
1

Stronger Polarization for the Deletion Channel
Dar Arava, Ido Tal

Department of Electrical and Computer Engineering,
Technion, Haifa 32000, Israel.

{aravadar@campus, idotal@ee}.technion.ac.il

Abstract—In this paper we show a polar coding scheme for the
deletion channel with a probability of error that decays roughly
like 2−

√
Λ, where Λ is the length of the codeword. That is, the

same decay rate as that of seminal polar codes for memoryless
channels. This is stronger than prior art in which the square
root is replaced by a cube root. Our coding scheme is similar yet
distinct from prior art. The main differences are: 1) Guard-bands
are placed in almost all polarization levels; 2) Trellis decoding
is applied to the whole received word, and not to segments of
it. As before, the scheme is capacity-achieving. The price we pay
for this improvement is a higher decoding complexity, which is
nonetheless still polynomial, O(Λ4

).

I. INTRODUCTION

Deletion errors, along with insertion errors, arise in com-
munication channels with symbol-timing mismatch [1]. These
synchronization errors are also common in polymer-based
storage solutions [2].

The simplest theoretical model for these errors is the dele-
tion channel with a constant deletion probability. The channel
output is a sub-string of the symbols in the input. Deletions
occur according to an i.i.d. process that deletes each input
symbol with probability δ.

Polar codes [3] for a deletion channel with a fixed deletion
probability were first presented in [4]. See also [5]–[8], which
use polar codes for weaker settings. In [4], the authors show
that for a fixed regular hidden-Markov input process and a
fixed parameter ν ∈ (0, 1

3
), their coding scheme approaches

the mutual information rate between the input process and
the channel output. The encoding and decoding complexities
are O(Λ logΛ) and O(Λ1+3ν), respectively, where Λ is the
codeword length. Furthermore, for any 0 < ν′ < ν and large
enough Λ, the probability of a decoding block error is at most
2−Λ

ν′

. The authors also show that there exists a sequence of
regular hidden-Markov input processes for which the mutual
information rate approaches the deletion channel capacity. This
result also follows as a special case of the work of Li and Tan
[9], which proved the above for finite-order Markov processes.

We extend [4], and show that with simple alternations to
the encoding and decoding schemes, the error probability
decreases as 2−Λ

β′

where β′ ∈ (0, 1
2
). Recall that this is

This work was supported in part by the United-States Israel Binational
Science Foundation (BSF) under Grant No. 2018218, by the National Science
Foundation (NSF) under Grant CIF-2212437, and by the German Research
Foundation (DFG) via the German–Israeli Project Cooperation (DIP). The
work was presented in part at the International Symposium on Information
Theory (ISIT) 2023.

stronger than the result in [4], in which the error exponent
is ν′ ∈ (0, 1

3
).

The structure of our paper is as follows. Section II presents
the main results of our work, still without all the definitions
in place. Section III completes these definitions and sets up
key notation. It also introduces key concepts we inherit from
[4], and compares and contrasts our results to those in [4].
The first three subsections of Section IV detail both our
encoding and decoding schemes. Thus, the practitioner who
only wishes to implement our scheme may decide to only
read up to this point. The section concludes with a complexity
analysis and simulation results. Section V contains our first
key lemma, Lemma 5. This lemma bounds the evolution
of the Bhattacharyya parameter when applying ‘−’ and ‘+’
polarization operations. It contains an additive term which
is not present in simpler channels. Section VI contains our
second key lemma, Lemma 7, which shows that despite this
additive penalty, strong polarization still occurs. Section VII
uses these two key lemmas in order to prove our main result.

II. MAIN THEOREM

Our main result builds upon the guard-band function g
introduced in [4]. We will define g shortly. For now, we note
that g(x, n0, ξ) recursively transforms x, a word of length 2n,
into a slightly longer word, where the length is controlled by
the parameter ξ, and n−n0 is the recursion depth. We say that
g(x, n0, ξ) is the result of adding guard-bands to x.

Throughout the paper, we assume a deletion channel with
a fixed deletion probability. We also assume a fixed regular
hidden Markov input distribution (see [4, Subsection II-D]
for the formal definition). Denote by I the information rate
between an input distributed according to this distribution and
the corresponding output of the deletion channel. Denote by
Z and K the Bhattacharyya parameter and the total-variation,
respectively (see, for example, [10, Section III]).

Here is our “stronger polarization” theorem. It is stronger
than the “weaker polarization” theorem proved in [4]. In [4],
the parameters 0 < β′ < β < 1

2
below are replaced with 0 < ν′ <

ν < 1
3

, which implies a weaker decay to the error probability
bound.

Theorem 1 (Stronger polarization): Let δ ∈ (0,1) be a fixed
deletion probability of the deletion channel. Fix ϵ ∈ (0,1),
ξ ∈ (0, 1

6
), and 0 < β′ < β < 1

2
. There exist nth

0 (ϵ, δ, ξ)
and nth(ϵ, β, β′, n0) such that the following holds. Take
n0 ≥ nth

0 (ϵ, δ, ξ) and n ≥ nth(ϵ, β, β′, n0). Let X be of length
N = 2n. The vector X is partitioned into blocks of length

2

2n0 , and each block is independently distributed according
to the fixed regular hidden Markov input distribution. Let
U be the polar transform of X. Denote by Y the result of
transmitting g(X, n0, ξ) through the deletion channel. The
fraction of indices i for which

Z(Ui∣U i−1
1 ,Y) < 2−N

β

< 1

2N
⋅ 2−Λ

β′

(1)

K(Ui∣U i−1
1) < 2−N

β

< 1

2N
⋅ 2−Λ

β′

(2)

is at least I − ϵ, where Λ is the length of g(X, n0, ξ).
Furthermore,

N

Λ
> 1 − ϵ .

By using the Honda-Yamamoto scheme [11], [12], we get
the following corollary.

Corollary 2: The above implies a coding scheme with rate
I − 2ϵ and probability of error at most 2−Λ

β′

, where Λ is the
length of the transmitted codeword.

III. PRELIMINARIES

In this section we set up some notation and summarize key
concepts from [4].

A. Three related channels

We now introduce three related channels: the deletion chan-
nel, the trimming channel, and their composition, the trimmed
deletion channel.

Deletion Channel (DC) The deletion channel is the channel
we are to code over. As its name implies, it takes a binary
vector and deletes each bit with probability δ. Thus, the output
of the channel is typically shorter than its input. We will often
denote a random vector that is an input to such a channel by
G and denote the corresponding output by Y.

The following two channels were introduced in [4], and are
concepts we will need for our results as well.

Trimming Channel (TC) The trimming channel takes a
binary vector and removes from it all leading and trailing
zeros. Note that the trimming channel is deterministic. We
will often denote the input to this channel by either Y or Z.
We denote the trimming operation by appending a ‘∗’ as a
superscript. Thus, the outputs corresponding to Y and Z will
be Y∗ and Z∗, respectively.

Trimmed Deletion Channel (TDC) The trimmed deletion
channel is the composition of the above two channels. Thus,
if the input to the channel is G, then we first pass G through
the deletion channel and obtain Y, and then pass Y through
the trimming channel, which yields Y∗.

G
DC

deletion
Y

TC
trimming Y∗

TDC

B. Weak polarization for the TDC
We next state a weak polarization theorem for the trimmed

deletion channel. The theorem follows easily by combining the
weak polarization theorem [4, Theorem 20] with [13, Lemma
1], which bounds the Bhattacharyya parameter Z and total
variation K by monotonic functions of the conditional entropy.
As we will see, we will use this theorem to reach the stronger
polarization rate stated in our main theorem.

Theorem 3 (Weak polarization for the trimmed deletion
channel): Fix η ∈ (0,1) and let N0 = 2n0 . For a given
fixed regular hidden Markov input distribution, let X be a
random vector of length N0 distributed according to the input
distribution. Let Y∗ be the result of passing X through a
trimmed deletion channel with deletion probability δ. Denote
U as the polar transform of X. For all ϵ′ > 0 there exists an
nth
0 (ϵ′, η, δ) s.t. if n0 ≥ nth

0 then the fraction of indices i for
which

Z(Ui∣U i−1
1 ,Y∗) < η and K(Ui∣U i−1

1) < η
is larger than I − ϵ′.
Note that in the above, and throughout the paper, the infor-
mation rate I is

I ≜ lim
N0→∞

I(X;Y)
N0

,

where X is of length ∣X∣ = N0 and is drawn according to the
fixed regular hidden Markov input distribution and Y is the
corresponding output of the deletion channel. In [4, Section
V] it was shown that I is indeed well defined.

We end this section by noting that Theorem 3 does not
employ guard-bands. However, in order to prove stronger
polarization, we will employ guard-bands (as was also done
in [4]).

C. Blocks and guard-bands
Recall that in the main theorem, X was partitioned into

independent blocks of length N0 = 2n0 . There are N1 = N
N0

such blocks, and we denote them by X(1),X(2), . . . ,X(N1).
That is, X is the concatenation of the above N1 blocks,

X =X(1)⊙X(2)⊙⋯⊙X(N1).
We denote the first and second halves of X by XI and XII.
Denoting the length of a vector by ∣⋅∣, we have ∣XI∣ = ∣XII∣ = N

2
and

X =XI ⊙XII.

Note that XI and XII are independent, a convention that will
also hold in other places in which we use the “I” and “II”
subscripts.

Recall that the function g mentioned previously transforms
a vector X of length 2n into a slightly longer vector with
“guard-bands”. We now define g recursively, and note that it
adds the guard-bands between blocks. For a vector X of length
≤ 2n0 , g(X, n0, ξ) is simply the identity function. For a vector
X of length greater than 2n0 ,

g(X, n0, ξ) ≜ g(X) ≜ g(XI)
´¹¹¹¹¸¹¹¹¹¶
≜GI

⊙
ℓnzÐÐÐÐx

000 . . .00
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜G∆

⊙ g(XII)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
≜GII

. (3)

3

That is, we add
ℓn = ⌊2(1−ξ)(n−1)⌋ (4)

‘0’ symbols between the first and second halves of X, and
apply g recursively on each half. Note that ξ > 0 is a “small”
constant that we will constrain later. To summarize: X is a
concatenation of 2n−n0 independent blocks, each of length
N0 = 2n0 . The function g(X, n0, ξ) adds a guard-band of ‘0’
symbols between each two blocks, and the length of these
guard-bands varies. Here is an illustration, for the case in
which n = n0 + 2:

X(1) 00...0 X(2) 00........0 X(3) 00...0 X(4)

g(X)

N0 ℓn0+1
N0 ℓn0+2

N0 ℓn0+1
N0

We are not concerned by the added GB bits, since for a
large enough n0, the effect they have on the rate is negligible.
The following lemma shows this.

Lemma 4 (GBs have a negligible effect on the rate): For all
ϵ > 0 and ξ > 0 there exists an nth

0 (ϵ, ξ) such that if n0 ≥ nth
0

then
∣X∣

∣g(X, n0, ξ)∣
≜ N

Λ
> 1 − ϵ .

Proof:
We set nth

0 ≜ − 1
ξ
log2(ϵ ⋅(1−2−ξ)) and bound Λ as follows:

Λ ≜ ∣g(X)∣
(a)
< ∣X∣ ⋅ (1 + 2−(ξn0+1)

1 − 2−ξ
)

< ∣X∣ ⋅ (1 + 2−ξn0

1 − 2−ξ
) (4a)

(b)
≤ N ⋅ (1 + ϵ) , (4b)

where (a) is by [4, Lemma 22] and (b) follows by recalling
that n0 ≥ nth

0 . Finally:

N

Λ

(5)
> 1

1 + ϵ
= 1 − ϵ

1 + ϵ
> 1 − ϵ .

We remind the reader that G = GI ⊙G∆ ⊙GII is passed
through the DC. We denote the output of this channel by Y,
and denote the parts corresponding to GI, G∆, and GII by YI,
Y∆, and YII, respectively. We further denote the application
of the TC on Y by Z ≜Y∗, and denote the parts corresponding
to YI, Y∆, and YII by ZI, Z∆, and ZII, respectively. See Fig.
1, which is essentially [4, Figure 5]. Note that, in general, ZI
is formed by trimming off only the left side of YI. Hence,
typically, ZI ≠ (YI)∗ and ZII ≠ (YII)∗. Also, note that in the
typical case, Z∆ =Y∆.

D. An overview of this work compared to [4]

Throughout this paper we inherit concepts from [4], both
in our coding scheme and in our analysis. All the concepts
we use from [4] are defined in this work as well, to ensure
this paper is self-contained. To further highlight what is new,
this section outlines the main ideas in [4] and the differences
in this work. Every topic mentioned in this section will be
explained in more detail later on.

X XI XII

G = g(X) GI G∆ GII

Y YI Y∆ YII

Z =Y∗ ZI Z∆ ZII

g g g

DC DC DCDC

TC

Fig. 1. The random variables X, G, Y, and Z.

The encoder in [4] adds GBs to separate the polar coded
word into blocks. We do the same, while slightly changing
constrains on parameters that control how many GBs are added
and what their lengths are (ξ and n0). We also slightly change
the rule on how to select the information indices in the polar
coding scheme. However, in essence, we use the same encoder.

The decoding steps in [4] are as follows. First, the decoder
uses the GBs to process the received word into trimmed
blocks. In a good scenario, this processing yields the TDC
outputs of the blocks of X. Next, the decoder builds a trellis
for each trimmed block. The trellises incorporate the joint
probability of the deletion channel input and output. Lastly, the
trellises are processed according to the successive cancellation
polar decoder.

Our decoder does not perform the first step of partitioning
and trimming the output. Instead, we build one big trellis using
the whole received word. As the trellises in [4], this trellis
incorporates the joint probability of the deletion channel input
and output. As in [4], we then process the trellis according to
the successive cancellation algorithm. Unlike in [4], our trellis
includes sections that correspond to GBs. Thus, we expand
the definition from [4] on how to build the trellis and how to
process it such that it deals with the GB sections as well.

The processing of Y into trimmed blocks in [4] is subject to
errors. For example, if the middle index of the received word
does not fall within the middle GB, the decoder in [4] will
likely fail. Thus, our coding scheme which does not contain
such a preliminary step has a higher probability of decoding
successfully. This comes at a cost in decoding complexity,
O(Λ4) in our case compared to at most O(Λ2) in [4].

Regarding the analysis of the error probability, [4] shows
that weak polarization occurs for the TDC after n0 polar
transforms (without adding GBs). Then, they show strong
polarization for a “block-TDC” output. That is, essentially,
for input g(X) the “block-TDC” output is the TDC outputs of
each block in X. We remind that, in a good scenario, the result
of the partition and trimming operation in the first step of the
decoder of [4] is exactly the “block-TDC” output. Lastly, they
bound the probability of failing in partitioning and trimming
Y into the “block-TDC” output (i.e. the probability of not
being in the good scenario). This error term is what ultimately
constrained their error exponent to at most 1

3
.

4

We remind that our decoder does not perform partition and
trimming to the received vector Y. However, when analyzing
the performance of our coding scheme we will use the TDC.
Since the TDC is a degraded version of the deletion channel,
we may use the bounds on its error probability to bound
the error probability of the DC as well. We will show a
recursive relation on how the TDC polarizes. This recursive
relation will be pivotal in our proof. We will see that the
recursive relation is reached while bounding the probability of
successfully partitioning the TDC output of g(X) to the TDC
outputs of g(XI) and g(XII). This is not to be confused with
the requirement in [4] of successfully partitioning the received
vector to the TDC outputs of the blocks X(1), . . . ,X(N1),
which is less probable. When bounding the probability of
the former, we will use similar arguments as in the bound
of the latter in [4]. To conclude — in [4] it was natural to
understand why the authors analyze a channel that trims the
output (since the decoder applies trimming), whereas in our
setting this might seem like a detour to the reader. However,
we do not know how to reach our destination (an analysis of
the error probability) without taking this detour.

IV. CODING SCHEME FOR THE DELETION CHANNEL

A. Encoder

The encoding steps are as follows. The vector u = uN
1 is

produced successively, starting from u1 and ending in uN . If
the current index i satisfies (1) and (2), then ui is set to an
information bit. Otherwise, ui is a “frozen bit”. Its value is set
according to the distribution P(Ui = ui∣U i−1

1 = ui−1
1), where

ui−1
1 are the realizations that were set in the previous indices.

Note that this distribution is derived from the regular hidden
Markov input distribution we set for the independent blocks.
That is, if all bits were frozen, we would get that the blocks
x(1),x(2), . . . ,x(N1) of x = A(u) are independently drawn
from the regular hidden Markov process. For the calculation of
P(Ui = ui∣U i−1

1 = ui−1
1) we may use the Markov generalization

of Honda-Yamamoto successive cancellation encoding for
input distributions with memory [14], [15]. This is done by
recursively tracking the distribution of the hidden Markov
input and does not require the deletion channel trellis. We
assume the random draws are common to both the encoder
and the decoder. This is typically implemented using a pseudo-
random number generator, common to both sides: if the
pseudo-random number 0 ≤ ri ≤ 1 drawn for this stage is such
that P(Ui = 0∣U i−1

1 = ui−1
1) ≤ ri, we set ui = 0. Otherwise,

we set ui = 1. We note that in practice, one may wish to
simplify the above by picking a frozen ui so that it maximizes
P(Ui = ui∣U i−1

1 = ui−1
1) [16], [17]. We next transform u to

x = A(u), using the standard Arıkan transform presented in
the seminal paper [3]. For the final step, we add guard-bands
of 0’s to x, creating g = g(x, n0, ξ). We transmit g through
the deletion channel. The transform adding guard-bands is as
in (3).

Our encoder is the same as that in [4], with the following
differences. In our encoder, the selection of information in-
dices is according to (1) and (2). In [4], these conditions are

Algorithm 1 Encoder
1: function ENCODE(information bits, n0, ξ)
2: for i = 0 to N − 1 do
3: if i satisfies (1) and (2) then
4: ui ← next information bit
5: else ▷ ui is dynamically frozen
6: ui ← draw from input distribution, given ui−1

1

7: x← A(u) ▷ Arıkan transform
8: g ← g(x, n0, ξ) ▷ add GBs by (3)
9: return g

replaced with (essentially, see Equations (101) and (102) in
[4]):

Z(Ui∣U i−1
1 , (Y(1))∗, ..., (Y(N1))∗) < 2−N

ν

and K(Ui∣U i−1
1) < 2−N

ν

,

where ν ∈ (0, 1
3
). That is, the deletion channel output Y in (1)

is replaced with the TDC outputs of the blocks of X, and the
upper bounds in (1) and (2) are replaced with a weaker bound.
We also differ in the selection of n0, i.e. the step from which
we start adding guard-bands. Still, the encoding complexity
remains O(Λ logΛ) for a codeword length of ∣g∣ = Λ [4, Sub-
claim 9]. We note that the encoding complexity also increases
polynomially with the number of states. This is due to the
computation of P(Ui = ui∣U i−1

1 = ui−1
1) when setting the

frozen bit values [14, Theorem 2]. In total, the encoding
complexity is O(∣S ∣3Λ logΛ), where ∣S ∣ is the number of
states in the hidden Markov process. Thus, for a fixed input
distribution we get O(Λ logΛ).

B. High level decoder description

Our decoder is a generalization of the one described in [4,
Subsection IV]. That is, a base trellis is constructed, and then
‘−’ and ‘+’ operations are applied to it. One major difference
is that in our case, the base trellis corresponds to all of the
received word (Panel (a) in Figure 3). This is in contrast to
[4], in which N/N0 base trellises are constructed — one for
each block (Figure 4). Since we operate on a larger trellis, our
complexity is O(Λ4), as opposed to at most O(Λ2) in [4]. As
explained in Theorem 1, this added complexity is compensated
for by a reduced probability of error. That is, we reach the
same asymptotic bound as seminal polar codes [18].

As in [4], we will use a trellis T to represent the joint
probability of the deletion channel input and output. We
perform ‘−’ and ‘+’ operations on T , which merge two-edge
paths in T and result in trellises with a reduced number of
columns: T [0] and T [1], respectively. The mechanics of our
decoder will differ from those of [4, Section IV] in one main
point: our trellis contains sections corresponding to guard-
bands, and such sections will be treated differently than what
was described in [4, Section IV] when applying ‘−’ and ‘+’
operations.

The decoder recursively performs ‘−’ and ‘+’ transforms
on T as follows. First, we perform n ‘−’ transforms, creating
T [000...00]. For simplicity, assume for now that the hidden

5

T
T [0]−

T
T [1]

+

T [00]

T [01]

T [10]

T [11]

...

T [000...00] decide û1

T [000...01] decide û2

T [111...10] decide ûN−1

T [111...11] decide ûN

..
..
.

..
..
..
.

trellis polarization depth

λ
0 n1 n − 12 n − 2

Fig. 2. Recursive trellis transforms.

Markov input distribution contains only one state (that is,
the input distribution is memoryless). In the resulting trellis,
we consider the pair of single-edge paths from the upper-
left vertex to the lower-right vertex, which represent the two
possible values for û1. The decision on û1 (if it is not frozen)
is by the most probable value, i.e. the edge with the largest
probability. Using û1, we next create:

T
nzÐÐÐÐÐx

[000...01] =
⎛
⎝
T

n−1zÐÐÐÐx
[000...0]⎞

⎠

[1]

.

We use T [000...01] to decide on û2. We repeat this procedure
such that with trellis T [b1b2...bn] we decide on the value of
ûi(b1,...,bn) (if it is not frozen), where i(b1, . . . , bn) is the index
with binary representation b1, . . . , bn, see (7). If i is a frozen
index, we mimic the encoder operation to get ûi based on the
previous ûi−1

1 . See Figure 2 for an illustration of the decoding
process. The next three subsections fill in the details missing
in the above description.

C. Trellis operations

We first describe how to build the initial trellis T . We will
then describe the transforms performed on the trellis. For an
extended description on how to build T and how to perform
‘−’ and ‘+’ operations on it, see [4, Sections III and IV]. We
will present the main idea and provide a visual example, while
emphasizing the differences in our case.

The trellis T is built according to the received binary vector
y. It also factors in the deletion probability δ, the stationary
probabilities of the input process states, and the transition
probabilities between them.

1) Vertices: The trellis consists of a grid of vertices with
∣y∣ + 1 rows and ∣g∣ + 1 columns (where g ≜ g(x) is the
transmitted codeword we are to decode). We will denote by i
a vertex row index, by j a vertex column index and by ȷ (a
dot-less j) the corresponding index of the bit gj in the vector
x. That is, if gj is a bit that originates from the blocks of x
(i.e. is not a GB bit) then gj = xȷ. For some of the columns
there will also be ∣S ∣ “layers” of vertices, which correspond
to the possible states of the input distribution. Specifically, for
a column j − 1, where j ∈ {1, . . . , ∣g∣}, if gj originates from

T B−1 T GB−1 T B−2 T GB−2 T B−3 T GB−3 T B−4

x(1) x(2) x(3) x(4)GB GB GB

y

T

N0 ℓn0+1
N0 ℓn0+2

N0 ℓn0+1
N0

Perform n0 “without GB” transforms, and
merge sections in GB locations:

a b c d e f g

T [b1...bn0
]

sT sT

1 1 1 1 1 1 1

Perform “with GB” transform:
Step 1: in each sub trellis sT , merge the left
block trellis and the middle GB trellis:
a ≜ T B−1 merge b ≜ T GB−1,
e ≜ T B−3 merge f ≜ T GB−3

a
b c d

e
f

g

sT sT

1 1 1 1 1

Step 2: in each sub trellis sT , sum over two-
edge paths as in the “without GB” transform:
sum over paths in (a b) and c,
sum over paths in (e f) and g

a
b
c

d
e
f
g

T [b1...bn0+1
]

1 1 1

(a)

(b)

(c)

Fig. 3. Trellis evolution in the decoder. Panel (a) is the initial trellis T .
White rectangles are the block trellises which correspond to the blocks of X.
In block trellises, both edges with label ‘1’ and edges with label ‘0’ exist.
The blue rectangles mark the GB trellises, which correspond to the GBs (have
only ‘0’ labels). The number of sections in each block trellis or GB trellis
in T is the length of the corresponding block or GB. Panel (b) shows the
trellis after collapsing each of the GB trellises into a single section and after
the first n0 polar transforms. Panel (c) shows how the next polar transform
is applied, and is divided into two steps: merging a block trellis with a GB
trellis and then merging the resulting trellis with a block trellis (either a ‘−’
or a ‘+’ merge).

x(1)

x(2)

x(3)

x(4)

y∗(1)

y∗(2)

y∗(3)

y∗(4)

y
partition

&
trimming

N0

N0

N0

N0

Fig. 4. An illustration of the prior-art decoder [4]. The initial step partitions
the channel output y into trimmed outputs of each block. In this example
n = n0 + 2, hence there are four blocks. The next step builds a block trellis
for each block. These trellises are then processed according to the successive
cancellation decoder, by recursively performing ‘−’ and ‘+’ transforms to
them.

6

x then we must consider the possible input states of Sȷ−1 in
the trellis. For this column we denote by vi,j−1,s the vertex in
row i column j − 1 and layer (state) s ∈ S. The vertex vi,j−1,s
corresponds to the event in which the output corresponding to
gj−11 is yi1 and the state of the input process before transmitting
xȷ was Sȷ−1 = s. Otherwise, if gj is a GB bit, we denote by
vi,j−1 the vertex in row i and column j − 1 (no layers in this
column). The vertex vi,j−1 corresponds to the event in which
the output corresponding to gj−11 is yi1. The last column in T
will also not have multiple layers, vi,∣g∣. As we will shortly
see, the only vertex of interest in this column is the vertex
v∣y∣,∣g∣, which corresponds to the event in which the output
corresponding to g is y, which is always the case. The total
set of vertices is:

⎧⎪⎪⎨⎪⎪⎩
vi,j−1,s ∶

i ∈ {0, . . . , ∣y∣},
j ∈ {1, . . . , ∣g∣} is an index in a block
s ∈ S

⎫⎪⎪⎬⎪⎪⎭
⋃{vi,j−1 ∶ i ∈ {0, . . . , ∣y∣},

j ∈ {1, . . . , ∣g∣} is an index in a GB }

⋃{vi,∣g∣ ∶ i ∈ {0, . . . , ∣y∣}} .

We set weights for the vertices in the first and last columns
of the trellis as in [4]. That is, for v0,0,s, where s ∈ S ,
we set weight(v0,0,s) = π(s), the stationary probability of
state s in the input process. All other vertices in the first
column have weight(vi,0,s) = 0. By this we effectively force
all paths to start at a vertex v0,0,s, and incorporate the
probability of starting the path at the state s. For the last
column we set weight(v∣y∣,∣g∣) = 1 and weight(vi,∣g∣) = 0 for
i ∈ {0,1, . . . , ∣y∣ − 1}. By this we effectively force all paths
to end at the vertex v∣y∣,∣g∣. That is, at the end of a path, ∣g∣
symbols have been transmitted, and of these, ∣y∣ have been
received.

2) Edges: We briefly explain how the edges are set in the
trellis T . Each edge e connects a vertex in some column j −1
to a vertex in column j, and corresponds to the input bit gj
(j ∈ {1, ..., ∣g∣}). Hence, the edge label is gj . We refer to the
edges from column j − 1 to column j as the edges in trellis
section j. Notice that if e is an outgoing edge of some vertex
vi,j−1,s and is an incoming edge of some other vertex vi′,j,s′ ,
it corresponds to the transition of states in the input process
from Sȷ−1 = s to Sȷ = s′.
● A diagonal edge connects a vertex in row i − 1 to

a vertex in row i, and corresponds to output bit yi
(i ∈ {1, . . . , ∣y∣}). This edge corresponds to the event
where the bit yi is the result of gj passing through the
deletion channel and not being deleted. As in [4], the
edge label is the value yi.

● A horizontal edge connects a vertex in row i − 1 to a
vertex in row i − 1. This edge corresponds to the event
where gj was deleted. If gj originates from x, there are
two parallel horizontal edges for the two possible cases,
one with the label ‘0’ for gj = 0 and one with the label
‘1’ for gj = 1. Conversely, if gj is a GB bit, there is a
single horizontal edge with label ‘0’.

Notice that if gj is a GB bit, all the edges in section j (from
column j−1 to column j) are labeled ‘0’ (no ‘1’ edges), since
gj = 0.

The edge weights in the initial trellis T are the conditional
probabilities of the events they correspond to. For example,
the edge

vi−1,j−1,s
e→ vi,j,s′

connects the vertex in row i − 1, column j − 1, and layer s
to the vertex in row i, column j, and layer s′. This edge
corresponds to the “no deletion” event: gj = xȷ is the input
to the channel, there was no deletion hence yi = gj = xȷ, and
the input process states before and after this happened were
Sȷ−1 = s and Sȷ = s′. The edge weight is the probability of
this event, conditioned on Sȷ−1 = s:

weight(e) = (1 − δ) ⋅ P(Xȷ = yi, Sȷ = s′∣Sȷ−1 = s) .

Note that the term P(Xȷ = yi, Sȷ = s′∣Sȷ−1 = s) is determined
by the input process. See Table I for the weights and labels
of all the edges in T .

3) Block and GB trellises: Up to this point, in this section
we have defined how to build the initial trellis T . We now set
up the definitions of a ‘block’ trellis and a ‘guard-band’ (GB)
trellis which we will use soon to define the polar transforms
performed on T . The initial trellis T that we have described is
a concatenation of ‘block’ trellises and ‘guard-band’ trellises.
A block trellis consists of consecutive sections with edges
starting in vertices of the form vi,j−1,s. Consequently, section
j is part of a ‘block’ trellis iff j is an index originating from
a block in x.

Informally, a GB trellis is a block trellis without the edges
labeled ‘1’. Formally, it consists of consecutive sections with
edges starting in vertices of the form vi,j−1. Consequently,
section j is part of a ‘guard-band’ trellis iff j is an index
originating from a guard-band added by the function g.

The first N0 sections in T are the block trellis T B−1. The
following ℓn0+1 sections are the GB trellis T GB−1. The next
N0 sections are T B−2, followed by ℓn0+2 sections of T GB−2

and so on (where the lengths of the guard-bands are according
to the recursive function g defined in (3)). That is,

T ≜ T B−1⊙T GB−1⊙T B−2⊙T GB−2...⊙T GB−(N1−1)⊙T B−N1 .

See an example of T in Panel (a) in Figure 3 where n =
n0 + 2. See an example of a block trellis in Figure 5, and an
example of a GB trellis in Figure 6. In the latter two figures,
the code length is ∣g∣ = 11 bits. Specifically, N0 = 2n0 = 4 and
n = n0 + 1 = 3. That is, only one GB is added to x (see also
Panel (a) in Figure 7) and it is of length ℓ3 = 3 bits. In this
example (that is, in Figures 5–7) three bits were deleted in the
channel, and the received vector is y = 01100010 (∣y∣ = 8).
Lastly we note that in this example the input distribution was
memoryless, ∣S ∣ = 1, hence only a single layer is depicted in
Figure 5.

4) Trellis polar transforms: We now briefly describe the
polar transforms performed on T . Our trellis consists of both
block trellises and GB trellises, whereas in [4] there were only
block trellises in a “trimmed” version (contrast Figure 3 with

7

TABLE I
EDGE WEIGHTS AND LABELS IN TRELLIS T .

horizontal edge
(deletion)
i′ = i

diagonal edge
(non-deletion)

i′ = i + 1

vi,j−1,s
e→ vi′,j,s′

(gj is a bit from x)
x ≜ label(e) ∈ {0,1} (two parallel edges),
weight(e) = δ ⋅ P(Xȷ = x,Sȷ = s′∣Sȷ−1 = s)

label(e) = yi′ ,
weight(e) = (1 − δ) ⋅ P(Xȷ = yi′ , Sȷ = s′∣Sȷ−1 = s)

vi,j−1
e→ vi′,j

(gj is a bit from a GB)
label(e) = 0,
weight(e) = δ if yi′ = 0: label(e) = yi′ = 0,

weight(e) = 1 − δ
else: no edge

vi,j−1
e→ vi′,j,s′

(gj is a last bit in a GB)
label(e) = 0,
weight(e) = δ ⋅ π(s′) if yi′ = 0: label(e) = yi′ = 0,

weight(e) = (1 − δ) ⋅ π(s′) else: no edge

vi,j−1,s
e→ vi′,j

(gj is a last bit in a block of x)
x ≜ label(e) ∈ {0,1} (two parallel edges),
weight(e) = δ ⋅ P(Xȷ = x∣Sȷ−1 = s)

label(e) = yi′ ,
weight(e) = (1 − δ) ⋅ P(Xȷ = yi′ ∣Sȷ−1 = s)

The first row regards edges in the sections of the trellis that correspond to the blocks of x. The weights and labels of the edges in
these sections are as defined in [4]. The second row regards edges in GB sections of the trellis. The third and forth rows regard the
edges in the “stitches” between blocks and GBs. The third row describes edges in the last section of each GB. We denoted by π(s) the
probability that the regular hidden-Markov process starts at state s ∈ S. We incorporated π(s) in the edge weights this way since each
block is independently drawn (a new initial state for each block). The fourth row describes the edges in the last section of each block.
Here we disregard the state Sȷ, since it is of no consequence. That is, the GB bits are always ‘0’; they are not drawn from the hidden
Markov input distribution. Thus, the weights in the fourth row are equal to the marginalization of the corresponding weights in the first
row over all s′.

Figure 4). Hence, we need to define how to process these GB
trellises along the polarization transforms.

A key operation which we will define shortly is the “merge”
operation, which collapses two sections into one. It will serve
two purposes: collapsing a GB trellis into a single section
(getting from the left part of Figure 6 to the right part) and
merging this section into the block section to its left (getting
from Panel (a) in Figure 7 to Panel (b)).

A preliminary step of our decoding algorithm is to collapse
each GB trellis into a single section. For each guard-band
trellis this is performed as follows, see Figure 6. Recall that
merging two sections together results in one section. We
repeatedly merge the rightmost section in the GB trellis with
the GB section to its left, until only one section remains. That
is, first merge the rightmost section with its neighbor to the
left, then merge the section created with the next neighbor to
the left and so on, up to the leftmost section.

We now define the merge operation. A merge operation is
always performed on a pair of consecutive sections, where
the right section is from a GB trellis (has only ‘0’ edges).
It combines all the possible two-edge paths connecting two
vertices,

α
e1→ β

e2→ γ , (5)

where all e1 edges have the same label and all e2 edges are
labeled ‘0’, into one single edge

α
ẽ→ γ .

We remind that edges always connect a vertex in some column
to a vertex in the following column, hence α is a vertex in the
leftmost column in the sections merged, β is a vertex in the
middle column, and γ is in the rightmost column. The label
and weight of the resulting edge are

label(ẽ) = label(e1)
and weight(ẽ) = ∑

e1,e2

weight(e1) ⋅weight(e2) .

We note that since the right section merged is always from
a GB trellis with only ‘0’ labels, setting the label of ẽ to
label(e1) is the same as setting it to: label(e1) xor label(e2).
Thus, the new edges created by the merge operation are created
just as in the minus transform defined in [4, Definition 5].

The first n0 ‘−’ and ‘+’ transforms on T are as defined in
[4, Definitions 5,6], and are performed on the block trellises.
We refer to this as the “without GB” phase. After this phase,
each block trellis has collapsed into one section, see Figure 5.
In the following n1 ≜ n − n0 transforms, which we refer to
as “with GB” transforms, we perform the following operation
on each ‘sub-trellis’. Each sub-trellis is denoted by sT and
consists of three consecutive sections. Specifically, we define

sT = T B−j ⊙ T GB−j ⊙ T B−(j+1), j ∈ {1, ...,2n−λ} is odd,
(6)

and λ ≥ n0 is the polarization depth we are currently at
(and wish to enlarge by 1). We remind that after the first n0

transforms and after merging the GB paths, T B−(j+1),T GB−j ,
and T B−(j+1) each consist of one single section. That is,
each sT includes a GB section between two non-guard-band
sections, see Panel (a) in Figure 7. Thus, we first merge the
left section, T B−j , and the GB section, T GB−j . This results in
two-sections with no GB sections (Panel (b) in Figure 7). We
may now perform the ‘−’ or ‘+’ transform as in the “without
GB” phase. See Figure 3 for an illustration.

In the resulting trellis, we think of the operation described
above on each sT as producing a block trellis (even though
sT consisted of a middle section that is the result of merging
a GB trellis). Since we have not changed the even index GB
trellises, we have produced a trellis with a structure as in (6),
with λ+1 in place of λ. Hence, we can continue the recursion.

D. Decoding complexity

In this section we show that the decoding complexity is
O(∣S ∣3Λ4). This will follow by first recalling that in [4,

8

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

y1=0

y2=1

y3=1

y4=0

y5=0

y6=0

y7=1

y8=0

j=0 j=1 j=2 j=3 j=4
g1 g2 g3 g4

x1 x2 x3 x4

= = = =

gj

=
xȷ

yi
i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

y1=0

y2=1

y3=1

y4=0

y5=0

y6=0

y7=1

y8=0

Fig. 5. Left: The first block trellis T B−1. Right: The same block trellis after
n0 = 2 minus polar transforms. Red edges are labeled ‘1’ and blue edges are
labeled ‘0’. To improve legibility, a gray edge represents two parallel edges,
red and blue (the two edges do not have the same weight necessarily). In this
example n0 = 2, thus there are four sections in each block trellis.

Subsection IV-D], the complexity of decoding a trellis with
Λ sections and no GBs is O(∣S ∣3Λ4), and then showing that
the processing of the GBs does not change the order of the
decoding complexity. In [4] this complexity can be further
reduced to roughly O(∣S ∣3Λ2). On the upside, we do not
require a successful partitioning of y to the TDC outputs of
each block x(1),x(2), . . . ,x(N1), whereas in [4] it is crucial
for correct decoding. Thus, and as proven herein, we reach a
better probability of correct decoding.

Regarding the details, we will first show that the complexity
of collapsing each of the GB trellises into one section is
O(Λ3). Then, we will analyze the complexity of performing
the polar transforms on the trellis (both “with GBs” and
“without GBs”) and show that it is O(∣S ∣3Λ4).

During the process of collapsing the largest GB trellis in
T , which consists of ℓn sections, we also get the results of
collapsing each of the smaller GB trellises. In detail, recall that
in a GB trellis with ℓ sections, the first ℓ − 1 sections (from
the left) are identical and created according to the second
row in Table I. The right-most section in each GB trellis
is created according to the third row in Table I. Observe
that in the second and third rows of Table I the section
index j does not play a part. Hence, any two suffixes of
equal length corresponding to different GB trellises are the
same. When collapsing the largest GB trellis, we merge the
right-most section with the one to its left, then with the
next section to its left and so on, until ℓn sections were
merged. Hence, we can pause the merging iterations after

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

y1=0

y2=1

y3=1

y4=0

y5=0

y6=0

y7=1

y8=0

j=4 j=5 j=6 j=7
g5 g6 g7gj

yi
i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

y1=0

y2=1

y3=1

y4=0

y5=0

y6=0

y7=1

y8=0

Fig. 6. Left: The GB trellis T GB−1. Right: The same GB trellis after merging
all sections. Blue edges are labeled ‘0’ (in GB trellises all edges are labeled
‘0’). In this example n = 3, n0 = 2 and ℓ3 = 3, hence T GB−1 is the only
GB trellis in T and has 3 sections.

ℓn0+1, ℓn0+2, . . . , ℓn−1 sections were merged and extract the
rightmost section as the result of collapsing GB trellises which
consist of ℓn0+1, ℓn0+2, . . . , ℓn−1 sections, respectively.

We bound the number of calculations when collapsing a GB
trellis with ℓn sections by

ℓn−1
∑
m=1
(Λ + 1) ⋅ 2 ⋅ (m + 1) ∈ O(Λ3) ,

where m is the iteration of the merge operations. In each merge
we sum over all possible two-edge paths. The paths may start
at ∣y∣ + 1 possible starting vertices (in each row of the trellis)
which is bounded by Λ + 1. The number of outgoing edges
of the starting vertex is at most 2 (diagonal and horizontal
edges). The number of outgoing edges in the middle vertex
of a path is at most m + 1 (since these are edges of a section
created after performing m − 1 merges).

We now bound the complexity of the remaining decoding
steps, after the GB trellises are collapsed into single sections.
Let λ denote the polarization depth as before, i.e. the number
of ‘+’ or ‘−’ transforms performed on T (see Figure 2). We
will now show that for a fixed regular hidden Markov input
distribution with ∣S ∣ states, the complexity of our decoder is
bounded by

“without GB” phase
³¹¹¹·¹¹¹µ
n0−1
∑
λ=0

2λ+1
±

(a)

⋅4(Λ + 1)∣S ∣3(2λ + 1)2
´¹¹¹¸¹¹¶

(b1)

⋅2n−λ−1
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

(c1)

+

9

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

y1=0

y2=1

y3=1

y4=0

y5=0

y6=0

y7=1

y8=0

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

i=0

i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

T [00]

T
B−1

T
GB−1

T
B−2

T [000](a) (b) (c)

Fig. 7. Panel (a) shows the trellis T [00]. That is, T after n0 = 2 minus transforms and after merging all the GB paths in the GB trellis, T GB−1. The
two block trellises T B−1 and T B−2 are identical since they are identical in the initial trellis T , and we performed only minus transforms. This is not the
case for other transforms (for example in the other trellises T [01],T [10] and T [11] the block trellises are not generally identical). The next polar transform,
performed on T [00], will be a “with GB” transform. That is, first merge the paths of the left block trellis T B−1 with the GB trellis T GB−1. The result of
this step is shown in Panel (b). Then perform a regular polar transform (“without GB” transform) on the result. After this step we get T [000] which is shown
in Panel (c). In this example n = 3, n0 = 2 and ℓ3 = 3, hence we get this result for the received vector y. We note that n1 ≜ n − n0 = 1 in this example,
thus there is only one sub-trellis sT in T [00], which is T [00] itself. As the polarization steps progress, the trellis becomes quite busy and hard to follow. To
clarify the tangled scheme, we highlighted some edges as examples. The bold red edge in Panel (b) was created from the bold edges in Panel (a). As shown,
only one path exists between row i = 3 and i = 8 in the block trellis and GB trellis we merge. This edge takes the label of the block trellis edge in the path
(which is labeled ‘1’). The dashed gray arrow in Panel (b), which represents two parallel edges with different labels and likely different weights, was created
from the dashed edges in Panel (a). As shown in Panel (a), there exists a path from row i = 4 to i = 8 which gives the label ‘0’ (the gray arrow from i = 4
to i = 7 also represents an edge with label ‘0’). There also exist two paths that give the label ‘1’ (one passes through i = 7 along the same gray arrow and
one goes straight from i = 4 to i = 8). The dotted arrow in Panel (c) was created from the dotted paths in Panel (b). This arrow represents two parallel edges:
blue and red. The decision on û1, if it is not frozen, is according to the higher weighted edge of the two (a higher weight indicates a higher likelihood).

“with GB” phase
³¹¹·¹¹µ
n−1
∑

λ=n0

2λ+1
±

(a)

⋅8(Λ + 1)∣S ∣3(C ⋅ 2λ+1 + 1)2
´¹¹¹¸¹¹¶

(b2)

⋅2n−λ−1
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

(c2)

∈ O(∣S ∣3Λ4) .

(a) is the number of times we perform a polar transform
on trellises of depth λ, see an illustration in Figure 2.
(b1) bounds the number of calculations performed on
each pair of sections in a trellis of depth λ < n0.
(c1) is the number of pairs of consecutive sections (first
odd then even indexed) in a trellis of depth λ < n0.
(b2) bounds the number of calculations on each sub-trellis
of a given trellis of depth λ ≥ n0. The constant C will
soon be defined.
(c2) is the number of sub-trellises in a trellis of depth λ,
see (6).

Before proving (b1) and (b2), we remind the reader that we
sum over all possible two-edge paths in pairs of consecutive
sections. The proof will follow from bounding the number
of two-edge paths in each pair of sections in a trellis of
polarization depth λ.

We first show (b1). In (b1) we have λ < n0, i.e. we only

work on block trellis sections after λ “without GB” transforms.
Each section in a block trellis of depth λ ≤ n0 was created
from 2λ sections in the base trellis T . Thus, in depth λ, we
have 2λ + 1 possible ‘types’ of edges, where the edge type
refers to how many rows the edge crosses. For example, in
the initial trellis λ = 0 there are two types: horizontal edges
and diagonal edges that cross one row. In a block trellis after
λ = 2 “without GB” transforms we have five types: horizontal
edges and diagonal edges which cross one, two, three or four
rows (see Figure 5).

Each edge can be labeled either ‘0’ or ‘1’, and edges of a
given type can enter at most ∣S ∣ vertices. Thus, we get at most
2 ⋅ (2λ + 1) ⋅ ∣S ∣ outgoing edges for each vertex. Hence, there
are at most (2 ⋅(2λ+1)∣S ∣)2 two-edge paths starting from each
vertex.

There are ∣y∣ + 1 starting vertex rows, which is upper
bounded by Λ+1, and each row is at most ∣S ∣ layers deep. In
total, the number of calculations performed when collapsing
two sections into one for λ < n0 is bounded by (b1), that is

4(Λ + 1)∣S ∣3(2λ + 1)2 .

For (b2), we first bound the number of edge types in each
sub-trellis. As before, the number of possible edge types in

10

a section of depth λ is equal to the number of sections in T
that produced it plus 1. For depth λ:
● The block sections were each created from Λλ sections

in the base trellis T , where Λλ is the length of g(x) and
x is of length 2λ. Thus, we have Λλ + 1 types in each
block section.

● The middle GB section in each sub-trellis sT was created
from ℓλ+1 sections in the base trellis (which we collapsed
into a single section as described previously), see (3) and
(6). Thus, we have at most ℓλ+1+1 edge types in the GB
section of each sub-trellis. For example, see Panel (a) in
Figure 7 which shows a sub-trellis of depth λ = 2. In
this figure the middle GB trellis of sT was created from
ℓ3 = 3 GB sections which collapsed into one, and there
are four edge types (horizontal edges and diagonal edges

that cross 1-3 rows). Since ℓλ+1
(4)
< 2λ ≤ Λλ, we can bound

the possible types of edges in the GB section by Λλ + 1
(which is the bound of types in the block sections).

We have shown that the number of edge types in each sub-
trellis of depth λ is at most Λλ + 1. By the same logic used
for (b1), in each sub-trellis there are now at most

(2 ⋅ (Λλ + 1)∣S ∣)2

two-edge paths from each starting vertex. Thus, using the same
arguments as the (b1) case, the number of steps for merging
the GB trellises into the block trellises (“step 1” in Panel (c),
Figure 3, and transitioning from Panel (a) to Panel (b) in
Figure 7) is at most

4(Λ + 1)∣S ∣3(Λλ + 1)2 .

We bound the number of edge types in a sub-trellis after
the merge by Λλ+1 + 1, since the resulting block section was
created from Λλ + ℓλ+1 < Λλ + ℓλ+1 + Λλ = Λλ+1 sections of
T . Now recall that we must also apply a ‘−’ or ‘+’ transform
to the resulting trellis (“step 2” in Panel (c), Figure 3, and
transitioning from Panel (b) to Panel (c) in Figure 7). By the
same logic as before, this requires at most

4(Λ + 1)∣S ∣3(Λλ+1 + 1)2

steps. Thus, since Λλ ≤ Λλ+1, we may bound the total number
of steps by

8(Λ + 1)∣S ∣3(Λλ+1 + 1)2 .

Lastly, we loosely bound Λλ for all n0 ≥ 1 and ξ > 0 by

Λλ

(4a)
< C ⋅2λ, where C ≜ 1

1−2−ξ is a constant, which gives (b2).

E. Simulation results

Figure 8 shows simulation results comparing the perfor-
mance of two decoders: the one of prior art [4] and the one
described and analyzed in this paper. Our decoder outperforms
the previous one in all the scenarios tested. This is expected,
since we decode based on the trellis of the entire output as
opposed to processing the output into blocks, and then using
trellises for each block.

It became apparent after establishing numerical results that
parameters in short code lengths need to be optimized. For the

asymptotic case, when N →∞, we will detail in the proof of
Theorem 1 how to select n0 and ξ, the parameters controlling
the number of GBs and their lengths, and how to select a
large enough n to reach the desired code rate and block error
probability. However, when working with shorter lengths, we
have no simple analytical way of choosing optimal values for
these parameters.

Consider the choice of n0 for some finite n. This paper
shows that in an asymptotic setting (n → ∞), the parameter
n0 should be “large enough”, for two reasons. First, if n0 is
small the rate is negatively affected: Lemma 4 promises that
adding guard-bands has a negligible effect on the rate, if n0 is
large enough. Secondly, a small probability of the complement
of the ‘GBM’ event is key to proving Lemma 5 below, and
this probability goes to 0 as n0 increases (Lemma 6). On the
other hand, for a fixed n, we cannot take n0 too large, since
Lemma 7 below only guarantees a strong polarization phase
when n is sufficiently far from n0. That is, the inequality
on Zn in (15) is only guaranteed to hold for n ≥ n0. The
above trade-off is demonstrated in Figure 9. For example, in
the left panel (N = 128) transitioning from n0 = 3 to n0 =
4 demonstrates improvement, whereas continuing to n0 = 5
shows a decline.

V. FIRST KEY LEMMA — THE BHATTACHARYYA
EVOLUTION FOR THE TRIMMED-DELETION CHANNEL

The proof of our main theorem hinges on two key lemmas.
The first lemma is specific to our setting, the trimmed-deletion
channel, and is stated and proved in this section. The second
lemma is more general, and will be stated and proved in
Section VI. These two lemmas will be used in our proof of
Theorem 1, in Section VII.

In the seminal paper [3, Proposition 5], it was shown that
in a memoryless setting, a ‘+’ transform squares the Bhat-
tacharyya parameter, while a ‘−’ transform at most doubles it.
This was the key property used to prove strong polarization
in [18]. Our first key lemma states a similar — yet weaker —
claim for our setting. The second key lemma shows that such
a claim is still strong enough to prove strong polarization with
the same exponent as in the memoryless case, β ∈ (0, 1

2
).

We first set up some additional notation. We denote the
Arıkan transform of the vector X by U = A(X). Recall that
the two halves of X are XI and XII. Their Arıkan transforms
are denoted V ≜ A(XI) and V′ ≜ A(XII), and we have

U2j−1 = Vj + V ′j , U2j = V ′j ,

where addition is modulo 2. As in the seminal paper, the binary
vector corresponding to i−1 is denoted b1, . . . , bn. That is, for
1 ≤ i ≤ N = 2n,

i = i(b1, . . . , bn) = 1 +
n

∑
k=1

bk2
n−k. (7)

The following lemma is cardinal to proving the stronger
polarization stated in Theorem 1. The proof will be given in
the following subsections. Recall that δ is the deletion rate, and
that the guard-band length is given in (4), and is a function of
ξ.

11

Fig. 8. The block error rate of the decoder in this work compared to the prior-art decoder [4]. The input distribution was fixed to a memoryless uniform
distribution, Bernoulli(1

2
). The block-error rate was averaged over 2000 simulations. In the comparison above between our decoder and the one of [4], the

same encoder was used and the channel deletions were the same. That is, the decoders in this figure were fed with the same channel output y and the only
difference was the decoding algorithm applied to it. The information indices were selected as the K = 64 indices with the lowest error probability in a genie
decoder. The genie decoder error probability for each index was estimated via Monte Carlo using 2000 test blocks with deletion probability δ = 0.1.

Lemma 5 (Recursive bounds for the Bhattacharyya param-
eter of the TDC): Fix a regular and non-degenerate hidden-
Markov input distribution. Let X = A(U) be of length
N = 2n, comprised of i.i.d. blocks of length N0 = 2n0 , each
distributed according to the input distribution. Let ξ ∈ (0, 1

6
)

be a fixed parameter and let Y∗ = ZI⊙Z∆⊙ZII be the result of
transmitting g(X, n0, ξ) through the TDC. Then, there exists
nth
0 (ξ, δ) s.t. for n0 ≥ nth

0 and all n > n0 the following holds.
Let 1 ≤ i ≤ N and j = ⌊(i + 1)/2⌋. Then,

Z(Ui∣U i−1
1 ,Y∗) ≤ Z(Ui∣U i−1

1 ,Z∗I ,Z
∗
II) + 2−N

2
3 (8a)

≤
⎧⎪⎪⎨⎪⎪⎩

2 ⋅Z(Vj ∣V
j−1
1 ,Z∗I) + 2−N

2
3 if bn = 0 (‘−’)

Z(Vj ∣V
j−1
1 ,Z∗I)

2
+ 2−N

2
3 if bn = 1 (‘+’) .

(8b)

We draw the reader’s attention to several important points.
First, note that in (8a), there is an additive penalty of 2−N

2
3 ,

associated with conditioning on Z∗I ,Z
∗
II as opposed to condi-

tioning on Y∗. That is, there is a price to be paid for condi-
tioning on the pair of TDC outputs corresponding to g(XI)
and g(XII), as opposed to conditioning on the TDC output
corresponding to g(XI ⊙XII). Informally, this is because in
the former we have been given the correct partitioning of the
output into two halves (that are then further processed by
the TC). The inequality (8b) shows us why such a penalty is
worth paying: since Z∗I and Z∗II are independent and identically
distributed, we may now use the standard arguments in [3]
to reach a recursive relation. This relation is indeed weaker
than the one of the seminal paper for memoryless channels [3,
Proposition 5] in which the additive penalty of 2−N

2
3 does not

exist. To conclude, the lemma allows us to track the evolution
of the Bhattacharyya parameter after each polarization step.

The proof of Lemma 5 will be broken into three conceptual
parts. In the first part, we define the “Guard-Band in Middle”
event, termed GBM. That is, the event that the middle symbol
of the TDC output originated from the middle guard-band.
In the second part, we show that under GBM, Y∗ can be
processed to yield Z∗I and Z∗II. This essentially gives us the
first term on the RHS of (8a). In the third part, we show that
the GBM event is very likely. That is, the additive penalty of
2−N

2
3 in (8a) comes from bounding the probability that GBM

does not occur.
We note that in [19] we have shown a weaker bound for

the Bhattacharyya parameter of this setting. A multiplicative
penalty of 3N

2
existed in the upper bound in (8). That is,

Z(Ui∣U i−1
1 ,Y∗) ≤ 3N

2
⋅Z(Ui∣U i−1

1 ,Z∗I ,Z
∗
II) + 2−N

2
3
.

We will now be able to avoid this harsh multiplicative penalty
by employing the effect of channel degradation [20, page 207],
[21, Lemma 3], which will be demonstrated in the upcoming
proof.

A. The GBM event

In this subsection we define the “Guard-band in Middle”
(GBM) event, related notation, and consequences. Recall from
Section III and Figure 1 that Y∗ = Z = ZI ⊙ Z∆ ⊙ ZII is the

12

Fig. 9. The block error rate of the decoder in this work over various selections of n and n0. As in Figure 8, the input distribution was fixed to a memoryless
uniform distribution, Bernoulli(1

2
). The block-error rate was averaged over 2000 simulations. The information indices were selected as the K indices with

the lowest error probability in a genie decoder. The genie decoder error probability for each index was estimated via Monte Carlo using 2000 test blocks with
deletion probability δ = 0.1.

result of passing GI⊙G∆⊙GII through the TDC. The GBM
event occurs if Z is not empty and its middle index

imid ≜ ⌊
∣Z∣ + 1

2
⌋ , (9)

falls within Z∆. That is, GBM occurs iff Zimid originates from
the middle guard-band G∆, see Figure 10. The complementary
event is denoted ¬GBM, see Figure 11.

We denote the left and right halves of Z = Y∗ as ZL =
(Z1, . . . , Zimid) and ZR = (Zimid+1, . . . , Z∣Z∣), see Figure 10.
The main utility of the GBM event is this (again, see Fig-
ure 10): since Z∆ contains only ‘0’ symbols, under GBM

(ZL)∗ = (ZI)∗ , (10a)
(ZR)∗ = (ZII)∗ . (10b)

That is, under GBM, the simple operation of trimming the two
halves of Y∗ is assured to give us Z∗I ≜ (ZI)∗ and Z∗II ≜ (ZII)∗.
This simple observation will be used in the next subsection in
order to state a recursive relation.

B. Bounding the Bhattacharyya parameter using GBM

In this subsection, we derive an upper bound on the
Bhattacharyya parameter Z(Ui∣U i−1

1 ,Y∗). In the previous
subsection we defined Z∗L and Z∗R as the left and right halves
of Z ≜ Y∗ after trimming their trailing and leading zeros,
respectively. That is, Z∗L,Z

∗
R are the result of some processing

of Y∗. This processing is illustrated in Fig 10 and Fig 11. We
now consider a channel which is a degradation of the TDC
channel. The input of the channel is the same as the case of
the TDC, but the outputs of the channel are Z∗L,Z

∗
R. Clearly

Z =Y∗ ZI Z∆ ZII

imid

ZL ZR

TC TC

Z∗R = Z∗IIZ∗L = Z∗I

Fig. 10. An illustration of the GBM event.

Z =Y∗ ZI Z∆ ZII

imid

ZL ZR

TC TC

Z∗L Z∗RZ
∗
R

Fig. 11. An illustration of the complementary event, ¬GBM.

this is a degraded channel of the TDC, since Y∗, the output of
the TDC is further processed into Z∗L,Z

∗
R. The Bhattacharyya

parameter of the degraded channel is larger or equal to the
Bhattacharyya of the TDC [20, page 207] [21, Lemma 3],
hence:

Z(Ui∣U i−1
1 ,Y∗) ≤ Z(Ui∣U i−1

1 ,Z∗L,Z
∗
R) . (11)

In order to save space we use the following shorthand

13

in the upcoming probability expressions: ui−1
1 is short for

U i−1
1 = ui−1

1 , z∗L and z∗R are short for Z∗L = z∗L and Z∗R = z∗R,
respectively, and 0 and 1 are short for Ui = 0 and Ui = 1,
respectively. Furthermore, in our shorthand notation, a sum
without subscripts is always over ui−1

1 ,z∗L,z
∗
R. To illustrate,

we use both the long and short notation in the following
expression for our quantity of interest.

Z(Ui∣U i−1
1 ,Z∗L,Z

∗
R)

≜ ∑
ui−1
1 ,z∗

L
,z∗

R

¿
ÁÁÀP(Ui = 0, U i−1

1 = ui−1
1 ,Z∗L=z∗L,Z∗R=z∗R)

× P(Ui = 1, U i−1
1 = ui−1

1 ,Z∗L=z∗L,Z∗R=z∗R)

≜∑
√

P(0, ui−1
1 ,z∗L,z

∗
R) ⋅ P(1, ui−1

1 ,z∗L,z
∗
R)

By the law of total probability over {GBM,¬GBM}, the
RHS above equals (for n ≥ n0 + 1, assuring a guard-band was
added):

=∑
√
(P(0, ui−1

1 ,z∗L,z
∗
R,GBM)+P(0, ui−1

1 ,z∗L,z
∗
R,¬GBM))

× (P(1, ui−1
1 ,z∗L,z

∗
R,GBM)+P(1, ui−1

1 ,z∗L,z
∗
R,¬GBM))

≤∑
√

P(0, ui−1
1 ,z∗L,z

∗
R,GBM) ⋅ P(1, ui−1

1 ,z∗L,z
∗
R,GBM) +

∑

¿
ÁÁÁÀ

P(0, ui−1
1 ,z∗L,z

∗
R,GBM)⋅P(1, ui−1

1 ,z∗L,z
∗
R,¬GBM)

+P(0, ui−1
1 ,z∗L,z

∗
R,¬GBM)⋅P(1, ui−1

1 ,z∗L,z
∗
R,GBM)

+P(0, ui−1
1 ,z∗L,z

∗
R,¬GBM)⋅P(1, ui−1

1 ,z∗L,z
∗
R,¬GBM)

(12)

We will now bound both sums in (12). For the first sum we
have:

∑
ui−1
1 ,z∗

L
,z∗

R

¿
ÁÁÀP(0, ui−1

1 ,Z∗L=z
∗
L,Z

∗
R=z

∗
R,GBM)

× P(1, ui−1
1 ,Z∗L=z

∗
L,Z

∗
R=z

∗
R,GBM)

(10)= ∑
ui−1
1 ,z∗I ,z

∗

II

¿
ÁÁÀP(0, ui−1

1 ,Z∗I =z∗I ,Z∗II=z∗II,GBM)
× P(1, ui−1

1 ,Z∗I =z∗I ,Z∗II=z∗II,GBM)

≤ ∑
ui−1
1 ,z∗I ,z

∗

II

¿
ÁÁÀP(0, ui−1

1 ,Z∗I = z∗I ,Z∗II = z∗II)
× P(1, ui−1

1 ,Z∗I = z∗I ,Z∗II = z∗II)

= Z(Ui∣U i−1
1 ,Z∗I ,Z

∗
II)

For the second sum in (12) we have:

∑

¿
ÁÁÁÀ

P(0, ui−1
1 ,z∗L,z

∗
R,GBM) ⋅ P(1, ui−1

1 ,z∗L,z
∗
R,¬GBM)

+ P(0, ui−1
1 ,z∗L,z

∗
R,¬GBM) ⋅ P(1, ui−1

1 ,z∗L,z
∗
R,GBM)

+ P(0, ui−1
1 ,z∗L,z

∗
R,¬GBM) ⋅ P(1, ui−1

1 ,z∗L,z
∗
R,¬GBM)

=∑
√

P(0, ui−1
1 ,z∗L,z

∗
R,GBM) ⋅ P(1, ui−1

1 ,z∗L,z
∗
R,¬GBM)

+ P(0, ui−1
1 ,z∗L,z

∗
R,¬GBM) ⋅ P(1, ui−1

1 ,z∗L,z
∗
R)

≤∑

¿
ÁÁÀP(ui−1

1 ,z∗L,z
∗
R) ⋅ P(1, ui−1

1 ,z∗L,z
∗
R,¬GBM)

+ P(0, ui−1
1 ,z∗L,z

∗
R,¬GBM) ⋅ P(ui−1

1 ,z∗L,z
∗
R)

=∑
√

P(ui−1
1 ,z∗L,z

∗
R) ⋅ P(ui−1

1 ,z∗L,z
∗
R,¬GBM)

=∑P(ui−1
1 ,z∗L,z

∗
R)
√

P(¬GBM∣ui−1
1 ,z∗L,z

∗
R)

≤
√
P(¬GBM) ,

where last inequality follows by the Jensen inequality, applied
to the concave function

√ ⋅ .
Combining the bounds for the two sums in (12) yields

Z(Ui∣U i−1
1 ,Y∗) ≤ Z(Ui∣U i−1

1 ,Z∗I ,Z
∗
II) +
√
P(¬GBM) .

To complete the proof of (8a), it remains to show that the
term

√
P(¬GBM) is smaller than 2−N

2
3 , for large enough n

and n0. This will be shown in the upcoming lemma. Lastly,
since Z∗I and Z∗II are i.i.d., the second inequality in our lemma,
(8b), is a direct consequence of [3, Proposition 5]. Thus, the
following lemma completes our proof.

Lemma 6 (Upper bounding
√
P(¬GBM)): Let X be of

length N = 2n and drawn as described in Lemma 5. Let Y∗ be
the TDC output for input g(X, n0, ξ). Let GBM be the event
defined in Subsection V-A. For a fixed deletion rate δ ∈ (0,1)
and a guard-band length parameter 0 < ξ < 1

6
used in (4), there

exists an nth
0 (ξ, δ), which is a function of the input distribution

as well, such that:
√
P(¬GBM) ≤ 2−N

2
3 (13)

for all n0 ≥ nth
0 (ξ, δ) and n > n0.

Proving this proves Lemma 5: for it, we take nth
0 to be the

one in Lemma 6.
The proof of Lemma 6 follows from a strengthening of [4,

Lemma 23]. That is, we show that there exists a threshold nth
0

and a constant θ > 0 such that

P(¬GBM) < 2−θ⋅2
(1−2ξ)n

, (14)

for all n0 ≥ nth
0 and n > n0. Thus, since we’ve required that

the constant ξ satisfy ξ ∈ (0, 1
6
), standard manipulations yield

(13), for large enough n.
In [4, Lemma 23], the RHS of (14) is weaker: n is replaced

by n0. We give an outline of the differences between our proof
of (14) and the proof of the weaker claim in [4, Lemma 23].
For the full proof of Lemma 6 see Appendix A. The main
difference lies in bounding the probability that too much of ZI
is lost due to trimming. The weaker result follows by showing
that the probability of a certain prefix of the leftmost block
being completely lost due to trimming and deletion is upper
bounded by a term that decays exponentially with N0, the
length of the block. In our proof, we show that for any prefix
of G, the number of block symbols is always greater than
the number of guard-band symbols. Thus, the probability of
such a prefix being lost due to deletion and trimming decays
exponentially with its length. The stronger bound then follows
by taking the prefix length to be proportional to N , as opposed
to N0.

VI. SECOND KEY LEMMA — STRONG POLARIZATION
DESPITE A SMALL ADDITIVE PENALTY

In the previous section, we’ve stated Lemma 5, which gave
upper bounds on the evolution of the Bhattacharyya parameter.
Due to the added penalty in these bounds, we cannot use prior
art in order to claim a polarization rate of roughly 2−

√
N .

Indeed, in this section we state the second key lemma in the
paper, Lemma 7, which implies such a rate for processes that
evolve as in Lemma 5. Lemma 7 is stated quite generally, in
the hope that it will be useful for other settings.

Lemma 7 (Strong polarization despite an additive penalty):
Let B1,B2, . . . be i.i.d. uniformly distributed Bernoulli random
variables. Fix β ∈ (0, 1

2
), ϵ′ > 0, κ ≥ 1, and γ > 1

2
. There exist

a positive constant η = η(ϵ′, κ) > 0 and a threshold n0
th =

14

n0
th(ϵ′, κ, γ) such that the following holds. Fix n0 ≥ n0

th and
let Zn0 , Zn0+1, Zn0+2, . . . be a random process that satisfies:

Zn+1 ≤
⎧⎪⎪⎨⎪⎪⎩

κ ⋅Zn + 2−N
γ

if Bn+1 = 0 (‘−’)
κ ⋅Z2

n + 2−N
γ

if Bn+1 = 1 (‘+’)
, n ≥ n0 (15)

and
Zn0 ≤ η . (16)

There exists a threshold nth = nth(ϵ′, β, κ, γ, n0) ≥ n0 starting
from which strong polarization occurs with probability at least
1 − ϵ′:

P(Zn < 2−N
β

, ∀n ≥ nth) ≥ 1 − ϵ′ . (17)

We notice that Zn provides a rather “weak” polarization step
in (15). In memoryless channels, Z−n+1 ≤ 2⋅Zn, and Z+n+1 ≤ Z2

n

[18, z.2], which is a “cleaner” and stronger polarization step
than our case. In the memoryless cases, strong polarization can
be proven as in [22]. In our case, we also have an additive
term, 2−N

γ

. Still, because the additive term decays to 0 fast
enough (γ > 1/2), strong polarization occurs, with the same
exponent as the memoryless channels.

We now prove Lemma 7.
Proof: Let n0 ≥ n0

th and let Zn0 , Zn0+1, Zn0+2, . . .
satisfy (15) and (16), for n0

th and η we have yet to commit
to. We first define an auxiliary process, starting at index n0

with initial value η:

Z̄n+1 = 2 ⋅ κ ⋅
⎧⎪⎪⎨⎪⎪⎩

Z̄n if Bn+1 = 0 (‘−’)
Z̄2
n if Bn+1 = 1 (‘+’)

, n ≥ n0 (18a)

Z̄n0
= η (18b)

We now fix γa = (γ + 1/2)/2 such that,

1

2
<γa< γ . (19)

Let nth ≥ n0 be a parameter that will be committed to later
on as well. We define the following events for the processes
Zn, Z̄n:

Σa ≜ {Z̄n ≥ 2−N
γa

, ∀n ≥ n0} , (20a)

Σb ≜ {Z̄n < 2−N
β

, ∀n ≥ nth} , (20b)
Σc ≜ {Zn ≤ Z̄n, ∀n ≥ n0} . (20c)

The first two events bound the new process Z̄n, and the third
event discusses a relation between Z̄n and the original process
Zn. For the events above we list the following claims:

Claim 6.1: For all ϵa > 0 there exist ηa(κ) > 0 and
n0

th
a (γa, ϵa, κ, η) s.t. if 0 < η ≤ ηa and n0 ≥ n0

th
a , then:

P(Σa) > 1 − ϵa . (21)

Claim 6.2: For all ϵb > 0 and n0 > 0 there exist ηb(ϵb, κ) > 0
and nth

b (β, ϵb, κ, η, n0) ≥ n0 s.t. if 0 < η ≤ ηb and nth ≥ nth
b

then:
P(Σb) > 1 − ϵb . (22)

Claim 6.3: There exists an n0
th
c (γ, γa) s.t. if n0 ≥ n0

th
c ,

then event Σa implies Σc, i.e.:

P(Σc∣Σa) = 1 . (23)

The proofs of Claims 6.1–6.3 are given in the upcoming
subsections. The combination of the claims above proves our
lemma. For this, we set:

ϵa = ϵb =
ϵ′

2
(24)

and set:

η(ϵ′, κ) ≜min{ηa, ηb,
1

2
} , (25a)

n0
th(ϵ′, κ, γ) ≜max{n0

th
a , n0

th
c } , (25b)

nth(ϵ′, β, κ, γ, n0) ≜max{nth
b , n0} ≥ n0 . (25c)

Using the three claims above, we can bound the probabilities
of events Σb and Σc. For Σb, we have:

P(Σb)
(a)
> 1 − ϵb , (26)

where in (a) we applied (22) from Claim 6.2, since the
conditions are satisfied by our selection of η and nth in (25a)
and (25c), respectively. We next note that:

P(Σc) ≥ P(Σc∣Σa) ⋅ P(Σa)
(a)
> 1 ⋅ (1 − ϵa) = 1 − ϵa .

(27)

In (a) we applied (21) from Claim 6.1, and (23) from Claim
6.3, since their conditions are satisfied by our selection of η
and n0 in (25a) and (25b), respectively.

By inspection, the intersection of Σb and Σc implies the
event in (17), by (25c). Thus,

P(Zn < 2−N
β

, ∀n ≥ nth)

≥ P({Z̄n < 2−N
β

, ∀n ≥ nth}⋂{Zn ≤ Z̄n, ∀n ≥ n0})
= P(Σb ∩Σc)
= 1 − P(¬Σb ∪ ¬Σc) .

In the last equality we denoted events ¬Σb,¬Σc as the
complementary events of Σb,Σc respectively. We now upper
bound P(¬Σb ∪ ¬Σc):

P(¬Σb ∪ ¬Σc) ≤ P(¬Σb) + P(¬Σc)
(26),(27)
< ϵa + ϵb

(24)= ϵ′ .

Thus:

P(Zn < 2−N
β

, ∀n ≥ nth) ≥ P(Σb ∩Σc) ≥ 1 − ϵ′ .

A. Proof of Claim 6.1

Proof: We first set:

ηa ≜
1

2 ⋅ κ ∈ (0,
1

2
] , (28)

where the inclusion follows from requiring that κ ≥ 1 in
Lemma 7.

We note that the process Z̄n is positive for all n ≥ n0, since
it starts from a positive value of Z̄n0 = η ∈ (0, ηa] and in each
step is either multiplied by 2 ⋅κ > 0 or squared and multiplied

15

by 2 ⋅κ > 0 (both operations preserve positivity). By (18a) and
since κ ≥ 1:

Z̄n = 2 ⋅ κ ⋅ Z̄2Bn

n−1 ≥ Z̄2Bn

n−1 . (29)

By recursively applying (29) we get:

Z̄n ≥ Z̄2Bn

n−1

≥ (Z̄2Bn−1

n−2)
2Bn

= Z̄2Bn−1+Bn

n−2

≥ Z̄2Bn−2+Bn−1+Bn

n−3

≥ . . . ≥ Z̄2
∑

n−1
i=n0

Bi+1

n0
. (30)

We also set ρ ≜ γa − 1
2

(19)
> 0, and define:

∆a ≜ ⌈
1

2ρ2
ln(1

ϵa ⋅ (1 − e−2ρ2))⌉ > 0, (31)

n0
th
a ≜ ⌈

1

γa
log2(− log2 η) +

1

γa
∆a⌉, (32)

which are well defined since γa
(19)
> 1

2
, ρ = γa − 1

2
> 0, 0 < η ≤

ηa
(28)
≤ 1

2
and ϵa > 0.

We first bound the probability of Z̄n not satisfying the lower
bound in our claim (recall (20a)):

P(Z̄n < 2−N
γa)

(30)
≤ P(Z̄2

∑
n−1
i=n0

Bi+1

n0
< 2−N

γa)

(a)= P
⎛
⎝

n−1
∑
i=n0

Bi+1 > n ⋅ γa − log2(− log2 η)
⎞
⎠

(b)
≤ P
⎛
⎝

n−1
∑
i=n0

Bi+1 > (n − n0) ⋅ γa
⎞
⎠

(c)= P
⎛
⎝

n−1
∑
i=n0

Bi+1 > (n − n0) ⋅ (
1

2
+ ρ)
⎞
⎠

≤ P
⎛
⎝

n−1
∑
i=n0

Bi+1 ≥ (n − n0) ⋅ (
1

2
+ ρ)
⎞
⎠

(d)
≤ e−2(n−n0)ρ2

(33)

In (a) we applied log2(− log2(⋅)) to both sides of the in-

equality, while recalling that Z̄n0

(18b)= η
(28)
∈ (0, 1

2
]. In (b),

we enlarged the probability by decreasing the lower bound,

since n0 ≥ n0
th
a

(32)
> 1

γa
log2(− log2 η). Inequality (c) holds by

our selection of ρ = γa − 1
2

. Lastly, in (d) we applied the
Hoeffding bound [23, page 78].

Next, we set:
nth
a ≜ n0 +∆a, (34)

and address the probability of our lower bound holding for all
n ≥ nth

a :

P(Z̄n ≥ 2−N
γa

, ∀n ≥ nth
a)

= 1 − P(∃n ≥ nth
a , Z̄n < 2−N

γa)

= 1 − P
⎛
⎝
∞
⋃

n=nth
a

Z̄n < 2−N
γa⎞
⎠

(a)
≥ 1 −

∞
∑

n=nth
a

P(Z̄n < 2−N
γa)

(33)
≥ 1 −

∞
∑

n=nth
a

e−2(n−n0)ρ2

(b)= 1 − 1

1 − e−2ρ2 e
−2(nth

a −n0)ρ2

(34)= 1 − 1

1 − e−2ρ2 e
−2∆aρ

2

(31)
≥ 1 − ϵa (35)

where (a) follows from the union bound, and for (b) and we
remind that ρ > 0.

For the initial period of n ∈ [n0, n
th
a), we lower bound Z̄n

by the extreme event of drawing only Bi+1 = 1 (‘+’) for i =
n0, ..., n−1. This event indeed minimizes Z̄n for a low enough
starting point η ≤ ηa, as shown in Lemma 10 in Appendix B.
That is, for n ∈ [n0, n

th
a):

Z̄n ≥ Z̄n for Bi+1 = 1 (‘+’), ∀i = n0, ..., n − 1
(30)
≥ Z̄2

∑
n−1
i=n0

Bi+1

n0
for Bi+1 = 1 (‘+’), ∀i = n0, ..., n − 1

= Z̄2(n−n0)

n0

(18b)= η2
(n−n0)

(a)
> η2

(nth
a −n0)

(34)= η2
∆a

(32)
≥ 2−2

γan0

(b)
≥ 2−2

γan

= 2−N
γa

. (36)

For (a) and (b) we remind that we are considering the case of
n ∈ [n0, n

th
a).

In (36) we have shown that if n0 ≥ n0
th
a , then Z̄n ≥ 2−N

γa

for all n ∈ [n0, n
th
a). In (35) we have shown the same lower

bound holds for all n ≥ nth
a with probability of at least 1− ϵa.

By combining the two results we complete the proof of our
claim.

B. Proof of Claim 6.2

Claim 6.2 is a specialization of [24, Proposition 49].
Namely, [24, Equation 166] as well as the constraint on Z0

in [24, Proposition 49] have inequalities which in (18) are
specialized to equalities. The fact that our indexing starts at n0

as opposed to 0 in [24, Proposition 49] is of no consequence.
The above paragraph proves our claim, and the reader may

elect to leave it at that. However, since the thresholds η and
n0 are not given explicitly in [24, Proposition 49], we choose
to do so here, for completeness. That is, we give explicit
expressions for ηb (our analog of the η in [24]) and nth

b (our
analog of the n0 in [24]).

To set ηb and nth
b explicitly, we carefully inspect the proof

of [24, Proposition 49] and the strong polarization proof in
[22] on which it relies. For the diligent reader wishing to
correspond our steps to the mentioned sources, we note that the
process Z̄n here is written without the “bar” in [24, Proposition
49] and in [22]. In addition, σa and σb which will be used here
are denoted ϵa and ϵb, respectively, in [24, Proposition 49] and

16

in [22]. This replacement was performed to avoid confusion
with ϵa and ϵb from Claim 6.1 and Claim 6.2, respectively. We
also note that [22] discusses a general process of the form:

Zn+1 ≤K ⋅ZdTn
n ,

where K ≥ 1, Tn is uniformly distributed over {1,2, . . . , ℓ}
and d1, d2, . . . , dℓ ≥ 1. In our case, and in [24, Proposition
49] as well, ℓ = 2 and:

dTn =
⎧⎪⎪⎨⎪⎪⎩

1 if Tn = 1 ,
2 if Tn = 2 .

This simplifies some of the expressions we cite from [22].
Specifically, we note that the parameter E ≜ 1

ℓ ∑
ℓ
t=1 logℓ dt >

β, defined in [22], equals 1
2

in our case. Lastly, in our case K =
2⋅κ, not to be confused with the substitution of K with κ, used
in [24, Proposition 49]. We note that the multiplicative factor
of 2 added to the process Z̄n (see (18)) essentially originates
from “getting rid” of the additive penalty in the process Zn

(see (15)).
We now summarize in four steps how to set ηb and nth

b , in
order to prove our claim. By following these steps we satisfy
two conditions. The first is that for all n ≥ nth

b , the process Z̄n

is upper bounded by 2−2
(
1
2
−∆)n

, with probability at least 1−ϵb.
The expression for ∆ is calculated in [22, Equation 16]. We
rewrite it here for our case, i.e. for ℓ = 2, d1 = 1 and d2 = 2:

∆ = 1

2
(log2(

1

1 − θ
) + log2(

2

2 − θ
)) (37)

+ σb ⋅ (− log2(1 − θ) + log2(2 − θ)) (38)

+ ma

n
((1

2
+ σb) log2(1 − θ) + (1

2
− σb) log2(2 − θ)) (39)

where θ ≜ − logσa
2κ is defined by a small parameter σa > 0

which we will select shortly. The parameters σb > 0 and ma

will be set soon as well.
Just as in [22], the second condition we will satisfy is that

each of the three terms in the expression of ∆, i.e. (37),
(38) and (39), is upper bounded by

1
2−β
3

. Hence, 1
2
−∆ > β.

By combining these two conditions we get the desired upper
bound on Z̄n.

Throughout these four steps, all the introduced parameters
(σa, σb and ma) are functions of the parameters in our claim:
κ, ϵb, η, n0 and β.

1) We first set a small enough σa > 0 such that, for θ ≜
− logσa

2κ ≥ 0, we have θ < 1 and the term in (37) is
<

1
2−β
3

. For example, set:

θ ≜ 2

3
(1 − 2−

1−2β
3) > 0

and σa = (2κ)−
1
θ > 0.

2) We set a small enough ηb and a large enough ma such
that if Z̄n0 = η ≤ ηb then

P(Z̄n < σa, ∀n ≥ma) > 1 −
ϵb
2
. (40)

The above, up to renaming of parameters, is [24, Equation
171]. A possible selection for these parameters, suggested
at the very end of the proof of [24, Proposition 49], is:

ηb(ϵb, κ) ≜
1

2(2κ)2 (
ϵb
4
)
1/r

,

where r = r(κ) is the largest positive solution of (2κ)r +
(4κ)−r = 2, and

ma = n0 +
⎡⎢⎢⎢⎢⎢
max

⎧⎪⎪⎨⎪⎪⎩

4
ln2
(lnη − lnσa),

2
s2

ln(4

ϵb(1−e−s2/2)
)

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎥
,

where s = s(κ) ≜ ln 2
2 ln(2(2κ)2) .

3) We set a small enough σb > 0 such that the term in (38)
is <

1
2−β
3

. For example:

σb =
1

2
⋅

1
2−β
3

log2(2−θ1−θ)
.

We remind that θ was set in the first step and satisfies
θ < 1.

4) We set a large enough nth
b such that for all n ≥ nth

b the

term in (39) is <
1
2−β
3

and

P
⎛
⎝
∣ ∣{ma≤i<n∶ Ti=t}∣

n−ma
− 1

2
∣ ≤ σb

for all n ≥ nth
b and t ∈ {1,2}

⎞
⎠
> 1 − ϵb

2
.

That is, take nth
b to be the maximum of

1 +
⎢⎢⎢⎢⎢⎣

ma((12 + σb) log2(1 − θ) + (1
2
− σb) log2(2 − θ))

1
2−β
3

⎥⎥⎥⎥⎥⎦
and

ma + ⌈
1

2σ2
b

ln(4

ϵb(1 − e−2σ
2
b)
)⌉ , (41)

where (41) follows from Hoeffding’s inequality [23,
Theorem 4.12] and the union bound (see (33) and (35)
in which we applied similar arguments).

C. Proof of Claim 6.3

Proof: Under event Σa (20a): Z̄n ≥ 2−N
γa for all n ≥ n0.

Since γa
(19)
< γ, for n ≥ n0 ≥ n0

th
c (γ, γa) ≜ 1

γ−γa
we get

γn ≥ γan + 1 .

Thus, if Σa occurs then Z̄n satisfies:

κ ⋅ Z̄n ≥ Z̄n ≥ 2−2
γan ≥ 2−2γn

,

κ ⋅ Z̄2
n ≥ Z̄2

n ≥ 2−2
γan+1 ≥ 2−2γn

.
(42)

From the above we get that under Σa, if Z̄n ≥ Zn, then Z̄n+1 ≥
Zn+1 as well (regardless of Bn+1). That is:

Z̄n+1
(18a)=
⎧⎪⎪⎨⎪⎪⎩

κ ⋅ Z̄n + κ ⋅ Z̄n if Bn+1 = 0 (‘−’)
κ ⋅ Z̄2

n + κ ⋅ Z̄2
n if Bn+1 = 1 (‘+’)

, n ≥ n0

(42)
≥
⎧⎪⎪⎨⎪⎪⎩

κ ⋅ Z̄n + 2−2
γn

if Bn+1 = 0 (‘−’)
κ ⋅ Z̄2

n + 2−2
γn

if Bn+1 = 1 (‘+’)
, n ≥ n0

(a)
≥
⎧⎪⎪⎨⎪⎪⎩

κ ⋅Zn + 2−2
γn

if Bn+1 = 0 (‘−’)
κ ⋅Zn

2 + 2−2
γn

if Bn+1 = 1 (‘+’)
, n ≥ n0

(15)
≥ Zn+1 ,

where (a) holds under the hypothesis that Z̄n ≥ Zn.

17

We remind that: Z̄n0

(18b)= η
(16)
≥ Zn0 . Thus, we may show

by induction that under Σa, Z̄n ≥ Zn for all n ≥ n0. We have
shown that under Σa:

Zn ≤ Z̄n, ∀n ≥ n0 .

VII. PROOF OF OUR MAIN THEOREM

Proof: The proof of Theorem 1 follows by combining
Theorem 3, Lemma 4, Lemma 5, Lemma 7, and Lemma 11.
Let δ ∈ (0,1) be a fixed deletion probability of the deletion
channel. Fix ϵ ∈ (0,1), ξ ∈ (0, 1

6
), and 0 < β′ < β < 1

2
. We take

ϵ′ in both Theorem 3 and Lemma 7 to be ϵ
3

, and fix κ and γ
from Lemma 7 to 2 and 2

3
, respectively. We set η in Theorem 3

to be η(ϵ′, κ) from Lemma 7. Next, we take nth
0 (ϵ, δ, ξ) to be

the maximum of

nth
0 (ϵ′, η, δ) from Theorem 3,

nth
0 (ϵ, ξ) from Lemma 4,

nth
0 (ξ, δ) from Lemma 5,

and nth
0 (ϵ′, κ, γ) from Lemma 7.

By this selection we are promised for n0 ≥ nth
0 that

N

Λ
= ∣X∣∣G∣ > 1 − ϵ ,

by Lemma 4. For a fixed n0 ≥ nth
0 we take nth(ϵ, β, β′, n0)

to be the maximum of nth(ϵ′, β, κ, γ, n0) from Lemma 7 and
nth(β,β′, ϵ) from Lemma 11.

We now prove that if we take n ≥ nth, then

Z(Ui∣U i−1
1 ,Y∗) ≤ 2−N

β

and K(Ui∣U i−1
1) ≤ 2−N

β

(43)

for at least I−ϵ of the indices. For this, we define the processes
Zn0 , Zn0+1, Zn0+2 . . . and Kn0 ,Kn0+1,Kn0+2 . . . which start
from the n0 ≥ nth

0 we fixed above. We couple these processes
to the Bernoulli(1

2
) i.i.d process B1,B2, . . . by defining:

Zn = Z(Ui∣U i−1
1 ,Y∗) and Kn =K(Ui∣U i−1

1)

for i = i(B1,B2, . . . ,Bn), see (7). That is, the drawn
B1, . . . ,Bn are the index bits b1, . . . , bn of i.

Let η and n0 be as fixed above. We denote by W the set of
“weak polarization” indices. That is, for ∣U∣ = ∣X∣ = N0, W is
the set of indices 1 ≤ j ≤ N0 which satisfy:

Z(Uj ∣U j−1
1 ,Y∗) ≤ η and K(Uj ∣U j−1

1) ≤ η .

In terms of our random processes we get

i(B1, . . . ,Bn0) ∈W ⇔ Zn0 ≤ η and Kn0 ≤ η . (44)

We now show that for all n ≥ nth our processes are upper
bounded by 2−N

β

with probability ≥ I − ϵ.

P(Zn < 2−N
β

, Kn < 2−N
β

, ∀n ≥ nth)
≥ P(Zn < 2−N

β

,Kn < 2−N
β

,∀n ≥ nth, Zn0 ≤ η,Kn0 ≤ η)
=∑
j∈W

P(Zn<2−N
β

,Kn<2−N
β

,∀n≥nth, i(B1, . . . ,Bn0)=j)

=∑
j∈W

P(Zn<2−N
β

,Kn<2−N
β

,∀n≥nth∣ i(B1, . . . ,Bn0)=j)

× P(i(B1, . . . ,Bn0) = j)
(a)
≥ ∑

j∈W
[P(Zn < 2−N

β

, ∀n ≥ nth∣ i(B1, . . . ,Bn0) = j)

+ P(Kn < 2−N
β

, ∀n ≥ nth∣ i(B1, . . . ,Bn0) = j) − 1]
× P(i(B1, . . . ,Bn0) = j)

(b)
≥ ∑

j∈W
((1 − ϵ′) + (1 − ϵ′) − 1) × P(i(B1, . . . ,Bn0) = j)

= (1 − 2ϵ′) ⋅ ∑
j∈W

P(i(B1, . . . ,Bn0) = j)

= (1 − 2ϵ′) ⋅ ∣W ∣
N0

(c)
≥ (1 − 2ϵ′) ⋅ (I − ϵ′)
≥ I − 3ϵ′

= 1 − ϵ

Inequality (a) follows by noting that P (A ∩ B) ≥ P (A) +
P (B)−1, since P (A)+P (B)−P (A∩B) = P (A∪B) ≤ 1. In-
equality (c) is by Theorem 3. Inequality (b) follows by apply-
ing Lemma 7 to each1 of the processes Zn0 , Zn0+1, Zn0+2 . . .
and Kn0 ,Kn0+1,Kn0+2 Indeed, first note that our choices
of n0, n, and η satisfy the conditions on them in Lemma 7.
We now show that each of the two processes satisfy the
two conditions, (15) and (16), in Lemma 7. To see that
each process satisfies (16) recall that we are under the event
i(B1, . . . ,Bn0) = j where j ∈W , and thus (16) is satisfied by
(44). For the Bhattacharyya process Zn0 , Zn0+1, . . . condition
(15) holds by Lemma 5 (κ = 2 and γ = 2

3
) and our choice of

n0. For the total variation process Kn0 ,Kn0+1, . . . condition
(15) holds by [13, Proposition 4]. That is, since the blocks of
X are i.i.d, for n > n0 we have [13, Proposition 4]

K(Ui∣U i−1
1) ≤

⎧⎪⎪⎨⎪⎪⎩

K(Vj ∣V j−1
1)2 if bn = 0 (‘−’) ,

2 ⋅K(Vj ∣V j−1
1) if bn = 1 (‘+’) ,

(45)

where U,V, i, j and bn are as in Lemma 5. To summarize,
we have proved that (43) holds for a fraction of at least I − ϵ
of the indices.

We now show that for n ≥ nth,

Z(Ui∣U i−1
1 ,Y)

(a)
≤ Z(Ui∣U i−1

1 ,Y∗)
(b)
≤ 2−N

β (c)
≤ 1

2N
2−Λ

β′

and K(Ui∣U i−1
1)

(b)
≤ 2−N

β (c)
≤ 1

2N
2−Λ

β′

,

1We note that the use of Lemma 7 for upper bounding the process K is a
bit of an overkill. The evolution of K in each polarization step is better than
the evolution of the Bhattacharyya parameter Z(UI ∣U i−1

1 ,Y∗). That is, there
is no small additive penalty of 2−N

2/3
, contrast (8) with its analog for K in

(45). Thus, instead of using Lemma 7 we could have used [24, Proposition
49].

18

for at least I − ϵ of the indices 1 ≤ i ≤ N . Inequality
(a) results from the TDC being a degradation of the deletion
channel. That is, X −Y −Y∗ form a Markov chain in that
order. Inequalities (b), that is (43), indeed hold for the above
fraction of indices, as we have just proved. Lastly, (c) is the
result of combining Lemma 4 and Lemma 11, which may be
applied by our selection of n0 and n, respectively.

APPENDIX A
HIGH PROBABILITY OF GBM

We now prove Lemma 6. This lemma states that the GBM
event, i.e. the event where the middle bit in the TDC output
is a bit from the middle GB, occurs with high probability.

Proof: As mentioned previously in Subsection V-B, parts
of the proof resemble the steps taken in the proof of [4, Lemma
23]. We define the following length differences due to channel
deletion (recall illustration of GI,YI,ZI, etc. in Figure 1):

α = ∣GI∣ − ∣YI∣
β = ∣G∆∣ − ∣Y∆∣
γ = ∣GII∣ − ∣YII∣ ,

(46a)

and the following length differences due to trimming:

α′ = ∣YI∣ − ∣ZI∣
β′ = ∣Y∆∣ − ∣Z∆∣
γ′ = ∣YII∣ − ∣ZII∣ .

(46b)

We will be interested in the event: A∩A′∩B∩B′∩C∩C ′, where
A,B,C will be events constraining the number of deletions in
GI,G∆,GII, respectively, and A′,B′,C ′ are events constrain-
ing the number of bits trimmed in YI,Y∆,YII, respectively.
These events will be defined explicitly in a moment, but first,
we note that the main property of these events is:

A ∩A′ ∩B′ ∩B ∩C ∩C ′ ⇒ GBM .

That is, under all of the events A,A′,B,B′,C,C ′ we are under
the GBM event. The justification of this property will soon
be given in (50).

We define:

A = {δ∣GI∣ − ℓ̂ < α < δ∣GI∣ + ℓ̂} (47a)
A′ = {0 ≤ α′ < ℓ̂} (47b)
B = {β < δ∣G∆∣ + ℓ̂} (47c)
B′ = {β′ = 0} (47d)
C = {δ∣GII∣ − ℓ̂ < γ < δ∣GII∣ + ℓ̂} (47e)
C ′ = {0 ≤ γ′ < ℓ̂} . (47f)

Intuitively, a small ℓ̂ implies a tight tolerance on the events
defined in (47) — and a small enough tolerance will imply
GBM. On the other hand, we must not take ℓ̂ too small, since
we want each of the probabilities of these events to be close
to 1. As we will see, both aims are achieved by taking

ℓ̂ = 1 − δ

4
ℓn . (48)

For this selection, and since

ℓn
(4)
< 2(n−1) = ∣XI∣ ≤ ∣GI∣ ,

we notice that under the event A, the number of bits deleted
from GI is less than 1+δ

2
∣GI∣. Also, under A′ we will trim less

than
1−δ
4
∣GI∣ bits from YI. Thus, in total, under A ∩ A′, the

total number of bits deleted or trimmed from GI is less than

((1 + δ

2
) + (1 − δ

4
))∣GI∣ =

3 + δ

4
∣GI∣ ≤ ∣GI∣ .

That is, under A ∩A′, the trimming of YI has stopped prior
to the received GB bits in Y∆. By symmetry, under A∩A′ ∩
C ∩C ′, we do not trim Y∆ from either side. Hence,

A ∩A′ ∩C ∩C ′ ⇒ B′ . (49)

We use this now to show the following:

{A ∩A′ ∩B ∩C ∩C ′}
(49)⇒ {A ∩A′ ∩B ∩B′ ∩C ∩C ′}
(a)⇒ { α + α′ < γ + γ′ + ℓn − β − β′

and γ + γ′ < α + α′ + ℓn − β − β′
}

(46)⇒ {∣ZII∣ < ∣Z∆∣ + ∣ZI∣ and ∣ZI∣ < ∣Z∆∣ + ∣ZII∣}
(b)⇒ GBM . (50)

(a) holds since under the event A ∩A′ ∩B ∩B′ ∩C ∩C ′:

γ + γ′ + ℓn − β − β′
(47d)= γ + γ′ + ℓn − β

(47c),(47e),(47f)
> δ∣GII∣ − ℓ̂ + 0 + ℓn − δ∣G∆∣ − ℓ̂
(3)= δ∣GII∣ − ℓ̂ + ℓn − δℓn − ℓ̂

(48)= δ∣GII∣ − ℓ̂ + 4ℓ̂ − ℓ̂

= δ∣GII∣ + 2ℓ̂
(47a),(47b)
> α + α′ ,

and γ + γ′ < α + α′ + ℓn − β − β′ by the same steps. For (b),
the middle index imid does not fall in ZI, by

imid
(9)= ⌊ ∣Z∣ + 1

2
⌋

= ⌊ ∣ZI∣ + ∣Z∆∣ + ∣ZII∣ + 1

2
⌋

≥ ⌊ ∣ZI∣ + ∣ZI∣ + 1 + 1

2
⌋

= ∣ZI∣ + 1 ,

and the middle index imid does not fall in ZII, by

imid
(9)= ⌊ ∣Z∣ + 1

2
⌋

= ⌊ ∣ZI∣ + ∣Z∆∣ + ∣ZII∣ + 1

2
⌋

≤ ∣ZI∣ + ∣Z∆∣ + ∣ZII∣ + 1

2

< ∣ZI∣ + ∣Z∆∣ + ∣ZI∣ + ∣Z∆∣ + 1

2
< ∣ZI∣ + ∣Z∆∣ + 1 .

Thus, imid must fall within the middle guard-band Z∆. We
note that the outputs middle guard-band Z∆ is not an empty

19

string under the events above. If it was an empty string, i.e.
∣Z∆∣ = 0, we get from (50): ∣ZI∣ < ∣ZII∣ and ∣ZI∣ > ∣ZII∣ which
is not possible.

From (50) we get: P(GBM) ≥ P(A∩A′ ∩B ∩C ∩C ′). We
are interested in the complementary event, which satisfies:

P(¬GBM) ≤ P(¬{A ∩A′ ∩B ∩C ∩C ′})
(a)
≤ P(¬A) + P(¬A′) + P(¬B) + P(¬C) + P(¬C ′)
(b)= 2 ⋅ P(¬A) + 2 ⋅ P(¬A′) + P(¬B)

(a) is by the union bound and (b) results from the symmetry
between events A,A′ and C,C ′ respectively, by (47).

We now set:

nth
0 (ξ, δ) ≜max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
ξ
log2(1 + 1

1−2−ξ),
1

1−ξ log2(
64τ
1−δ) + 1,

1
ξ
log2 (

(1−δ)2
128⋅D),

1
1−2ξ− 2

3

log2 (128⋅2
(1−δ)2)

1
1−2ξ log2 (

128 log2(7)
(1−δ)2(log2(e)−1)

)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

(51)
and proceed to upper bound the probabilities of each of the
events ¬A,¬A′, and ¬B, for n > n0 ≥ nth

0 . We note that τ > 0
is a constant dependent on the input distribution that will be
defined later on. We will also set the constant D > 0 later
on, which is dependent on the input distribution and on the
deletion rate δ. In Lemma 8 we will bound P(¬A′). P(¬A)
and P(¬B) may be bounded using Hoeffding [25, Theorem
4.12], as in [4, equations (89),(90)]. That is,

P(¬A) ≤ 2 ⋅ e−
2ℓ̂2

∣GI ∣

(a)
≤ 2 ⋅ e− 2ℓ̂2

2n

(48)
≤ 2 ⋅ e−

2((1−δ)ℓn/4)
2

2n

= 2 ⋅ e−
(1−δ)2

8 ℓ2n2
−n

(4)
< 2 ⋅ e−

(1−δ)2

8 22((1−ξ)(n−1)−1)2−n

= 2 ⋅ e−
(1−δ)2

32 22(1−ξ)(n−1)−n

≤ 2 ⋅ e−
(1−δ)2

128 2(1−2ξ)n , (52)

where in (a) we bounded ∣GI∣ ≤ 2⋅2n−1, which results from (4a)

and n0 ≥ nth
0

(51)
≥ 1

ξ
log2(1 + 1

1−2−ξ) >
1
ξ
log2(1

1−2−ξ). Similarly
for the event ¬B we have (using the penultimate displayed
equation in the proof of [25, Theorem 4.12])

P(¬B) ≤ e
− 2ℓ̂2

∣G∆ ∣

(48)= e−
2((1−δ)ℓn/4)

2

ℓn

= e−2
(1−δ)2

16 ℓn

(4)= e
−2 (1−δ)

2

16 ⌊2(1−ξ)(n−1)⌋

(a)
≤ e−2

(1−δ)2

16 2(1−ξ)(n−1)−1

= e−
(1−δ)2

16 2(1−ξ)(n−1)

≤ e−
(1−δ)2

32 2(1−ξ)n , (53)

where in (a) we used ⌊2x⌋ > 2x−1 which holds for any x ≥ 0
(for x ∈ [0,1) we have 1 > 2x−1 and for x ≥ 1 we have
⌊2x⌋ > 2x − 1 ≥ 2x−1).

In total, we reach the following upper bound for P(¬GBM):

P(¬GBM) ≤ 2 ⋅ P(¬A) + 2 ⋅ P(¬A′) + P(¬B)
(52),(53), Lemma 8

≤ 2 ⋅ 2 ⋅ e−
(1−δ)2

128 2(1−2ξ)n

+ 2 ⋅ e−D⋅2
(1−ξ)n

+ e−
(1−δ)2

32 2(1−ξ)n ,

where D > 0 is the same constant from (51). The value of
D will be given explicitly in the proof of Lemma 8. We note
that when bounding P(A′) we will use the fact that n > n0 ≥
nth
0

(51)
≥ max{ 1

ξ
log2(1 + 1

1−2−ξ),
1

1−ξ log2(
64τ
1−δ) + 1}, and the

qualities of the input distribution we fixed. The definition of
τ will also be given in the proof of Lemma 8.

Finally, for 0 < ξ < 1
6

and n > n0 ≥ nth
0 we have

P(¬GBM)
(a)
≤ 7e−

(1−δ)2

128 2(1−2ξ)n (b)
≤ 2−

(1−δ)2

128 2(1−2ξ)n (c)
≤ 2−2⋅N

2
3
.

Specifically, inequality (a) holds for nth
0

(51)
≥ 1

ξ
log2 (

(1−δ)2
128⋅D),

(b) holds for nth
0

(51)
≥ 1

1−2ξ log2(
128
(1−δ)2 ⋅

log2(7)
log2(e)−1

), and (c)

holds for nth
0

(51)
≥ 1

1−2ξ− 2
3

log2 (128⋅2
(1−δ)2).

A. Bounding the probability of event ¬A′

The following lemma was used in the proof of Lemma 6.
In this lemma we develop a bound on P(¬A′), the probability
that “too many” bits were trimmed in YI. The bound we reach
decays with n (in contrast to the weaker bound in [4, equation
(94)] which decays with n0).

Lemma 8 (Upper bounding P(¬A′)): Let A′ be as in (47b).
There exists nth

0 (ξ), which is also dependent on the input
distribution, such that for n > n0 ≥ nth

0 (ξ)

P(¬A′) ≤ e−D⋅2
(1−ξ)n

,

where D > 0 is a constant dependent on the input distribution
and on the deletion rate δ.

Proof: We consider the event A′′, defined as follows.
Under the event A′′, some index j < ℓ̂ in GI is a ‘1’ bit
and was not deleted by the channel (where ℓ̂ was set in (48)).
Clearly A′′ ⇒ A′, hence,

P(¬A′) ≤ P(¬A′′) .

¬A′′ is the complementary event where no index j < ℓ̂ in GI
is a ‘1’ bit that was not deleted.

We denote by #j
X the number of bits to the left of index

j in g(X, n0, ξ) that originate from X, and denote by #j
GB

the number of GB bits to the left of index j. For n0 ≥ nth
0 ≥

1
ξ
log2(1 + 1

1−2−ξ)

#j
X ≥#

j
GB, ∀j ∈ {1,2, . . . ,Λ} . (54)

That is, there are more bits from X than GB bits, for any
prefix of G. The proof of (54) is given in Lemma 9. By (54),
there are at least j

2
bits from X prior to index j in G, i.e.

#j
X ≥

j

2
. (55)

20

For the case of X distributed according to a regular Markov
input distribution with states S, which we assumed is not
degenerate, there exists an integer τ > 0 and a probability
0 < p0 < 1 s.t. for any state s ∈ S

P((X1,X2, . . . ,Xτ) = (0,0, . . . ,0)∣S0 = s) < p0 . (56)

That is, the probability of a ‘1’ bit in a series of τ bits in X
is greater than 1− p0. For each τ bits in X, the probability of
at least one of them being a ‘1’ bit that was not deleted in the
channel is greater than

(1 − p0)(1 − δ) .

In our setting, X consists of blocks of length N0, each
drawn independently from the regular hidden Markov input
distribution. We consider two cases: #⌊ℓ̂⌋X ≤ N0 and #

⌊ℓ̂⌋
X > N0.

For the first case, all the bits up to index ⌊ℓ̂⌋ that originate from
X were drawn according to the underlying regular Markov
input distribution (that is, originate from the same block in

X). There are ⌊#⌊ℓ̂⌋X /τ⌋ segments of X bits of length τ up to

index ⌊ℓ̂⌋.
For the case where #

⌊ℓ̂⌋
X > N0, we count the number of

segments of τ bits up to index ⌊ℓ̂⌋ in G that originate from X
and require that each segment was taken from the same block
in X. There are at least

⌊#⌊ℓ̂⌋X /N0⌋ ⋅ ⌊N0/τ⌋

such segments of length τ . We lower bound by

⌊#⌊ℓ̂⌋X /N0⌋ ⋅ ⌊N0/τ⌋
(a)
≥
#
⌊ℓ̂⌋
X

2N0
⋅ N0

2τ
=
#
⌊ℓ̂⌋
X

4τ
≥
⎢⎢⎢⎢⎢⎣

#
⌊ℓ̂⌋
X

4τ

⎥⎥⎥⎥⎥⎦
.

In (a) we applied ⌊x⌋ ≥ x
2

which holds for x ≥ 1, which is

satisfied for #⌊ℓ̂⌋X > N0 and n0 ≥ nth
0 ≥ log2 τ .

For both cases we get that there are at least ⌊#
⌊ℓ̂⌋
X

4τ
⌋ segments

of X bits of length τ up to index ⌊ℓ̂⌋. Thus, by the Markov
property:

P(¬A
′′

) ≤ (1 − (1 − p0)(1 − δ))
⌊#

⌊ℓ̂⌋
X
4τ ⌋

(55)
≤ (p0(1 − δ) + δ)

⌊ ⌊ℓ̂⌋8τ ⌋

(a)= (p0(1 − δ) + δ)⌊
ℓ̂
8τ ⌋ ,

where (a) follows from [26, equation (3.11)]. We continue to
upper bound the RHS from above:

(48)= (p0(1 − δ) + δ)⌊
(1−δ)ℓn

32τ ⌋

(4)= (p0(1 − δ) + δ)⌊
1−δ
32τ ⌊2

(1−ξ)(n−1)⌋⌋

(a)
< (p0(1 − δ) + δ)⌊

1−δ
64τ 2(1−ξ)(n−1)⌋

(b)
≤ (p0(1 − δ) + δ) 1−δ

128τ 2(1−ξ)(n−1)

= (p0(1 − δ) + δ)
1−δ

128τ ⋅2(1−ξ)
2(1−ξ)n

≤ (p0(1 − δ) + δ) 1−δ
128⋅2τ 2(1−ξ)n

= e− ln(
1

p0(1−δ)+δ
) 1−δ

256τ 2(1−ξ)n

where (a) is by ⌊2x⌋ > 2x−1 which holds for any x ≥ 0. For
(b) we apply ⌊x⌋ ≥ x

2
which holds for x ≥ 1, thus inequality

(b) holds for n > n0 ≥ nth
0 ≥ 1

1−ξ log2(
64τ
1−δ) + 1.

We denote D ≜ 1−δ
256τ

ln(1
p0(1−δ)+δ), where τ and p0 satisfy

(56). We note that D > 0, since 0 < p0(1 − δ) + δ < 1. Finally,

P(¬A′) ≤ P(¬A′′) ≤ e−D⋅2
(1−ξ)n

,

for

n > n0 ≥ nth
0

≜max{1
ξ
log2(1 +

1

1 − 2−ξ
), 1

1 − ξ
log2(

64τ

1 − δ
) + 1} .

B. Guard-band presence in g(X)
To show (54), we state and prove the following lemma.
Lemma 9 (Majority of X bits in any prefix of G): If n0 ≥

1
ξ
log2(1 + 1

1−2−ξ), then for n > n0 and for any given index j

in g(X, n0, ξ),
#j

X ≥#
j
GB ,

where #j
X is the number of X bits in the prefix up to j in

g(X, n0, ξ), and #j
GB is the number of GB bits up to j. That

is, in any prefix of G the number of bits from X is greater or
equal to the number of GB bits.

Proof: We divide our proof to three claims.
Claim A.1: Assume to the contrary that there exists an

index j0 for which our lemma does not hold, i.e. #j0
X <#

j0
GB.

Then, there must exist some index j1 which is located at the
right edge of some guard-band that also does not satisfy the
lemma, i.e. #j1

X <#
j1
GB.

Proof: If j0 is an index of a GB bit, we may continue to
the right edge of the GB containing j0, making the rightmost
index of this GB the desired j1. This j1 satisfies:

#j1
X =#

j0
X <#

j0
GB ≤#

j1
GB .

If j0 is an index of an X bit, we may continue to the left
edge of the block of X containing j0, making the rightmost
index of the GB to the left of this block the desired j1. This
j1 satisfies:

#j1
X <#

j0
X <#

j0
GB =#

j1
GB .

Claim A.2: We define index jmid as the rightmost index
of the middle GB of g(X). We remind that g(X) is created
from N1 = 2n1 blocks of X, each block of length N0 = 2n0 .
If #jmid

X ≥#jmid

GB for all n1, then,

#j
X ≥#

j
GB

for any index j in g(X).
Proof: Recall that g(X) was generated according to a

given n0 and n1. We denote by

(n1, n0)series
the prefix of g(X) of length jmid. For a general n1, the full
g(X) will be the concatenation:

(n1, n0)series ⊙ (n1 − 1, n0)series ⊙ . . .⊙ (2, n0)series ⊙ (1, n0) series ⊙X(N1) .

21

See Figure 12, for g(X) = (2, n0)series ⊙ (1, n0)series ⊙X(4).

X(1) 00...0 X(2) 00........0 X(3) 00...0 X(4)

j1

jmid

j1 j1

(1, n0)series(1, n0)series (2, n0)series

Fig. 12. The (n1, n0)series portions of g(X). In this example n = n0 + 2
and the vector g(X) is a concatenation of (2, n0)series, (1, n0)series, and
X(4).

We notice the following property: for each index j1 located
at the right edge of some guard-band in g(X), the series of
bits to the left of j1 are concatenations of the building-blocks

{(i, n0)series}i∈J ,

where J is some subset of {1,2, . . . , n1}. Therefore, if
#jmid

X ≥ #jmid

GB is satisfied for any n1, then each building-
block (n1, n0)series contains at least as many bits from X as
guard-band bits. Thus,

#j1
X ≥#

j1
GB ,

for any rightmost index j1 of a GB in g(X). By Claim A.1,
this leads to: #j

X ≥#
j
GB ∀j ∈ {1, . . . ,Λ}.

Claim A.3: For any n1, #jmid

X ≥#jmid

GB .
Proof: In the series of bits up to jmid, there are half of

the bits of X. That is,

#jmid

X = 1

2
∣X∣ = 2n−1 . (57)

Also, up to jmid, there are half of the GB bits of g(X), plus
the additional bits from the middle GB,

#jmid

GB =
1

2
(Λ −N) + 1

2
ℓn . (58)

The total number of GB bits satisfies

∣g(X)∣ − ∣X∣ = Λ −N
(4a)
≤ 2n ⋅ (2−ξn0

1−2−ξ) .
(59)

The length of the middle GB satisfies:

ℓn
(4)
≤ 2(1−ξ)(n−1) ≤ 2n−1 ⋅ 2−ξn0 , (60)

where the last inequality is by n ≥ n0 + 1. Thus,

#jmid

X

(57)= 2n−1

(a)
≥ 1

2
⋅ 2n ⋅ (2−ξn0

1−2−ξ) + 2n−1 ⋅ 2−ξn0

(59),(60)
≥ 1

2
(Λ −N) + ℓn

(58)
≥ #jmid

GB ,

(61)

where (a) is satisfied for n0 ≥ 1
ξ
log2(1 + 1

1−2−ξ) and any ξ > 0.

By combining the results from Claims A.2 and A.3, we have
proven Lemma. 9.

APPENDIX B
PLUS TRANSFORMS DECREASE THE PROCESS Z̄n

Recall that Claim 6.1 was stated and proved as part of the
proof of Lemma 7. That proof relied on Lemma 10, which we
prove here. We remind the reader that B1,B2, . . . is a random
process with i.i.d. entries, each with distribution Bernoulli(1

2
).

That is,

Bn =
⎧⎪⎪⎨⎪⎪⎩

0 w.p. 1
2
,

1 w.p. 1
2
.

We also remind that the process Bn is coupled with the process
Z̄n in (18). In Claim 6.1 we lower bound Z̄n. A pivotal part
in lower bounding Z̄n is showing that the event of drawing
only 1’s in the process Bn minimizes the process Z̄n. This
will be proven herein.

For this, we denote by Σ1(n) the event of drawing only
1’s up to n, starting from n0. The parameter n0 is the starting
index of the process Z̄n (18). That is,

Σ1(n) = {Bi+1 = 1, ∀n0 ≤ i ≤ n − 1} . (62a)

The following lemma shows that under this event, Z̄n is
minimized.

Lemma 10: Let Z̄n0 , Z̄n0+1, . . . be the process defined in
(18). We denote by Z̄Σ1

n the value of Z̄n under event Σ1(n)
in (62a). Note that Z̄Σ1

n is a constant. Let ηa = 1
2⋅κ as in (28).

For η ≤ ηa and for any n ≥ n0:

Z̄n ≥ Z̄Σ1
n with probability 1 .

Proof: We denote the value of Z̄n+1 when Bn+1 = 1 (‘+’)
as Z̄+n+1, and the value of Z̄n+1 when Bn+1 = 0 (‘−’) as Z̄−n+1.

Sub-Claim B.1:

For η ≤ ηa ∶ Z̄n ≤ η⇒ Z̄+n+1 ≤ η . (63)

Proof:

Z̄+n+1
(18a)= 2 ⋅ κ ⋅ Z̄2

n

≤ 2 ⋅ κ ⋅ η2

≤ 2 ⋅ κ ⋅ ηa ⋅ η
(28)= η .

Sub-Claim B.2: For η ≤ ηa:

Z̄Σ1
n ≤ η, ∀n ≥ n0 .

Sub-claim B.2 may be easily proven by induction, where the
induction basis is given by our starting point at Z̄n0

(18b)= η.
The induction step is given by (63).

Sub-Claim B.3: Under Σ1(n), for η ≤ ηa:

Z̄+n+1 ≤ Z̄n < Z̄−n+1 . (64)

The ‘−’ case in Sub-claim B.3 is true since κ ≥ 1 and since
the process Z̄n is positive for all n:

Z̄n < 2 ⋅ κ ⋅ Z̄n
(18a)= Z̄−n+1 .

For the ‘+’ case, we must show that for η ≤ ηa and under
Σ1(n),

Z̄+n+1
(18a)= 2 ⋅ κZ̄2

n ≤ Z̄n .

22

Hence, it suffices to prove that under Σ1(n):

2 ⋅ κ ⋅ Z̄n ≤ 1 .

We use Sub-claim B.2 to recall that Z̄Σ1
n ≤ η. Recalling again

that η
(28)
≤ 1

2⋅κ , we deduce the above.
Now to the proof of our lemma. We will prove by con-

tradiction. Assume that Z̄n is minimized for some series of
draws B = {Bi+1}n−1i=n0

which is not all 1’s. For this series, for
some i: Bi+1 = 0 (‘−’). We denote the first index in B where
0 was drawn as i0, i.e,

Bi0+1 = 0 (‘−’) and Bi+1 = 1 (‘+’) ∀n0 ≤ i < i0 .

Notice that up to i0 we have performed only ‘+’ operations.
Thus, by Sub-claim B.2, Z̄i0 ≤ η. We now replace Bi0+1 = 0
with Bi0+1 = 1. By (64), Z̄i0+1 is now smaller. We perform
all other transforms dictated from B without change. The key
thing to note is that both operations in (18a) are monotonically
increasing in Z̄n. Thus, by a simple induction argument, Z̄n

will also be decreased by our change at step i0. We arrive at
a contradiction to Z̄n being minimized by the original series
B. Hence, the series minimizing Z̄n is Bi+1 = 1 for all n0 ≤
i ≤ n − 1 (the draw of event Σ1(n)).

APPENDIX C
AUXILIARY THRESHOLD CALCULATION FOR THEOREM 1

The following lemma, combined with Lemma 4, proves the
rightmost inequalities in (1) and (2) for a large enough n. This
lemma is used in Section VII, i.e. in the proof of our main
theorem, Theorem 1.

Lemma 11: Fix β > β′ > 0 and ϵ ∈ (0,1). Let N ≜ 2n.
There exists a threshold nth(β,β′, ϵ) such that if n ≥ nth then

2−N
β

< 1

2N
⋅ 2−(N

1−ϵ
)β
′

.

Proof: We set

nth(β,β′, ϵ) ≜

max{ 1

(ln(2) ⋅ β′)2 , 1 + 1

β − β′
log2(1 +

1

(1 − ϵ)β′)} . (65)

For n ≥ nth:

2−N
β

< 1

2N
⋅ 2−(N

1−ϵ
)β
′

− log2(⋅)⇔ 2βn > 1

(1 − ϵ)β′ ⋅ 2
β′n + 1 + n

(a)⇐ 2βn > 1

(1 − ϵ)β′ ⋅ 2
β′n + 1 + (ln(2)β′n)2

(b)⇐ 2βn > 1

(1 − ϵ)β′ ⋅ 2
β′n + eln(2)β

′n

⇔ 2βn > 2β
′n ⋅ (1 + 1

(1 − ϵ)β′)

⇔ 2(β−β
′)n > (1 + 1

(1 − ϵ)β′)

⇐ n ≥ nth (65)
> 1

β − β′
log2(1 +

1

(1 − ϵ)β′) .

Transition (a) is satisfied for n ≥ nth
(65)
≥ 1

(ln(2)⋅β′)2 . For
transition (b), recall that by Taylor’s theorem applied to
f(x) = ex, for x ≥ 0 we have:

ex = 1 + x + x2

2
+E2(x), (66)

where E2(x) ≜ f(3)(c)
3!

x3 = ec

3!
x3 for c ∈ [0, x] [27, p. 283].

Since all the terms on the RHS of (66) are nonnegative, we
have:

ex ≥ 1 + x2, ∀x ≥ 0 . (67)

That is, for x = ln(2)β′n ≥ 0 inequality (67) yields transition
(b).

REFERENCES

[1] H. Mercier, V. K. Bhargava, and V. Tarokh, “A survey of error-
correcting codes for channels with symbol synchronization errors,” IEEE
Communications Surveys Tutorials, vol. 12, no. 1, pp. 87–96, 2010.

[2] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of the dna
data storage channel,” Scientific Reports, vol. 9, 2019.

[3] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inform. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[4] I. Tal, H. D. Pfister, A. Fazeli, and A. Vardy, “Polar codes for the deletion
channel: weak and strong polarization,” IEEE Trans. Inform. Theory,
vol. 68, no. 4, pp. 2239–2265, April 2022.

[5] E. K. Thomas, V. Y. F. Tan, A. Vardy, and M. Motani, “Polar coding
for the binary erasure channel with deletions,” IEEE Communications
Letters, vol. 21, pp. 710–713, 2017.

[6] K. Tian, A. Fazeli, and A. Vardy, “Polar coding for deletion channels:
Theory and implementation,” in Proc. IEEE Int’l Symp. Inform. Theory
(ISIT’2017), Aachen, Germany, 2017, pp. 1869–1873.

[7] K. Tian, A. Fazeli, A. Vardy, and R. Liu, “Polar codes for channels with
deletions,” in 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2017, pp. 572–579.

[8] K. Tian, A. Fazeli, and A. Vardy, “Polar coding for channels with
deletions,” IEEE Trans. Inform. Theory, vol. 67, no. 11, pp. 7081–7095,
November 2021.

[9] Y. Li and V. Y. F. Tan, “On the capacity of channels with deletions and
states,” IEEE Transactions on Information Theory, vol. 67, no. 5, pp.
2663–2679, 2021.

[10] B. Shuval and I. Tal, “Fast polarization for processes with memory,”
IEEE Transactions on Information Theory, vol. 65, no. 4, pp. 2004–
2020, 2019.

[11] J. Honda and H. Yamamoto, “Polar coding without alphabet extension
for asymmetric models,” IEEE Transactions on Information Theory,
vol. 59, no. 12, pp. 7829–7838, 2013.

[12] S. B. Korada and R. L. Urbanke, “Polar codes are optimal for lossy
source coding,” IEEE Transactions on Information Theory, vol. 56, no. 4,
pp. 1751–1768, 2010.

[13] B. Shuval and I. Tal, “Fast polarization for processes with memory,”
IEEE Trans. Inform. Theory, vol. 65, no. 4, pp. 2004–2020, April 2019.

[14] R. Wang, J. Honda, H. Yamamoto, R. Liu, and Y. Hou, “Construction of
polar codes for channels with memory,” in Proc. IEEE Inform. Theory
Workshop (ITW’2015), Jeju Island, Korea, 2015, pp. 187–191.

[15] R. Wang, R. Liu, and Y. Hou, “Joint successive cancellation decoding
of polar codes over intersymbol interference channels,” CoRR, vol.
abs/1404.3001, 2014. [Online]. Available: http://arxiv.org/abs/1404.3001

[16] M. Mondelli, S. H. Hassani, and R. Urbanke, “How to achieve the
capacity of asymmetric channels,” IEEE Trans. Inform. Theory, vol. 64,
no. 5, pp. 3371–3393, May 2018.

[17] A. Chou and M. R. Bloch, “Using deterministic decisions for low-
entropy bits in the encoding and decoding of polar codes,” in Proc. Annu.
Allerton Conf. Commun. Control Computing (Allerton’2015), New York,
NY, USA, 2015.

[18] E. Arıkan and E. Telatar, “On the rate of channel polarization,” in Proc.
IEEE Int’l Symp. Inform. Theory (ISIT’2009), Seoul, South Korea, 2009,
pp. 1493–1495.

[19] D. Arava and I. Tal, “Stronger polarization for the deletion channel,”
in Proc. IEEE Int’l Symp. Inform. Theory (ISIT’2023), Taipai, Taiwan,
2023.

23

[20] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge,
UK: Cambridge University Press, 2008.

[21] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inform.
Theory, vol. 59, no. 10, pp. 6562–6582, October 2013.

[22] I. Tal, “A simple proof of fast polarization,” IEEE Trans. Inform. Theory,
vol. 63, no. 12, pp. 7617–7619, December 2017.

[23] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
izition and Probabilistic Techniques in Algorithms and Data Analysis,
2nd ed. Cambridge, UK: Cambridge University Press, 2017.

[24] B. Shuval and I. Tal, “Universal polarization for processes with
memory,” 2018. [Online]. Available: https://arxiv.org/abs/1811.05727v4

[25] M. Mitzenmacher and E. Upfal, Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge, UK:
Cambridge University Press, 2005.

[26] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics:
A Foundation for Computer Science, 2nd ed. Reading, Massachusetts:
Addison-Wesley, 1994.

[27] T. M. Apostol, Calculus, 2nd ed. Wiley, 1967, vol. 1.

