Polar Codes for Channels with Insertions,
Deletions, and Substitutions

Henry D. Pfister! Ido Tal?

1Duke 2Technion

Big picture first

» Channel has constant insertion/deletion /substitution
probabilities

» These probabilities do not change with the codeword length
» Fix a hidden-Markov input distribution®
» Code rate converges to mutual information rate

» — can achieve capacity using a sequence of input
distributions

> Error probability decays like 2\, where 1/ < v < L and A is
the codeword length

» Decoding complexity is at most O(A13")

li.e., a function of an aperiodic, irreducible, finite-state Markov chain 1/22

Big picture first

» Channel has constant insertion/deletion /substitution
probabilities

» These probabilities do not change with the codeword length
» Fix a hidden-Markov input distribution®
» Code rate converges to mutual information rate

» — can achieve capacity using a sequence of input
distributions

> Error probability decays like 2\, where 1/ < v < L and A is
the codeword length

» Decoding complexity is at most O(A13")

> Key ideas:

» Polarization operations defined for trellises
» Polar codes modified to have guard bands of 0's and 1's

li.e., a function of an aperiodic, irreducible, finite-state Markov chain 1/22

Relation to our previous work on deletion channels

In our previous?® paper on deletion channels
» Use of trellises to capture deletion and polar transforms
» Proof of weak polarization for “vanilla” polar codes

» For strong polarization, guard bands must be added

Generalization to IDS channel

» First two bullets generalize naturally to IDS channel
» Not straightforward:

» For strong polarization, different guard bands must be added
» Our analysis uses two players: Genie who processes guard
bands “perfectly”, and Aladdin, who tries to mimic the genie

2|, Tal, H. D. Pfister, A. Fazeli, A. Vardy, “Polar Codes for the Deletion
Channel: Weak and Strong Polarization” 2/22

The channel model®

» Input alphabet: X ={0,1}
» Output alphabet: Y C X*
» Y is a finite collection of binary strings, possibly of different
lengths
» ¢, the empty string, is a valid output symbol
» Probability law, single input symbols:
» For x € X and y €), the probability law is P(y|x)
» Probability law, multiple input symbols:
» Let Y; be the output corresponding to X;, for 1 </ < N

» The output corresponding to X1, Xo,..., Xy is
Y10 Yo® - --® Yy, where ® denotes concatenation
> Not Y, Ys,..., Yy (we don't see the commas)

3R. L. Dobrushin, “Shannon'’s theorems for channels with synchronization
errors,” Problemy Peredachi Informatsii, vol. 3, no. 4, pp. 18-36, 1967. 3/22

The channel model

Important example
» X ={0,1}, Y ={¢0,1,00,01,10,11}
» Deletion: P(e|x) = py
> Substitution: P(X|x) = ps
» Insertion: P(0x|x) = P(1x|x) = &
» No error: P(x|x)=1— pyg— ps — pi

Underlying assumptions

» The channel is memoryless
» Advantage of the input at the output:

> For input x, let ag|, (ay)x) be the expected number of 0 (1)
symbols at the output
> We require: agjo > o and a1 > agp

» Expected output length independent of input:

B = agjo + a1j0 = o1 + Qa1

4 /22

Code rate

The code rate of our scheme approaches

1 1
I(X;¥) = fim SH(X)— lim ~H(X|Y),

N—oo

» X =(Xi,...,Xn) is hidden-Markov input
» Y is the channel output

5/ 22

Theorem (Strong polarization)

Fix a regular hidden-Markov input process and a parameter
v € (0,1/3]. The rate of our coding scheme approaches the
mutual information rate between the input process and the binary
IDS channel output. The encoding and decoding complexities are

O(Alog\) and O(AY*+3Y), respectively, where N is the blocklength.

For any 0 < v/ < v and sufficiently large blocklength A, the
probability of decoding error is at most 2=\ .

6 /22

Weak polarization

» Fix a regular hidden-Markov input distribution
> Let Xi,..., Xy be inputs, where N = 2"
> letY =Y1 0 Yo - ® Yy be the corresponding output
» Let Uy, Us, ..., Uy be the polar transform of X1, Xo, ..., Xy
» Can easily adapt the proof from the deletion-only paper to
prove
Theorem
For any ¢ > 0,

,Jinw% H, e [N]| H(U UL, Y) € [e,1 — e]}) ~0

7/22

Strong polarization — first attempt

v

Fix a regular hidden-Markov input distribution
Let Xi,..., Xy be inputs, where N = 2"

Let X(1), X(2),...,X(®P) be the inputs, separated into ¢
blocks, each of length N/®

Let Y(1),Y(2),...,Y(®) be the corresponding output blocks
Let Ui, U, ..., Uy be the polar transform of X1, X5,..., Xy

We can adapt the proof from the deletion-only paper to prove
strong polarization, for output punctuated into blocks

That is, for appropriately chosen v and ©,

N'l“oo% {ie I Zuluy),. . Y(@) <27V}

_ L1 NiyN
= 1—N|i“OONH(X1 1Y)

8 /22

Strong polarization — first attempt

> If we had a genie that could punctuate the output
Y1)oY2) o -0Y(P)

into
Y(1),Y(2),Y(®)

we would have strong polarization

9/22

Needed: just the right genie

» On the decoding side we have a mere-mortal, Aladdin
» Aladdin gets the non-punctuated output

Y1) 0 Y2) o 0 Y(®)

» Qur “genie” will be a mathematical construct
» It must have two key qualifications
» Strong enough: using the genie gives us strong polarization

> Not too strong: Aladdin can, with high probability, mimic the
genie

10 / 22

Needed: just the right genie

A genie that punctuates output into Y(1),Y(2),...,Y(®) is

» Strong enough (leads to strong polarization)

» Too strong (Aladdin can’'t mimic)

11/ 22

Needed: just the right genie

Key idea:
» Split x = x1, X0, ..., xy into ® blocks, each of length
N/ =2m,

x=x(1)ox(2)® - ©x(P)
» Instead of sending x over the channel, we send g(x), in which
the x(7) are interspaced by “guard bands”

» The genie will remove some part of each guard band from the
corresponding output, and punctuate into ¢ blocks

» Aladdin will be able to do the same, with high probability

12 /22

Needed: just the right genie

Need to make sure that:

» Adding the guard band does not change the code rate by
much

» Length of guard bands must be sub-linear

» Trimming only part of the guard band does not change the
block entropy by much

» guard bands must be “simple”

13/ 22

Guard bands

> Denote x = x; ® xq1, where x; and xj7 are the left and right
halves of x

» Define g(x) recursively: for a vector x of length 27,

g(x) 2 g(x1) © gn © g(xm) ?f n> ng,)
X if n < ng
where
gglid
— |
€0 2 0(lny) © 1(Cn) @ 1(L,) ©0(Lny) -
g},eft gnmidleft g;nidright gf,ight

and

0, & 2l0-8)n-1)

€ €(0,1/2) a ‘small’ constant (determined by the parameters
in the Theorem)
14 /22

Genie decoding

» Denote the input to the channel as
x(1)og(l)ox(2)og2)0---0g(®—1) Ox(®)
» Denote the corresponding output as
y=y(1)od1l)oy2)eod2)o---od(-1)oy(P)

» The genie will parse this into blocks, y*(1),y*(2),...,y*(®)
(and throw away some symbols)

» Consider the segment d(i — 1) ® y(i) ® d(/)

> For 1 < i < ®, the genie will produce

Y (1) = Yiets (1) © Y(7) © Yrignt (i)

where
> yiere () is a suffix of d(i — 1)

> Yiignt(7) is a prefix of d(/)
15 / 22

Genie decoding — abridged
Producing y. (/) (abridged to "high probability” case)
» Denote
d(i—1) = d*(j—1)od™dleft (j_ 1) dmidrisht (; _1)odrisht (1)
» We only consider
dmidight(j _ 1 o gright(; _ 1)

» For a properly defined h:
» Place a of length h at the end of d™idrisht(; 1)

dmidright(,’_l) dright(,’_l)
, 1111011011101110111, 100000010000,

mostly ones mostly zeros

16 / 22

Genie decoding — abridged

Producing yes (i) (abridged to “high probability” case)

dmidright(,‘_l) dright(,’_l)
, 1111011011101110111, 100000010000,

mostly ones mostly zeros

» Shift the p places right, where p chosen uniformly
from {1,2,..., h}
dmidright("_l) dright(,’_l)
,11110110111011101111[0,200000010000,

mostly ones mostly zeros

» Does the contain more zeros than ones?

» If so, yiert (/) is everything to the right of the window

17 / 22

Genie decoding — abridged

Producing y.r (i) (abridged to “high probability” case)

dmidright(,‘_l) dright(,’_l)
,1111011011101110111110,100000010000,

mostly ones mostly zeros

» Does the contain more zeros than ones?
> If not, shift the window h place to the right

dmidright("il) dright (171)
,1111011011101110111110, 100000010000,
mostly ones mostly zeros

>yt (/) is everything to the right of the window

» Producing yrigh(7): similar (mirror). ..

18 / 22

Aladdin decoding — abridged

» Aladdin gets y, and must produce the same y*(/) as the genie

» He does so recursively, splitting y into two blocks, then each
of these two blocks into two more blocks. . .

» We show the first step in the recursion

» We will show how to find the right block (left block is similar,
up to mirroring)

P First, choose the middle index in y

> Typically, this middle index is either in d™® (N /2 — 1) or
dmidright(N/2 _ 1)

dmidleft(N/2_1) dmidright(N/z_l) dright(N/2_1)
1101111101111111110I_1i, 1111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

19 / 22

Aladdin decoding — abridged

dmidlcft(N/271) dmidright(N/zil) dright(N/zil)
1101111101111111110@, 1111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

» Aladdin now picks p € {1,2,..., h}, and shift the index p
places to the right

dmidlcft(N/271) dmidright(N/zil) dright(N/zil)
110111110111111111011!, 1111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

20 / 22

Aladdin decoding — abridged

dmidlcft(N/271) dmidright(N/zil) dright(N/zil)
110111110111111111011!, 1111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros
» Aladdin now opens a of width h, whose left is at the

index previously picked

dmidlcft(N/271) dmidright(N/zil) dright(N/zil)
110111110111111111011[1,;3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

21 / 22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
110111110111111111011[,;3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

22 /22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
1101111101111111110111,1113011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

22 /22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
1101111101111111110111,1111022011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

22 /22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
1101111101111111110111,1111011021201110111110, 100000010000,
mostly ones mostly ones mostly zeros

22 /22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
1101111101111111110111,1111011011102210111110, 100000010000,
mostly ones mostly ones mostly zeros

22 /22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
1101111101111111110111,11110110111011102/11110, 100000010000,
mostly ones mostly ones mostly zeros

22 /22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
1101111101111111110111,11110110111011101212/10, 100000010000,
mostly ones mostly ones mostly zeros

22 /22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
1101111101111111110111,1111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

22 /22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
1101111101111111110111,1111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

22 /22

Aladdin decoding — abridged

dmidleft(N/2fl) dmidright(N/271) dright(N/zil)
110111110111111111011[,3111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

P As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/zil) dmidright(N/271) dright(N/zil)
1101111101111111110111,1111011011101110111110, 100000010000,
mostly ones mostly ones mostly zeros

» The right block is everything to the right of the window

22 /22

