
Polar Codes for Channels with Insertions,
Deletions, and Substitutions

Henry D. Pfister1 Ido Tal2

1Duke 2Technion

1 / 22

Big picture first

I Channel has constant insertion/deletion/substitution
probabilities
I These probabilities do not change with the codeword length

I Fix a hidden-Markov input distribution1

I Code rate converges to mutual information rate

I =⇒ can achieve capacity using a sequence of input
distributions

I Error probability decays like 2−Λν′
, where ν ′ < ν ≤ 1

3 and Λ is
the codeword length

I Decoding complexity is at most O(Λ1+3ν)

I Key ideas:
I Polarization operations defined for trellises
I Polar codes modified to have guard bands of 0’s and 1’s

1i.e., a function of an aperiodic, irreducible, finite-state Markov chain

1 / 22

Big picture first

I Channel has constant insertion/deletion/substitution
probabilities
I These probabilities do not change with the codeword length

I Fix a hidden-Markov input distribution1

I Code rate converges to mutual information rate

I =⇒ can achieve capacity using a sequence of input
distributions

I Error probability decays like 2−Λν′
, where ν ′ < ν ≤ 1

3 and Λ is
the codeword length

I Decoding complexity is at most O(Λ1+3ν)

I Key ideas:
I Polarization operations defined for trellises
I Polar codes modified to have guard bands of 0’s and 1’s

1i.e., a function of an aperiodic, irreducible, finite-state Markov chain

2 / 22

Relation to our previous work on deletion channels

In our previous2 paper on deletion channels

I Use of trellises to capture deletion and polar transforms

I Proof of weak polarization for “vanilla” polar codes

I For strong polarization, guard bands must be added

Generalization to IDS channel
I First two bullets generalize naturally to IDS channel
I Not straightforward:

I For strong polarization, different guard bands must be added
I Our analysis uses two players: Genie who processes guard

bands “perfectly”, and Aladdin, who tries to mimic the genie

2I. Tal, H. D. Pfister, A. Fazeli, A. Vardy, “Polar Codes for the Deletion
Channel: Weak and Strong Polarization”

3 / 22

The channel model3

I Input alphabet: X = {0, 1}
I Output alphabet: Y ⊂ X ∗

I Y is a finite collection of binary strings, possibly of different
lengths

I ε, the empty string, is a valid output symbol

I Probability law, single input symbols:
I For x ∈ X and y ∈ Y, the probability law is P(y |x)

I Probability law, multiple input symbols:
I Let Yi be the output corresponding to Xi , for 1 ≤ i ≤ N
I The output corresponding to X1,X2, . . . ,XN is

Y1 � Y2 � · · · � YN , where � denotes concatenation
I Not Y1,Y2, . . . ,YN (we don’t see the commas)

3R. L. Dobrushin, “Shannon’s theorems for channels with synchronization
errors,” Problemy Peredachi Informatsii, vol. 3, no. 4, pp. 18–36, 1967.

4 / 22

The channel model

Important example

I X = {0, 1}, Y = {ε, 0, 1, 00, 01, 10, 11}
I Deletion: P(ε|x) = pd
I Substitution: P(x |x) = ps
I Insertion: P(0x |x) = P(1x |x) = pi

2
I No error: P(x |x) = 1− pd − ps − pi

Underlying assumptions

I The channel is memoryless
I Advantage of the input at the output:

I For input x , let α0|x (α1|x) be the expected number of 0 (1)
symbols at the output

I We require: α0|0 > α1|0 and α1|1 > α0|1

I Expected output length independent of input:

β = α0|0 + α1|0 = α0|1 + α1|1

5 / 22

Code rate

The code rate of our scheme approaches

I(X ;Y) = lim
N→∞

1

N
H(X)− lim

N→∞

1

N
H(X|Y) ,

I X = (X1, . . . ,XN) is hidden-Markov input

I Y is the channel output

6 / 22

Theorem (Strong polarization)

Fix a regular hidden-Markov input process and a parameter
ν ∈ (0, 1/3]. The rate of our coding scheme approaches the
mutual information rate between the input process and the binary
IDS channel output. The encoding and decoding complexities are
O(Λ log Λ) and O(Λ1+3ν), respectively, where Λ is the blocklength.
For any 0 < ν ′ < ν and sufficiently large blocklength Λ, the

probability of decoding error is at most 2−Λν′
.

7 / 22

Weak polarization

I Fix a regular hidden-Markov input distribution

I Let X1, . . . ,XN be inputs, where N = 2n

I Let Y = Y1 � Y2 � · · · � YN be the corresponding output

I Let U1,U2, . . . ,UN be the polar transform of X1,X2, . . . ,XN

I Can easily adapt the proof from the deletion-only paper to
prove

Theorem
For any ε > 0,

lim
N→∞

1

N

∣∣∣{i ∈ [N] |H(Ui |U i−1
1 ,Y) ∈ [ε, 1− ε]

}∣∣∣ = 0

8 / 22

Strong polarization — first attempt

I Fix a regular hidden-Markov input distribution

I Let X1, . . . ,XN be inputs, where N = 2n

I Let X(1),X(2), . . . ,X(Φ) be the inputs, separated into Φ
blocks, each of length N/Φ

I Let Y(1),Y(2), . . . ,Y(Φ) be the corresponding output blocks

I Let U1,U2, . . . ,UN be the polar transform of X1,X2, . . . ,XN

I We can adapt the proof from the deletion-only paper to prove
strong polarization, for output punctuated into blocks

I That is, for appropriately chosen ν and Φ,

lim
N→∞

1

N

∣∣∣{i ∈ [N] |Z (Ui |U i−1
1 ,Y(1), . . . ,Y(Φ)) < 2−N

ν
}∣∣∣

= 1− lim
N→∞

1

N
H(XN

1 |Y N
1)

9 / 22

Strong polarization — first attempt

I If we had a genie that could punctuate the output

Y(1)� Y(2)� · · · � Y(Φ)

into
Y(1),Y(2),Y(Φ)

we would have strong polarization

10 / 22

Needed: just the right genie
I On the decoding side we have a mere-mortal, Aladdin

I Aladdin gets the non-punctuated output

Y(1)� Y(2)� · · · � Y(Φ)

I Our “genie” will be a mathematical construct

I It must have two key qualifications

I Strong enough: using the genie gives us strong polarization

I Not too strong: Aladdin can, with high probability, mimic the
genie

11 / 22

Needed: just the right genie

A genie that punctuates output into Y(1),Y(2), . . . ,Y(Φ) is

I Strong enough (leads to strong polarization)

I Too strong (Aladdin can’t mimic)

12 / 22

Needed: just the right genie

Key idea:

I Split x = x1, x2, . . . , xN into Φ blocks, each of length
N/Φ = 2n0 ,

x = x(1)� x(2)� · · · � x(Φ)

I Instead of sending x over the channel, we send g(x), in which
the x(i) are interspaced by “guard bands”

I The genie will remove some part of each guard band from the
corresponding output, and punctuate into Φ blocks

I Aladdin will be able to do the same, with high probability

13 / 22

Needed: just the right genie

Need to make sure that:
I Adding the guard band does not change the code rate by

much
I Length of guard bands must be sub-linear

I Trimming only part of the guard band does not change the
block entropy by much
I guard bands must be “simple”

14 / 22

Guard bands

I Denote x = xI � xII, where xI and xII are the left and right
halves of x

I Define g(x) recursively: for a vector x of length 2n,

g(x) ,

{
g(xI)� gn � g(xII) if n > n0,

x if n ≤ n0

(1)

where

gn , 0(`n0)︸ ︷︷ ︸
gleftn

�
gmid
n︷ ︸︸ ︷

1(`n)︸ ︷︷ ︸
gmidleft
n

� 1(`n)︸ ︷︷ ︸
gmidright
n

� 0(`n0)︸ ︷︷ ︸
grightn

.

and
`n , 2b(1−ξ)(n−1)c ,

ξ ∈ (0, 1/2) a ‘small’ constant (determined by the parameters
in the Theorem)

15 / 22

Genie decoding

I Denote the input to the channel as

x(1)� g(1)� x(2)� g(2)� · · · � g(Φ− 1)� x(Φ)

I Denote the corresponding output as

y = y(1)� d(1)� y(2)� d(2)� · · · � d(Φ− 1)� y(Φ)

I The genie will parse this into blocks, y?(1), y?(2), . . . , y?(Φ)
(and throw away some symbols)

I Consider the segment d(i − 1)� y(i)� d(i)

I For 1 < i < Φ, the genie will produce

y?(i) = yleft(i)� y(i)� yright(i)

where
I yleft(i) is a suffix of d(i − 1)
I yright(i) is a prefix of d(i)

16 / 22

Genie decoding – abridged

Producing yleft(i) (abridged to “high probability” case)

I Denote

d(i−1) = dleft(i−1)�dmidleft(i−1)�dmidright(i−1)�dright(i−1)

I We only consider

dmidright(i − 1)� dright(i − 1)

I For a properly defined h:

I Place a window of length h at the end of dmidright(i − 1)

,

dmidright(i−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(i−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

17 / 22

Genie decoding – abridged

Producing yleft(i) (abridged to “high probability” case)

,

dmidright(i−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(i−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I Shift the window ρ places right, where ρ chosen uniformly
from {1, 2, . . . , h}

,

dmidright(i−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(i−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I Does the window contain more zeros than ones?

I If so, yleft(i) is everything to the right of the window

18 / 22

Genie decoding – abridged

Producing yleft(i) (abridged to “high probability” case)

,

dmidright(i−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(i−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I Does the window contain more zeros than ones?

I If not, shift the window h place to the right

,

dmidright(i−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(i−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I yleft(i) is everything to the right of the window

I Producing yright(i): similar (mirror). . .

19 / 22

Aladdin decoding – abridged

I Aladdin gets y, and must produce the same y?(i) as the genie

I He does so recursively, splitting y into two blocks, then each
of these two blocks into two more blocks. . .

I We show the first step in the recursion

I We will show how to find the right block (left block is similar,
up to mirroring)

I First, choose the middle index in y

I Typically, this middle index is either in dmidleft(N/2− 1) or
dmidright(N/2− 1)

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

20 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I Aladdin now picks ρ ∈ {1, 2, . . . , h}, and shift the index ρ
places to the right

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

21 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I Aladdin now opens a window of width h, whose left is at the
index previously picked

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

22 / 22

Aladdin decoding – abridged

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I As long as the window contains mores ones than zeros, we
shift it by h places right, and try again

dmidleft(N/2−1)︷ ︸︸ ︷
1101111101111111110111︸ ︷︷ ︸

mostly ones

,

dmidright(N/2−1)︷ ︸︸ ︷
1111011011101110111110︸ ︷︷ ︸

mostly ones

,

dright(N/2−1)︷ ︸︸ ︷
100000010000︸ ︷︷ ︸
mostly zeros

,

I The right block is everything to the right of the window

