Polar Codes for Channels with Insertions, Deletions, and Substitutions

Henry D. Pfister ${ }^{1}$ Ido Tal ${ }^{2}$

${ }^{1}$ Duke ${ }^{2}$ Technion

Big picture first

- Channel has constant insertion/deletion/substitution probabilities
- These probabilities do not change with the codeword length
- Fix a hidden-Markov input distribution ${ }^{1}$
- Code rate converges to mutual information rate
- \Longrightarrow can achieve capacity using a sequence of input distributions
- Error probability decays like $2^{-\Lambda^{\nu^{\prime}}}$, where $\nu^{\prime}<\nu \leq \frac{1}{3}$ and Λ is the codeword length
- Decoding complexity is at most $O\left(\Lambda^{1+3 \nu}\right)$

[^0]
Big picture first

- Channel has constant insertion/deletion/substitution probabilities
- These probabilities do not change with the codeword length
- Fix a hidden-Markov input distribution ${ }^{1}$
- Code rate converges to mutual information rate
$-\Longrightarrow$ can achieve capacity using a sequence of input distributions
- Error probability decays like $2^{-\Lambda^{\nu^{\prime}}}$, where $\nu^{\prime}<\nu \leq \frac{1}{3}$ and Λ is the codeword length
- Decoding complexity is at most $O\left(\Lambda^{1+3 \nu}\right)$
- Key ideas:
- Polarization operations defined for trellises
- Polar codes modified to have guard bands of 0's and 1's

[^1]
Relation to our previous work on deletion channels

In our previous ${ }^{2}$ paper on deletion channels

- Use of trellises to capture deletion and polar transforms
- Proof of weak polarization for "vanilla" polar codes
- For strong polarization, guard bands must be added

Generalization to IDS channel

- First two bullets generalize naturally to IDS channel
- Not straightforward:
- For strong polarization, different guard bands must be added
- Our analysis uses two players: Genie who processes guard bands "perfectly", and Aladdin, who tries to mimic the genie

[^2]
The channel model ${ }^{3}$

- Input alphabet: $\mathcal{X}=\{0,1\}$
- Output alphabet: $\mathcal{Y} \subset \mathcal{X}^{*}$
- \mathcal{Y} is a finite collection of binary strings, possibly of different lengths
- ϵ, the empty string, is a valid output symbol
- Probability law, single input symbols:
- For $x \in \mathcal{X}$ and $y \in \mathcal{Y}$, the probability law is $P(y \mid x)$
- Probability law, multiple input symbols:
- Let Y_{i} be the output corresponding to X_{i}, for $1 \leq i \leq N$
- The output corresponding to $X_{1}, X_{2}, \ldots, X_{N}$ is $Y_{1} \odot Y_{2} \odot \cdots \odot Y_{N}$, where \odot denotes concatenation
- Not $Y_{1}, Y_{2}, \ldots, Y_{N}$ (we don't see the commas)

[^3]
The channel model

Important example

- $\mathcal{X}=\{0,1\}, \mathcal{Y}=\{\epsilon, 0,1,00,01,10,11\}$
- Deletion: $P(\epsilon \mid x)=p_{d}$
- Substitution: $P(\bar{x} \mid x)=p_{s}$
- Insertion: $P(0 x \mid x)=P(1 x \mid x)=\frac{p_{i}}{2}$
- No error: $P(x \mid x)=1-p_{d}-p_{s}-p_{i}$

Underlying assumptions

- The channel is memoryless
- Advantage of the input at the output:
- For input x, let $\alpha_{0 \mid x}\left(\alpha_{1 \mid x}\right)$ be the expected number of 0 (1) symbols at the output
- We require: $\alpha_{0 \mid 0}>\alpha_{1 \mid 0}$ and $\alpha_{1 \mid 1}>\alpha_{0 \mid 1}$
- Expected output length independent of input:

$$
\beta=\alpha_{0 \mid 0}+\alpha_{1 \mid 0}=\alpha_{0 \mid 1}+\alpha_{1 \mid 1}
$$

Code rate

The code rate of our scheme approaches

$$
\mathcal{I}(X ; Y)=\lim _{N \rightarrow \infty} \frac{1}{N} H(\mathbf{X})-\lim _{N \rightarrow \infty} \frac{1}{N} H(\mathbf{X} \mid \mathbf{Y}),
$$

- $\mathbf{X}=\left(X_{1}, \ldots, X_{N}\right)$ is hidden-Markov input
- \mathbf{Y} is the channel output

Theorem (Strong polarization)

Fix a regular hidden-Markov input process and a parameter $\nu \in(0,1 / 3]$. The rate of our coding scheme approaches the mutual information rate between the input process and the binary IDS channel output. The encoding and decoding complexities are $O(\Lambda \log \Lambda)$ and $O\left(\Lambda^{1+3 \nu}\right)$, respectively, where Λ is the blocklength. For any $0<\nu^{\prime}<\nu$ and sufficiently large blocklength Λ, the probability of decoding error is at most $2^{-\Lambda^{\nu^{\prime}}}$.

Weak polarization

- Fix a regular hidden-Markov input distribution
- Let X_{1}, \ldots, X_{N} be inputs, where $N=2^{n}$
- Let $\mathbf{Y}=Y_{1} \odot Y_{2} \odot \cdots \odot Y_{N}$ be the corresponding output
- Let $U_{1}, U_{2}, \ldots, U_{N}$ be the polar transform of $X_{1}, X_{2}, \ldots, X_{N}$
- Can easily adapt the proof from the deletion-only paper to prove

Theorem
For any $\epsilon>0$,

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{i \in[N] \mid H\left(U_{i} \mid U_{1}^{i-1}, \mathbf{Y}\right) \in[\epsilon, 1-\epsilon]\right\}\right|=0
$$

Strong polarization - first attempt

- Fix a regular hidden-Markov input distribution
- Let X_{1}, \ldots, X_{N} be inputs, where $N=2^{n}$
- Let $\mathbf{X}(1), \mathbf{X}(2), \ldots, \mathbf{X}(\Phi)$ be the inputs, separated into Φ blocks, each of length N / Φ
- Let $\mathbf{Y}(1), \mathbf{Y}(2), \ldots, \mathbf{Y}(\Phi)$ be the corresponding output blocks
- Let $U_{1}, U_{2}, \ldots, U_{N}$ be the polar transform of $X_{1}, X_{2}, \ldots, X_{N}$
- We can adapt the proof from the deletion-only paper to prove strong polarization, for output punctuated into blocks
- That is, for appropriately chosen ν and Φ,

$$
\begin{aligned}
\left.\lim _{N \rightarrow \infty} \frac{1}{N} \right\rvert\,\left\{i \in[N] \mid Z\left(U_{i} \mid U_{1}^{i-1},\right.\right. & \left.\mathbf{Y}(1), \ldots, \mathbf{Y}(\Phi))<2^{-N^{\nu}}\right\} \mid \\
& =1-\lim _{N \rightarrow \infty} \frac{1}{N} H\left(X_{1}^{N} \mid Y_{1}^{N}\right)
\end{aligned}
$$

Strong polarization - first attempt

- If we had a genie that could punctuate the output

$$
\mathbf{Y}(1) \odot \mathbf{Y}(2) \odot \cdots \odot \mathbf{Y}(\Phi)
$$

into

$$
\mathbf{Y}(1), \mathbf{Y}(2), \mathbf{Y}(\Phi)
$$

we would have strong polarization

Needed: just the right genie

- On the decoding side we have a mere-mortal, Aladdin
- Aladdin gets the non-punctuated output

$$
\mathbf{Y}(1) \odot \mathbf{Y}(2) \odot \cdots \odot \mathbf{Y}(\Phi)
$$

- Our "genie" will be a mathematical construct
- It must have two key qualifications
- Strong enough: using the genie gives us strong polarization
- Not too strong: Aladdin can, with high probability, mimic the genie

Needed: just the right genie

A genie that punctuates output into $\mathbf{Y}(1), \mathbf{Y}(2), \ldots, \mathbf{Y}(\Phi)$ is

- Strong enough (leads to strong polarization)
- Too strong (Aladdin can't mimic)

Needed: just the right genie

Key idea:

- Split $\mathbf{x}=x_{1}, x_{2}, \ldots, x_{N}$ into Φ blocks, each of length $N / \Phi=2^{n_{0}}$,

$$
\mathbf{x}=\mathbf{x}(1) \odot \mathbf{x}(2) \odot \cdots \odot \mathbf{x}(\Phi)
$$

- Instead of sending \mathbf{x} over the channel, we send $g(\mathbf{x})$, in which the $\mathbf{x}(i)$ are interspaced by "guard bands"
- The genie will remove some part of each guard band from the corresponding output, and punctuate into Φ blocks
- Aladdin will be able to do the same, with high probability

Needed: just the right genie

Need to make sure that:

- Adding the guard band does not change the code rate by much
- Length of guard bands must be sub-linear
- Trimming only part of the guard band does not change the block entropy by much
- guard bands must be "simple"

Guard bands

- Denote $\mathbf{x}=\mathbf{x}_{\mathrm{I}} \odot \mathbf{x}_{\mathrm{II}}$, where \mathbf{x}_{I} and \mathbf{x}_{II} are the left and right halves of \mathbf{x}
- Define $g(\mathbf{x})$ recursively: for a vector x of length 2^{n},

$$
g(\mathbf{x}) \triangleq \begin{cases}g\left(\mathbf{x}_{\mathrm{I}}\right) \odot \mathbf{g}_{n} \odot g\left(\mathbf{x}_{\mathrm{II}}\right) & \text { if } n>n_{0} \tag{1}\\ \mathbf{x} & \text { if } n \leq n_{0}\end{cases}
$$

where

$$
\mathbf{g}_{n} \triangleq \underbrace{\mathbf{0}\left(\ell_{n_{0}}\right)}_{\mathbf{g}_{n}^{\text {left }}} \odot \overbrace{\underbrace{\mathbf{1}\left(\ell_{n}\right)}_{\mathbf{g}_{n}^{\text {midleft }}}}^{\mathbf{g}_{n}^{\text {mid }}} \odot \underbrace{\mathbf{1}\left(\ell_{n}\right)}_{\mathbf{g}_{n}^{\text {midright }}} \odot \underbrace{\mathbf{0}\left(\ell_{n_{0}}\right)}_{\mathbf{g}_{n}^{\text {right }}} .
$$

and

$$
\ell_{n} \triangleq 2^{\lfloor(1-\xi)(n-1)\rfloor},
$$

$\xi \in(0,1 / 2)$ a 'small' constant (determined by the parameters in the Theorem)

Genie decoding

- Denote the input to the channel as

$$
\mathbf{x}(1) \odot \mathbf{g}(1) \odot \mathbf{x}(2) \odot \mathbf{g}(2) \odot \cdots \odot \mathbf{g}(\Phi-1) \odot \mathbf{x}(\Phi)
$$

- Denote the corresponding output as

$$
\mathbf{y}=\mathbf{y}(1) \odot \mathbf{d}(1) \odot \mathbf{y}(2) \odot \mathbf{d}(2) \odot \cdots \odot \mathbf{d}(\Phi-1) \odot \mathbf{y}(\Phi)
$$

- The genie will parse this into blocks, $\mathbf{y}^{\star}(1), \mathbf{y}^{\star}(2), \ldots, \mathbf{y}^{\star}(\Phi)$ (and throw away some symbols)
- Consider the segment $\mathbf{d}(i-1) \odot \mathbf{y}(i) \odot \mathbf{d}(i)$
- For $1<i<\Phi$, the genie will produce

$$
\mathbf{y}^{\star}(i)=\mathbf{y}_{\text {left }}(i) \odot \mathbf{y}(i) \odot \mathbf{y}_{\text {right }}(i)
$$

where

- $\mathbf{y}_{\text {left }}(i)$ is a suffix of $\mathbf{d}(i-1)$
- $\mathbf{y}_{\text {right }}(i)$ is a prefix of $\mathbf{d}(i)$

Genie decoding - abridged

Producing $\mathbf{y}_{\text {left }}(i)$ (abridged to "high probability" case)

- Denote

$$
\mathbf{d}(i-1)=\mathbf{d}^{\text {left }}(i-1) \odot \mathbf{d}^{\text {midleft }}(i-1) \odot \mathbf{d}^{\text {midright }}(i-1) \odot \mathbf{d}^{\text {right }}(i-1)
$$

- We only consider

$$
\mathbf{d}^{\text {midright }}(i-1) \odot \mathbf{d}^{\text {right }}(i-1)
$$

- For a properly defined h :
- Place a window of length h at the end of $\mathbf{d}^{\text {midright }}(i-1)$

Genie decoding - abridged

Producing $\mathbf{y}_{\text {left }}(i)$ (abridged to "high probability" case)

- Shift the window ρ places right, where ρ chosen uniformly from $\{1,2, \ldots, h\}$

- Does the window contain more zeros than ones?
- If so, $\mathbf{y}_{\text {left }}(i)$ is everything to the right of the window

Genie decoding - abridged

Producing $\mathbf{y}_{\text {left }}(i)$ (abridged to "high probability" case)

- Does the window contain more zeros than ones?
- If not, shift the window h place to the right

- $\mathbf{y}_{\text {left }}(i)$ is everything to the right of the window
- Producing $\mathbf{y}_{\text {right }}(i)$: similar (mirror)...

Aladdin decoding - abridged

- Aladdin gets \mathbf{y}, and must produce the same $\boldsymbol{y}^{\star}(i)$ as the genie
- He does so recursively, splitting y into two blocks, then each of these two blocks into two more blocks...
- We show the first step in the recursion
- We will show how to find the right block (left block is similar, up to mirroring)
- First, choose the middle index in y
- Typically, this middle index is either in $\mathbf{d}^{\text {midleft }}(N / 2-1)$ or $\mathbf{d}^{\text {midright }}(N / 2-1)$

Aladdin decoding - abridged

- Aladdin now picks $\rho \in\{1,2, \ldots, h\}$, and shift the index ρ places to the right

Aladdin decoding - abridged

- Aladdin now opens a window of width h, whose left is at the index previously picked

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

Aladdin decoding - abridged

- As long as the window contains mores ones than zeros, we shift it by h places right, and try again

- The right block is everything to the right of the window

[^0]: ${ }^{1}$ i.e., a function of an aperiodic, irreducible, finite-state Markov chain

[^1]: ${ }^{1}$ i.e., a function of an aperiodic, irreducible, finite-state Markov chain

[^2]: ${ }^{2}$ I. Tal, H. D. Pfister, A. Fazeli, A. Vardy, "Polar Codes for the Deletion Channel: Weak and Strong Polarization"

[^3]: ${ }^{3}$ R. L. Dobrushin, "Shannon's theorems for channels with synchronization errors," Problemy Peredachi Informatsii, vol. 3, no. 4, pp. 18-36, 1967.

