systematic polar
codes.

E. Arıkan, Systematic polar codes, IEEE Comm. Letters, accepted for
publication.

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio [dB]

10−6

10−5

10−4

10−3

10−2

10−1

B
it

er
ro

r
ra

te Successive cancellation
List-decoding (L= 32)

WiMax turbo (n= 960)
WiMax LDPC (n= 2304)
List + CRC-16 (n= 2048)

Very recent results

Gross and Sarkis (MacGill University) have recently attained the
following results.

Full independent verification of our simulation data.
Further improvement of performance using systematic polar
codes.

E. Arıkan, Systematic polar codes, IEEE Comm. Letters, accepted for
publication.

1.0 1.5 2.0 2.5 3.0
Signal-to-noise ratio [dB]

10−6

10−5

10−4

10−3

10−2

10−1

B
it

er
ro

r
ra

te Successive cancellation
List-decoding (L= 32)

WiMax turbo (n= 960)
WiMax LDPC (n= 2304)
List + CRC-16 (n= 2048)
Systematic + List + CRC-16 (n= 2048)

	Introduction
	Successive cancellation
	List decoding
	Complexity

