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Abstract— The min-sum approximation is widely used in the
decoding of polar codes. Although it is a numerical approximation,
hardly any penalties are incurred in practice. We give a
theoretical justification for this. We consider the common case of a
binary-input, memoryless, and symmetric channel, decoded using
successive cancellation and the min-sum approximation. Under
mild assumptions, we show the following. For the finite length
case, we show how to exactly calculate the error probabilities of
all synthetic (bit) channels in time O(N1.585), where N is the
codeword length. This implies a code construction algorithm with
the above complexity. For the asymptotic case, we develop two
rate thresholds, denoted RL = RL(λ) and RU = RU(λ), where
λ(·) is the labeler of the channel outputs (essentially, a quantizer).
For any 0 < β < 1

2
and any code rate R < RL, there exists a

family of polar codes with growing lengths such that their rates
are at least R and their error probabilities are at most 2−Nβ

.
That is, strong polarization continues to hold under the min-sum
approximation. Conversely, for code rates exceeding RU, the error
probability approaches 1 as the code-length increases, irrespective
of which bits are frozen. We show that 0 < RL ≤ RU ≤ C, where
C is the channel capacity. The last inequality is often strict, in
which case the ramification of using the min-sum approximation
is that we can no longer achieve capacity.

I. INTRODUCTION

Polar codes are a family of capacity-achieving error cor-
recting codes with efficient encoding and decoding algorithms,
introduced by Arıkan [1]. In this paper, we study the setting of
a binary-input, memoryless and symmetric channel. Although
many generalizations to this case exist [2]–[16], it is arguably
the most basic and common one. Moreover, it affords a very
efficient hardware implementation using the numerical min-sum
approximation (MSA) in the decoder.

The seminal decoding algorithm of polar codes is called
successive-cancellation (SC) decoding. It is a recursive algo-
rithm that makes repeated use of the following two functions:

f(La, Lb) = 2 tanh−1

(
tanh

(
La

2

)
· tanh

(
Lb

2

))
, (1)

gu(La, Lb) = (−1)u · La + Lb . (2)

The functions g0 and g1 are simple to implement, since addition
and subtraction are hardware-friendly operations. However,
the f function is somewhat complicated, since hyperbolic
functions are expensive in terms of calculation time and power
consumption. Therefore, in many practical implementations the
MSA is used [17]. That is, similar to what is done in LDPC
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Fig. 1. The capacity C and the thresholds RU and RL of a BI-AWGN
with 3-bit quantized output, using the labeling function λ given in (48). For
reference, the capacities of the corresponding non-quantized BI-AWGN and
AWGN are also given.

decoder implementation [18], the f function is replaced with
a simpler function f̃ given by

f̃(La, Lb) = sgn(La) · sgn(Lb) ·min {|La|, |Lb|} , (3)

where sgn(·) is the sign function defined as

sgn(x) ≜


1 if x > 0 ,

−1 if x < 0 ,

0 if x = 0 .

For the non-approximated setting, La, Lb, and the outputs
of f and g are log-likelihood ratios (LLRs) corresponding to
certain channel outputs. For the approximated setting, we use
the generalized term ‘labels’ for the corresponding quantities.
At the base of the recursion the labels La and Lb are obtained
by applying a labeling function λ(·) on the channel outputs.
The full definition of λ(·) is given in Section II. Informally,
λ(y) is a quantized version of the LLR corresponding to the
channel output y, up to a positive scaling constant.

The MSA is also used in decoders that are derivatives of the
SC decoder, such as the SC list decoder [19] and the SC stack
decoder [20]. Often, the MSA incurs only a small penalty in
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error rate [21, Figure 7], [22, Figures 7-8], and [23, Figure 4].
In this paper, we analyze this phenomenon.

The following theorem is our main result for the asymptotic
case. The theorem promises two rate thresholds, RL and RU,
when employing the MSA in SC decoding. Below RL, strong
polarization is guaranteed, while above RU the error probability
approaches 1. Figures 1 and 2 plot these thresholds and the
channel capacity C for the binary-input additive white Gaussian
noise (BI-AWGN) channel with quantized output, and for the
binary symmetric channel (BSC), respectively. As can be seen
in these figures, RL, RU, and C are all rather close. However,
note that RU is strictly smaller than C. That is, in these cases
using the MSA means that we can no longer achieve capacity.
The theorem assumes that a “fair labeler” is used, as defined
in Definition 2 below.

Theorem 1. Let W be a binary-input, memoryless and
symmetric channel. Fix 0 < β < 1

2 . Let λ(·) be a fair labeler.
Then, there exist thresholds RL = RL(λ) and RU = RU(λ),
such that 0 < RL ≤ RU. When using SC decoding and
the MSA, the following holds. For any code rate R < RL

there exists a family of polar codes with growing lengths
such that their rates are at least R and their word error
probabilities are at most 2−Nβ

, where N is the codeword
length. Conversely, for code rates exceeding RU, the word
error probability approaches 1 as the code-length increases,
irrespective of which bits are frozen.

If we only assume a fair labeler, RL is weak but still positive,
and RU is trivial. For a significant subclass of fair labelers,
“good labelers” (Definition 1), both bounds can be significantly
strengthened. A good labeler is often the case in practice.

For the finite-length case and the good labeler setting, we
develop an algorithm for calculating the exact error probability
of each min-sum synthetic channel, defined in (13). The running
time of our algorithm is O(N1.585). Note that in the non-
approximated setting, no such algorithm exists, only a method

to calculate bounds on the error probabilities [24].

II. NOTATION

Denote by W : X → Y a general binary-input, memoryless,
and symmetric channel with input alphabet X = {0, 1} and
output alphabet Y . For each pair x ∈ X and y ∈ Y the input
probability is p(x), and the transition probability is W (y|x).
Hence, the joint probability is given by W (y;x) = p(x) ·
W (y|x). We will assume that p(x) is symmetric, i.e. p(0) =
p(1) = 1/2.

For n ∈ N denote N = 2n and let (Xi, Yi)
N−1
i=0 be N i.i.d.

pairs, each distributed according to W (y;x). Denote by UN−1
0

the polar transform of XN−1
0 . For 0 ≤ i < N , define the

following synthetic joint distribution1:

W
(i)
N (yN−1

0 , ui−1
0 ;ui) =

Pr(Y N−1
0 = yN−1

0 , U i−1
0 = ui−1

0 , Ui = ui) . (4)

By [1, Proposition 3],

W
(2j)
N

(
yN−1
0 , u2j−1

0 ;u2j

)
=∑

u2j+1

W
(j)
N/2

(
y

N
2 −1
0 , u2j−1

0,e ⊕ u2j−1
0,o ;u2j ⊕ u2j+1

)
·W (j)

N/2

(
yN−1

N
2

, u2j−1
0,o ;u2j+1

)
, (5)

and

W
(2j+1)
N

(
yN−1
0 , u2j

0 ;u2j+1

)
=

W
(j)
N/2

(
y

N
2 −1
0 , u2j−1

0,e ⊕ u2j−1
0,o ;u2j ⊕ u2j+1

)
·W (j)

N/2

(
yN−1

N
2

, u2j−1
0,o ;u2j+1

)
, (6)

where W
(0)
1 (y;x) = W (y;x) and “⊕” is addition over GF(2).

In the above, u2j−1
0,e and u2j−1

0,o are the even and odd entries of
u2j−1
0 , respectively. As shown in [1], W (2j)

N and W
(2j+1)
N are

the result of applying the “−” and “+” transforms, respectively,
on W

(j)
N/2, up to a relabeling of the output.

For each joint distribution W
(i)
N we define the LLR L

(i)
N as

L
(i)
N (yN−1

0 , ui−1
0 ) ≜ log2

(
W

(i)
N (yN−1

0 , ui−1
0 ;ui = 0)

W
(i)
N (yN−1

0 , ui−1
0 ;ui = 1)

)
.

(7)
Using the relations described in (5) and (6) we obtain the
following recursive transforms for the LLRs:

L
(2j)
N

(
yN−1
0 , u2j−1

0

)
= (8a)

f
(
L
(j)
N/2

(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o

)
,L

(j)
N/2

(
yN−1
N/2 , u2j−1

0,o

))
,

L
(2j+1)
N

(
yN−1
0 , u2j

0

)
= (8b)

gu2j

(
L
(j)
N/2

(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o

)
,L

(j)
N/2

(
yN−1
N/2 , u2j−1

0,o

))
,

1We find it notationally easier to track joint distributions instead of channels.
The latter is simply obtained from the former by multiplying by 2.



−4 −2 0 2 4

−1

0

1

Lb

f(1, Lb)

f̃(1, Lb)

f − f̃

Fig. 3. A comparison between the non-approximated function f(La, Lb) and
the approximated function f̃(La, Lb) for La = 1.

where f and g are defined in (1) and (2), respectively. The
starting condition for this recursion is

L
(0)
1 (y) = LLR(y) ≜ log2 (W (y; 0)/W (y; 1)) . (9)

The SC decoder uses f and g to recursively calculate the
LLRs of all synthetic joint distributions, yielding a decoding
algorithm with running time O(N logN).

The min-sum SC decoder is a simplified version of the
original SC decoder, as it uses f̃ (see (3)) instead of the
computationally heavier f during the recursion. A graphical
comparison between these two functions if given in Figure 3.
Unlike f , both f̃ and g are positive homogeneous (i.e.
multiplying both inputs by a positive constant multiplies the
output by the same constant). This implies that the min-sum
decoder is not affected by scaling. Therefore, we further extend
the approximation and allow the initial labels at the base of
the recursion not to be LLRs, but some values obtained by
applying a labeling function λ on the channel outputs. We now
list 3 properties required of a labeler λ to be called a “good
labeler”.

Definition 1 (Good labeler). A labeler λ : Y → R is a good
labeler with respect to a binary-input memoryless symmetric
channel W : X → Y if the following holds:

1) Symmetry preservation: since W is symmetric, there
exists a permutation π : Y → Y such that for all y ∈ Y ,
W (y|1) = W (π(y)|0) and π(π(y)) = y. We require that
λ(π(y)) = −λ(y) for all y ∈ Y .

2) Sign consistency: for all positive t we have αt ≥ α−t,
where αt =

∑
y:λ(y)=t W (y|0), and the inequality is

strict for at least one t.
3) Finite integer range: the range of λ is contained in

{−γ,−γ +1, . . . , γ − 1, γ}, for some positive integer γ.

Note that the requirement of a strict inequality in the second
property rules out channels with capacity zero. We also define

a “fair labeler” as follows.

Definition 2 (Fair labeler). A labeler λ is a fair labeler if the
first two requirements of a good labeler are met.

Note that if we were to take λ(y) = LLR(y), we would
have a fair labeler, for any channel with positive capacity.
The last property of the good labeler is required only for
computational reasons, and is often the case due to quantization.
The justification for it is by the homogeneous property of f̃
and g and its implications, as described above.

Under the MSA, labels are calculated recursively by

L̃
(2j)
N

(
yN−1
0 , u2j−1

0

)
= (10a)

f̃
(
L̃
(j)
N/2

(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o

)
,L̃

(j)
N/2

(
yN−1
N/2 , u2j−1

0,o

))
,

L̃
(2j+1)
N

(
yN−1
0 , u2j

0

)
= (10b)

gu2j

(
L̃
(j)
N/2

(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o

)
,L̃

(j)
N/2

(
yN−1
N/2 , u2j−1

0,o

))
,

where f̃ and g are defined in (3) and (2), respectively. Note
the similarity between (8) and (10). As opposed to the starting
condition (9) for the non-approximated setting, the starting
condition under the MSA is

L̃
(0)
1 (y) = λ(y) . (11)

The use of a labeling function λ is beneficial in practice,
since it allows us to avoid the estimation of unknown channel
parameters. For example, consider the case of an AWGN
channel with unknown noise level σ2. Thus, the LLR of
output symbol y is given by 2y/σ2. However, using λ(y) =
LLR(y) = 2y/σ2 will give exactly the same results as using
λ(y) = α ·y, where α > 0 is some fixed positive constant. The
utility of the latter fair labeling function is that σ2 need not
be estimated. In practice, we use the following good labeler,
which is a quantized version of the previous fair labeler,

λ(y) =

{
sgn(y) · ⌊α · |y|⌋ if |y| < γ/α ,

sgn(y) · γ if |y| ≥ γ/α .

We optimize α and γ to work well over the range σ2 is likely
to belong to.

III. POSYNOMIAL REPRESENTATION

For a fair labeler, we now define the synthetic joint
distributions (on the label t and input ui) at stage i of the SC
decoder and min-sum SC decoder. These are, respectively,

Q
(i)
N (t;ui) ≜

∑
yN−1
0 ,ui−1

0 :

L
(i)
N (yN−1

0 ,ui−1
0 )=t

W
(i)
N (yN−1

0 , ui−1
0 ;ui) , (12)

Q̃
(i)
N (t;ui) ≜

∑
yN−1
0 ,ui−1

0 :

L̃
(i)
N (yN−1

0 ,ui−1
0 )=t

W
(i)
N (yN−1

0 , ui−1
0 ;ui) . (13)

Denote by T (i)
N and T̃ (i)

N the support of Q
(i)
N (t;ui) and

Q̃
(i)
N (t;ui), respectively, with respect to t.



Using the relations in (5)–(11), we obtain the following
minus and plus transforms of synthetic joint distributions.

Lemma 2 (Transforms of synthetic joint distributions).

Q̃
(2j)
N (t;u2j) = (14a)∑

ta,tb,u2j+1:

f̃(ta,tb)=t

Q̃
(j)
N/2(ta;u2j ⊕ u2j+1) · Q̃(j)

N/2(tb;u2j+1) ,

Q̃
(2j+1)
N (t;u2j+1) = (14b)∑

ta,tb,u2j :
gu2j

(ta,tb)=t

Q̃
(j)
N/2(ta;u2j ⊕ u2j+1) · Q̃(j)

N/2(tb;u2j+1) .

The above continues to hold if we remove all tildes.

The following lemma ensures that symmetry holds for the
min-sum synthetic distributions.

Lemma 3 (Symmetry of synthetic joint distribution).

Q̃
(i)
N (t;ui) = Q̃

(i)
N (−t;ui ⊕ 1) . (15)

The above continues to hold if we remove all tildes.

We now give intuition as to why a setting in which the
MSA and a good labeler are used is much easier in terms of
exactly calculating quantities of interest, as opposed to the
non-approximated setting.

In the non-approximated setting, for the minus transform
we have that

|T (2j)
N | ≤ |T (j)

N/2|2 . (16)

Indeed, this follows since in (14a) with the tildes removed
we sum over all (ta, tb) ∈ T (j)

N/2 × T (j)
N/2 which determine t =

f(ta, tb), and also over u2j+1 ∈ {0, 1}, which does not appear
in f(ta, tb). For the plus transform, we have by inspection of
(14b) with the tildes removed that |T (2j+1)

N | ≤ 2 · |T (j)
N/2|2. In

fact, for a symmetric channel, this can be strengthened to

|T (2j+1)
N | ≤ |T (j)

N/2|2 . (17)

Indeed, by Lemma 3, t ∈ T (j)
N/2 iff −t ∈ T (j)

N/2. Thus, (17)
follows by inspection of g in (2). Hence, by (16), (17), and a
straightforward induction,

|T (i)
N | ≤ |T (0)

1 |2wt(i)

, (18)

where wt(i) is the Hamming weight of the vector whose entries
are the binary representation of i.

In contrast, consider the case of the MSA and a good labeler.
By definition, T̃ (0)

1 ⊆ {−γ, . . . , γ}. By inspection of (2), (3),
(14), and a straightforward induction, it follows that

T̃ (i)
N ⊆ {−2wt(i) · γ, . . . , 2wt(i) · γ} . (19)

This is the reason we can carry out our calculations efficiently
in this case: as opposed to (18), the size of T̃ (i)

N grows linearly
with N , since wt(i) is at most n and N = 2n.

A further consequence of the symmetry is Lemma 3 is
the following lemma. It gives a simple expression for the

probability of error at the i-th stage of the min-sum SC decoder
when aided by a genie that reveals the correct values of ui−1

0 .

Lemma 4.

Pe

(
Q̃

(i)
N

)
= Q̃

(i)
N (0; 0) + 2 ·

∑
t<0

Q̃
(i)
N (t; 0) . (20)

To derive a Bhattacharyya-like upper bound on Pe, and to
aid in notation in general, we abuse notation and define the
following posynomial, in the indeterminate ξ:

Q̃
(i)
N (ξ) ≜

∑
t

Q̃
(i)
N (t; 0) · ξt . (21)

The above is indeed a posynomial: all the coefficients are non-
negative as they are probabilities, while t is not restricted to
non-negative numbers.

The following corollary justifies why in (21) we define the
posynomial Q̃(i)

N (ξ) without taking into account terms of the
form Q̃

(i)
N (t; 1).

Corollary 5. Q̃
(i)
N (t; 1) equals the coefficient of ξt in

Q̃
(i)
N (1/ξ).

We further define the following:

Z
(
Q̃

(i)
N , ξ

)
≜ 2 · Q̃(i)

N (ξ) . (22)

Our upper bound on Pe is presented in the following lemma.

Lemma 6 (Bhattacharyya-like bound). For 0 < ξ0 ≤ 1,

Pe

(
Q̃

(i)
N

)
≤ Z

(
Q̃

(i)
N , ξ0

)
. (23)

We remark that setting ξ0 = 1/
√
2 and removing the tildes

yields the Bhattacharyya bound on the error probability at the
i-th stage of the non-approximated genie-aided SC decoder.
Also, we may optimize over ξ0 to yield the tightest upper
bound, denoted

Z⋆
(
Q̃

(i)
N

)
≜ min

0<ξ0≤1
Z
(
Q̃

(i)
N , ξ0

)
. (24)

The above optimization is an instance of geometric program-
ming, and can thus be efficiently computed [25, Section 4.5].

The following shows that the evolution of Z and Z⋆ is
similar to the evolution of the Bhattacharyya parameter in the
non-approximated setting.

Lemma 7 (Bhattacharyya-like evolutions). For 0 < ξ0 ≤ 1
and 0 ≤ j < N/2 we have

Z
(
Q̃

(2j)
N , ξ0

)
≤ 2 · Z

(
Q̃

(j)
N/2, ξ0

)
, (25a)

Z
(
Q̃

(2j+1)
N , ξ0

)
=
(
Z
(
Q̃

(j)
N/2, ξ0

))2
. (25b)

Furthermore,

Z⋆
(
Q̃

(2j)
N

)
≤ 2 · Z⋆

(
Q̃

(j)
N/2

)
, (26a)

Z⋆
(
Q̃

(2j+1)
N

)
=
(
Z⋆
(
Q̃

(j)
N/2

))2
. (26b)

To prove the above, we state the following two lemmas.



Lemma 8 (Bound on posynomial minus transform). For all
0 < ξ0 ≤ 1 we have

Q̃
(2j)
N (ξ0) ≤ 2 · Q̃(j)

N/2(ξ0) . (27)

Lemma 9 (Posynomial plus transform).

Q̃
(2j+1)
N (ξ) = 2 ·

(
Q̃

(j)
N/2(ξ)

)2
. (28)

The previous lemma implies that the coefficients of
Q̃

(2j+1)
N (ξ) can be calculated efficiently from those of Q̃(j)

N/2(ξ).

We now show an analogous result for Q̃(2j)
N (ξ). In aid of this,

we define the “above” and “below” posynomials:

Ã
(i)
N (ξ) ≜

∑
t∈T̃ (i)

N

(∑
t′>t

Q̃
(i)
N (t′; 0)

)
· ξt , (29)

B̃
(i)
N (ξ) ≜

∑
t∈T̃ (i)

N

(∑
t′<t

Q̃
(i)
N (t′; 0)

)
· ξt . (30)

Namely, if we write out Q̃(i)
N (ξ) in ascending order of powers

of ξ, then the coefficient of ξt in Ã
(i)
N (ξ) (resp. B̃(i)

N (ξ)) is
the sum of the coefficients strictly above (resp. below) the
monomial Q̃(i)

N (t; 0)ξt.
Let Γ(ξ) and Λ(ξ) be two posynomials. Denote by [ξt] Γ(ξ)

the coefficient of ξt in Γ(ξ). Define the “positive” and
“negative” operators, and Hadamard (element-wise) product:
these operators return posynomials, where for all t,

[ξt] pos ⟨Γ(ξ)⟩ =
{
[ξt] Γ(ξ) t ≥ 0 ,

[ξ−t] Γ(ξ) t < 0 .
(31)

[ξt] neg ⟨Γ(ξ)⟩ =
{
[ξt] Γ(ξ) t ≤ 0 ,

[ξ−t] Γ(ξ) t > 0 .
(32)

[ξt]
(
Γ(ξ)⊙ Λ(ξ)

)
=
(
[ξt] Γ(ξ)

)
·
(
[ξt] Λ(ξ)

)
. (33)

Lemma 10 (Posynomial minus transform).

Q̃
(2j)
N (ξ) =

2
(
Q̃

(j)
N/2(ξ)⊙

(
2 · pos

〈
Ã

(j)
N/2(ξ)

〉
+ Q̃

(j)
N/2(ξ)

))
+ 2

(
Q̃

(j)
N/2(1/ξ)⊙

(
2 · neg

〈
B̃

(j)
N/2(ξ)

〉
+ Q̃

(j)
N/2(1/ξ)

))
− 2

(
[ξ0] Q̃

(j)
N/2(ξ)

)2
. (34)

IV. FINITE-LENGTH CASE

In this section, we assume a good labeler. For the finite length
case, our aim is to calculate Pe

(
Q̃

(i)
N

)
for all 0 ≤ i < N ,

where the codeword length is N = 2n. The expression for this
is given in (20), which we can recast using (32) as

Pe

(
Q̃

(i)
N

)
= neg

〈
Q̃

(i)
N (ξ)

〉∣∣∣
ξ=1

. (35)

We use (28) and (34) to calculate Q̃
(i)
N (ξ) for all i, and

then apply (35) to yield the error probability. The following
two lemmas specify the complexity of calculating Q̃

(2j)
N (ξ)

and Q̃
(2j+1)
N (ξ) from Q̃

(j)
N/2(ξ). Namely, the complexity of

calculating all the coefficients of the former, given all the
coefficients of the latter. Recall that T̃ (i)

N is defined in (19).

Lemma 11 (Complexity of posynomial minus transform).
The complexity of calculating Q̃

(2j)
N (ξ) from Q̃

(j)
N/2(ξ) is

O
(
|T̃ (j)

N/2|
)

.

Lemma 12 (Complexity of posynomial plus transform).
The complexity of calculating Q̃

(2j+1)
N (ξ) from Q̃

(j)
N/2(ξ) is

O
(
|T̃ (j)

N/2| · log(|T̃
(j)

N/2|)
)

.

The following theorem is our main result for this section. It
shows that the complexity of calculating all the probabilities
of error Pe

(
Q̃

(i)
N

)
is polynomial in the codeword length N

and in γ (recall Definition 1).

Theorem 13 (Total complexity of evaluating Pe). When using
a good labeler λ, the complexity of calculating Pe

(
Q̃

(i)
N

)
for

all 0 ≤ i < N is O(N log2 3 logN · γ log γ). We simplify this
to O(N1.585 · γ log γ).

V. ASYMPTOTIC CASE

In this section we prove Theorem 1. We first do so assuming
a fair labeler, and then show how to significantly improve the
thresholds RL and RU for the case of a good labeler. The
following three results are required for deriving RL.

Proposition 14. Let B1, B2, . . . be i.i.d. random variables
such that Pr(Bi = 0) = Pr(Bi = 1) = 1/2. Let S0, S1, . . . be
a [0, 1]-valued random process that satisfies

Sn+1 ≤ κ ·
{
Sn, Bn+1 = 0 ,

S2
n, Bn+1 = 1 ,

n ≥ 0 . (36)

Then, for every ϵ′ > 0 and δ′ > 0 there exist n′ = n′(ϵ′, δ′, κ)
and η = η(ϵ′, δ′, κ) > 0 such that if S0 ≤ η then

Pr (Sn ≤ ϵ′ for all n ≥ n′) ≥ 1− δ′ . (37)

This is [26, Equation 171], and is the crux of proving [26,
Proposition 49].

The expression for η is given in the penultimate displayed
equation in [26, Appendix A], where r is defined slightly
before as the largest positive solution of κr + (2κ)−r = 2.
In our setting, Sn will be related to Z⋆. Thus, by (26), we
specialize to κ = 2. Plugging x = 2r into 2r +4−r = 2 yields
x+ 1/x2 = 2. The three roots of this equation are 1, φ, and
−φ−1, where φ = 1

2 ·
(
1 +

√
5
)

is the golden ratio. Thus,
r = log2(φ) and

η(δ′) =
1

8
· (δ′/2)1/ log2 φ . (38)

The following result is an immediate corollary.

Corollary 15. Let S0, S1, . . . be as in Proposition 14, with
κ = 2. Fix ϵ′ > 0 and η > 0. Then there exists n′ = n′(ϵ′, η)
such that if S0 ≤ η then

Pr (Sn ≤ ϵ′ for all n ≥ n′) ≥ 1− δ′(η) , (39)



where

δ′(η) ≜ 2 · (8η)log2 φ and φ = (1 +
√
5)/2 . (40)

The following result is of primary importance and will be
used directly to prove Theorem 1.

Proposition 16. Let S0, S1, . . . be as in Proposition 14, with
κ = 2. Fix 0 < β < 1/2, η > 0, and δ > δ′(η), where δ′(η) is
given in (40). Then, there exists n0 = n0 (β, δ − δ′(η)) such
that if S0 ≤ η then

Pr
(
Sn ≤ 2−2nβ

for all n ≥ n0

)
≥ 1− δ . (41)

A. Fair Labeler

Proof of Theorem 1: For RU, we first recall that any de-
coder operates on the output of W , after it has been labeled by
λ. Thus, it effectively sees the channel Q̃(t|x) = 2 · Q̃(0)

1 (t;x),
as defined in (13). We take RU as the capacity of this channel,
which is valid by the strong converse to the coding theorem,
see [27, Theorem 5.8.5].

We now work towards deriving RL. Consider a polar code
of length N = 2n with non-frozen index set A = {0 ≤
i < N : Z⋆(Q̃

(i)
N ) < 2−Nβ′

}, where β′ = β+1/2
2 . By the

“genie-aided decoder” argument in [1], the union bound, and
Lemma 6, the error probability of such a code is at most
|A| · 2−Nβ′

≤ N · 2−Nβ′

< 2−Nβ

, where the last inequality
holds for N large enough. Thus, we must find an RL such
that for R < RL fixed and all N large enough, |A| ≥ N ·R.
Consider the set A′ = {0 ≤ i < N : ζ

(i)
N < 2−Nβ′

}, where
ζ
(0)
1 = Z⋆(Q̃

(0)
1 ) and

ζ
(i)
N =

2 · ζ(i/2)N/2 i is even,(
ζ
((i−1)/2)
N/2

)2
i is odd.

(42)

By (26), we have for all i that ζ(i)N ≥ Z⋆(Q̃
(i)
N ). Namely,

A′ ⊆ A. Thus, it suffices to find an RL such that for R < RL

fixed and all N large enough, |A′| ≥ N ·R. For any M = 2m,
we use the definition of δ′(·) in (40) and define the following:

RL(M) ≜
1

M

M−1∑
j=0

max
{
1− δ′(ζ

(j)
M ), 0

}
. (43)

Proving the following two items will complete the proof:

1) For a given M and R < RL(M) there exists n0 such
that for all n ≥ n0 we have |A′| ≥ N ·R.

2) There exists an M such that RL(M) > 0.

To prove the first item, assume that R, and therefore RL(M),
are positive, otherwise the claim is trivial. For each one of
the M indices 0 ≤ j < M , we invoke Proposition 16 with
δ = δ′(ζ

(j)
M )+(RL(M)−R), η = S0 = ζ

(j)
M , and β′′ = β′+1/2

2

in place of β. Denote the n0 promised by the proposition as n(j)
0 .

Now define nmax
0 = maxj n

(j)
0 . By (41), for n ≥ m + nmax

0

the fraction of indices 0 ≤ i < N such that ζ(i)N ≤ 2−2(n−m)β′′

is at least

1

M

M∑
j=0

max
{
1−

(
δ′(ζ

(j)
M ) +RL(M)−R

)
, 0
}

=
1

M

M∑
j=0

max
{
1− δ′(ζ

(j)
M ) +R−RL(M), 0

}
≥ 1

M

M∑
j=0

max
{
1− δ′(ζ

(j)
M ) +R−RL(M), R−RL(M)

}
=

1

M

M∑
j=0

max
{
1− δ′(ζ

(j)
M ), 0

}
+R−RL(M)

= R .

For the first item to hold, we take n0 ≥ m+nmax
0 large enough

such that for all n ≥ n0 we have 2−2(n−m)β′′

≤ 2−2nβ′

=

2−Nβ′

(ensuring |A′| ≥ N ·R) and N · 2−Nβ′

< 2−Nβ

.
We now prove the second item. That is, it is always possible

to find an M such that RL(M) > 0. We first show that
Z⋆(Q̃

(0)
1 ) < 1. Indeed,

Z(Q̃
(0)
1 , ξ)

∣∣∣
ξ=1

= 1 and
d

dξ
Z(Q̃

(0)
1 , ξ)

∣∣∣∣
ξ=1

> 1 ,

where the inequality follows by item 2 in Definition 1.
Hence, for ξ0 < 1 sufficiently close to 1 it must hold that
Z(Q̃

(0)
1 , ξ0) < 1. Thus, ζ(0)1 = Z⋆(Q̃

(0)
1 ) < 1. Next, note that

ζ
(M−1)
M =

(
ζ
(0)
1

)M
. Take M as the smallest power of 2 that

is at least loga b where a = ζ
(0)
1 and b = η(1/2) ≈ 0.327254.

For this choice, RL(M) ≥ 1
2M > 0, by considering the last

term in (43).

B. Good Labeler

We now show how both thresholds RL and RU can be
strengthened in the case of a good labeler. We give a simplified
description here. We give a full and more nuanced description
in the expanded version Section VI. For RL, we observe the
following regarding the proof of Theorem 1. Any definition
of ζ

(i)
N that satisfies ζ

(i)
N ≥ Z⋆(Q̃

(i)
N ) for all 0 ≤ i < N is

valid. Thus, for a parameter V = 2v ≤ M , and all indices
0 ≤ k < V , define ζ

(k)
V = Z⋆(Q̃

(k)
V ). For N > V , define ζ

(i)
N

recursively according to (42). This improves RL(M), which
we now denote as RL(V,M), since for polarization stage v

we are calculating the exact values of Z⋆(Q̃
(k)
V ), as opposed

to bounds on them. By Lemmas 11 and 12, we can indeed
calculate Q̃

(k)
V efficiently.

To strengthen RU, we now define RU(V ) as the average
capacity of the channels corresponding to Q̃

(k)
V over 0 ≤ k < V .

The proof of this threshold being valid is given in Section VI.
In essence, we employ a so called “block-genie” that corrects
us after N/V decisions have been made. Each block of size
N/V corresponds to N/V uses of one of the above channels,
and hence we cannot code for this block at a rate exceeding
the capacity of that channel.
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Fig. 4. A full binary tree, where the nodes in G are red and the nodes in E
are rectangular (leaves). The node (d = 2, j = 2) is both in G and E .

VI. IMPROVED THRESHOLDS

In this section we give a full description of how RL and
RU were calculated in Figures 1 and 2. These methods can be
applied to any setting in which a good labeler is used.

A. Definition of RL(G, E) and RU(G)
We start by defining two sets: G and E . Both sets contain

depth-index pairs (d, j), where d ≥ 0 and 0 ≤ j < 2d. We
think of each pair in these sets as a vertex of a full binary
tree2. An example of such a tree is presented in Figure 4. The
root of the tree is (d = 0, j = 0). A vertex (d, j) has either no
children, in which case it is a leaf, or two children: (d+1, 2j)
as the left child and (d+ 1, 2j + 1) as the right child. Hence,
we can view j as representing a path of d edges labelled “−”
and “+” starting at the root and ending at (d, j). The binary
representation of j =

∑d−1
i=0 bi2

i dictates the corresponding
path. Namely, bi = 0 means that the (d− i)-th edge is a “−”
(left) edge, while bi = 1 means that the (d− i)-th edge is a
“+” (right) edge.

Given a full binary tree, the sets E and G are defined as
follows. The set E contains the leaves of the tree. We call
such a set valid. The set G is defined such that any path from
the root to a leaf contains exactly one vertex in G. Such a
pair (G, E) is termed valid. Note that if we were to delete all
descendants of vertices in G from the tree, we would again
have a full binary tree whose leaves are G. Hence, if (G, E) is
a valid pair, then both G and E are valid.

For now, we assume that G and E are given (we will latter
describe how to choose them). Our thresholds are now denoted
RL(G, E) and RU(G). For RL(G, E), we generalize (43) to

RL(G, E) =
∑

(d,j)∈E

1

2d
·max

{
1− δ′(ζ

(j)

2d
), 0
}

, (44)

where δ′ is defined in (40) and ζ
(j)

2d
is defined recursively in

(42), with the following starting conditions:

ζ
(j)

2d
= Z⋆(Q̃

(j)

2d
) , for all (d, j) ∈ G. (45)

2A binary tree in which each node has either two children or no children.

Note that with respect to the simplified description in Sec-
tion V-B, if we define (for v ≤ m):

G(V ) = {(d, j) : d = v and 0 ≤ j < V = 2v} , (46)
E(M) = {(d, j) : d = m and 0 ≤ j < M = 2m} ,

then RL(V,M) = RL (G(V ), E(M)). For RU(G), we have

RU(G) =
∑

(d,j)∈G

1

2d
· I
(
Q̃

(j)

2d

)
, (47)

where I
(
Q̃

(j)

2d

)
is the mutual information corresponding to

the joint distribution Q̃
(j)

2d
. That is, the capacity of the channel

corresponding to Q̃
(j)

2d
. Note that with respect to the simplified

description in Section V-B, RU(V ) = RU(G(V )).
Computationally, given G and E , the calculation of RL(G, E)

and RU(G) is implemented as follows. We carry out a pre-order
scan of the tree starting from the root. That is, we scan the
root, scan the subtree rooted at its left child recursively, and
then scan the subtree rooted at its right child recursively. The
first node scanned is thus the root, for which Q̃

(0)
1 (ξ) is given.

Assume we are currently scanning a node (d, j) which is not the
root. Hence, this node has a parent, (d′, j′) = (d− 1, ⌊j/2⌋).

• If the path from the root to (d, j) has not yet traversed a
vertex in G, then by induction we have already calculated
Q̃

(j′)

2d′
(ξ), and now calculate Q̃

(j)

2d
(ξ) according to either

(28) or (34), depending on the parity of j.
– If (d, j) ∈ G, then we also calculate Z⋆(Q̃

(j)

2d
(ξ)) and

set ζ(j)
2d

= Z⋆(Q̃
(j)

2d
), in accordance with the starting

condition (45).
• If the path from the root to (d, j) has already traversed a

vertex in G, then by induction we have already calculated
ζ
(j′)

2d′
and now calculate ζ

(j)

2d
according to (42).

– If (d, j) ∈ E , we do not recursively continue the scan,
since we have reached a leaf.

We now describe how we chose G and E and calculated
RL and RU in Figures 1 and 2. We set parameters dG = 12
and dE = 36 as the maximal depth of a vertex in G and E ,
respectively. We further set a numeric threshold ϵ = 10−3 that
allows us to add vertices to G and E at a depth shallower
than dG and dE , respectively, in case sufficient polarization has
already occurred. Conceptually, we carry out a pre-order scan
of a perfect binary tree3 of height dE , trimming it as we go
along. That is, G and E are generated dynamically as the scan
progresses. We initialize variables RL = RU = 0. Each time
a vertex is added to G, RU is incremented according to (47).
Each time a vertex is added to E , RL is incremented according
to (44).

During the scan of vertex (d, j) as described in the itemed
list above:

• If the path from the root to (d, j) has not yet traveresed a
vertex in G, we add (d, j) to both G and E and increment
RU and RL if

3A full binary tree in which all the leaves are at the same depth.



– I(Q̃
(j)

2d
(ξ)) < ϵ, or

– 1− δ′(Z⋆(Q̃
(j)

2d
(ξ))) > 1− ϵ.

Otherwise, we add (d, j) to G and increment RU if d =
dG .

• If the path from the root to (d, j) has already traversed a
vertex in G, we add (d, j) to E and increment RL if

– 1− δ′(ζ
(j)

2d
(ξ)) > 1− ϵ, or

– ζ
(j)

2d
(ξ) > 1, or

– d = dE .
The curves for RL, RU and C in Figure 1 are plotted with

respect to a BI-AWGN channel quantized by a labeler λ to have
eight possible outputs. At the input we assume a normalized
BPSK mapping from X = {0, 1} to X ′ = {1,−1} such that
x′ = 1− 2x. At the output we assume that the labeler maps
Y = R to {−4,−3,−2,−1, 1, 2, 3, 4}. The channel is defined
by the above two mappings and by the relation y = x′ + ν,
where ν is the realization of a Gaussian random variable with
zero mean and variance σ2. The labeler is

λ(y) =



4 q3 ≤ y ,

3 q2 ≤ y < q3 ,

2 q1 ≤ y < q2 ,

1 0 ≤ y < q1 ,

−1 −q1 ≤ y < 0 ,

−2 −q2 ≤ y < −q1 ,

−3 −q3 ≤ y < −q2 ,

−4 y < −q3 ,

(48)

where we used q1 = 0.2, q2 = 0.6, and q3 = 1.2 to define the
labeler regions. For Figure 2 we have a BSC with Y = {0, 1}
and the labeler is λ(y) = 1−2y. Note that both labelers above
are good labelers.

We now state and prove two propositions that justify
RL(G, E) and RU(G) as valid thresholds. These are gener-
alizations of claims and proofs made in Section V for simpler
choices of RL and RU.

B. Justification of RL(G, E)
Proposition 17. Setting RL = RL(G, E) in Theorem 1 is valid.

Proof: Recall that in Theorem 1 we assume that R <
RL(G, E), and our aim is to prove the existence of a family
of polar codes with growing lengths such that their rates are
at least R and their word error probabilities at most 2−Nβ

,
where N is the codeword length.

As in Section V-A, we use the recursive relation (42) to de-
fine ζ(i)N , where now the starting conditions are ζ(j)

2d
= Z⋆(Q̃

(j)

2d
)

for (d, j) ∈ G. Note that by the definition of E and G and our
description of the steps carried out when a node is scanned,
the value of ζ

(j)

2d
calculated during the scan of (d, j) ∈ E is

the same ζ
(j)

2d
defined by the above recursion.

Again by (26), we have for all N large enough and 0 ≤ i <

N that ζ(i)N ≥ Z⋆(Q̃
(i)
N ). Namely, A′ ⊆ A, where A and A′

are defined in Section V-A. Thus, it suffices to show that for
R < RL(G, E) fixed and all N large enough, |A′| ≥ N ·R.

Assume that R, and therefore RL(G, E) are positive, other-
wise the claim is trivial. As before, denote β′ = β+1/2

2 . For
each one of the pairs (d, j) ∈ E , we invoke Proposition 16 with
δ = δ′(ζ

(j)

2d
) + (RL(G, E)) − R), η = S0 = ζ

(j)

2d
, and β′′ =

β′+1/2
2 in place of β. Denote the n0 promised by the propo-

sition as n
(d,j)
0 . Now define nmax

0 = max(d,j)∈E n
(d,j)
0 and

dmax
E = max(d,j)∈E d. Thus, for any (d, j) ∈ E , 2−2(n−d)β′′

≤
2−2(n−dmax

E )β′′

. Hence, by (41), for n ≥ dmax
E + nmax

0 the
fraction of indices 0 ≤ i < N such that ζ(i)N ≤ 2−2(n−dmax

E )β′′

is at least∑
(d,j)∈E

1

2d
max

{
1−

(
δ′(ζ

(j)

2d
) +RL(G, E)−R

)
, 0
}

=
∑

(d,j)∈E

1

2d
max

{
1− δ′(ζ

(j)

2d
) +R−RL(G, E), 0

}
≥

∑
(d,j)∈E

1

2d
max

{
1−δ′(ζ

(j)

2d
)+R−RL(G, E), R−RL(G, E)

}
=

∑
(d,j)∈E

1

2d

(
max

{
1− δ′(ζ

(j)

2d
), 0
}
+R−RL(G, E)

)
(a)
=

∑
(d,j)∈E

1

2d

(
max

{
1− δ′(ζ

(j)

2d
), 0
})

+R−RL(G, E)

= R ,

where (a) follows since the Kraft inequality [28, Equation
5.8] is tight on full binary trees, as can easily be proven by
induction.

We take n0 in Theorem 1 such that n0 ≥ dmax
E + nmax

0 . We
further require that n0 is large enough so that for all n ≥ n0

we have 2−2(n−dmax
E )β′′

≤ 2−2nβ′

= 2−Nβ′

. By the above, this
ensures that |A′| ≥ N ·R. Lastly, we require that n0 is large
enough such that for all n ≥ n0 we have N · 2−Nβ′

< 2−Nβ

.
This ensures that the word error rate is at most 2−Nβ

.

C. Definition of block-genie and justification of RU(G)
Our aim now is to prove an analogous claim to Proposition 17

for RU. This is Proposition 18 below. In the proof of
Proposition 18 we use a “block-genie”, a concept we now
define. Recall that in the seminal paper [1], a genie-aided
decoder is used. That is, a variant of SC decoding, in which
at stage i the genie reveals ui−1

1 . Thus, at stage i, the relevant
distribution is W

(i)
N , given in (4). The genie-aided decoder is

used since it is easier to analyze than SC decoding, but still
has exactly the same word error rate as the SC decoder. Our
block-genie will have this property as well.

The block-genie-aided SC decoder is defined in Algorithms A
to C.

For a code of length N and a received word yN−1
0 ,

decoding is preformed by calling Algorithm C with
(λ(y0), λ(y1), . . . , λ(yN−1)) and d = j = 0. Note that
the set G is used in Algorithm C. Conceptually, we break
the task of decoding u0, u1, . . . , uN−1 into the decoding of
|G| blocks. We assume a code of length N = 2n, where
n ≥ dmax

G = max(d,j)∈G d. For (d, j) ∈ G, the corresponding



Algorithm A: Make Decision

MakeDecision(λ, i)
if i ∈ A then

ûi =

{
0 λ ≥ 0

1 λ < 0

else
ûi = 0

return ûi

Algorithm B: Genie Correct

GenieCorrect(i, T )
return (ui, ui+1, . . . , ui+T−1) ·BT · F⊗t

/* BT is the bit reversal matrix,

t = log2 T, F =

(
1 0
1 1

)
, and ⊗ is the

Kronecker product */

block is ui, ui+1, . . . , ui+T−1, where i = j · T and T = 2n−d.
When decoding this block, the genie has already revealed
ui−1
1 and thus the relevant distribution under the MSA is Q̃

(j)

2d

(applying f̃ in place of f in Algorithm C). Specifically, after
this block has been decoded, the genie corrects any errors the
decoder may have introduced. This is done by invoking the
GenieCorrect function defined in Algorithm B and used
at the bottom of Algorithm C.

Note that for G = ∅, Algorithms A to C simply describe
SC decoding, without any help from a genie. Moreover, for
G = G(N) as defined in (46), Algorithms A to C describe
Arıkan’s genie-aided SC decoding. For the above two choices
of G, as well as for any other valid choice, the word error

Algorithm C: Decode
Decode(λ0, λ1, . . . , λT−1; d, j)
if T = 1 then

c = MakeDecision(λ0, j) // c = (c0)
else

Λf =
(
f(λ0, λ1), . . . , f(λT−2, λT−1)

)
// In the MSA, f is replaced by f̃

a = Decode(Λf ; d+ 1, 2j) // a = a
T/2−1
0

Λg =
(
ga0

(λ0, λ1), . . . , gaT/2−1
(λT−2, λT−1)

)
b = Decode(Λg; d+ 1, 2j + 1) // b = b

T/2−1
0

c =
(
a0 ⊕ b0, b0, . . . , aT/2−1 ⊕ bT/2−1, bT/2−1

)
// c = cT−1

0

if (d, j) ∈ G then
i = j · T
/* Genie corrects decisions on

ûi, ûi+1, . . . , ûi+T−1, after all these
are made */

c = GenieCorrect(i, T ) // c = cT−1
0

return c

probability is the same, since correction are made only after
decisions on ûi have been made in Algorithm A.

Proposition 18. Setting RU = RU(G) in Theorem 1 is valid.

Proof: Fix ∆ > 0 and consider a code with rate R ≥
RU(G) + ∆. Denote the information set of this code as A
and its length as N = 2n, Thus |A| = N · R. Assume that
n ≥ dmax

G = max(d,j)∈G d.
Consider the block corresponding to (d, j) ∈ G. The number

of indices in this block is T = 2n−d. Of these, denote the
indices in A by

A(d,j) = {j · T ≤ i < j · (T + 1) : i ∈ A} .

Thus, the rate at which this block is coded for is

R(d,j) ≜ |A(d,j)|/2n−d .

Since every index 0 ≤ i < N is contained in exactly one
block,

R =
∑

(d,j)∈G

1

2d
R(d,j) .

Thus, by the above and (47),

∆ ≤ R−RU(G) =
∑

(d,j)∈G

1

2d

(
R(d,j) − I

(
Q̃

(j)

2d

))
.

By the pigeon-hole principle and the Kraft inequality being
tight for a full binary tree, there exists at least one (d, j) ∈ G
such that

R(d,j) − I
(
Q̃

(j)

2d

)
≥ ∆ .

By the strong converse to the coding theorem [27, Theorem
5.8.5], the probability of misdecoding such a block converges
to 1, as the block size tends to infinity. Thus, the word error
rate must converge to 1 as N tends to infinity, since all blocks
have lengths that tend to infinity with N .

We end this section by stating the following proposition. As
will become apparent in the proof, this is a special case of
Corollary 23, given in the following subsection.

Proposition 19. RU(G) ≤ C, where C is the capacity of W .

D. Monotonic Properties of RL(G, E) and RU(G)
In this section, we show that the deeper we carry out our

calculations, the tighter our thresholds become. Specifically, a
corollary of what we are about to prove is that increasing dG
or dE (or decreasing ϵ) yields better results.

Recall from Section VI-A the definitions and properties of
a valid G, a valid E , and a valid pair (G, E). The following
defines a set G′ obtained by replacing a vertex in G by its two
sons.

Definition 3. For a valid G and a vertex (d′, j′) ∈ G, let

G′(d′, j′) ≜ G ∪ {(d′ + 1, 2j′), (d′ + 1, 2j′ + 1)} \ {(d′, j′)} .

Note that since we assume that G is valid, then so is G′.
The following defines the set E ′ similarly to the above.



Definition 4. For a valid E and a vertex (d′, j′) ∈ E , let

E ′(d′, j′) ≜ E ∪ {(d′ + 1, 2j′), (d′ + 1, 2j′ + 1)} \ {(d′, j′)} .

As before, since E is valid, so is E ′.
As an example of the above, consider the sets G and E

depicted in Figure 4.
• The depiction of E ′(d′ = 3, j′ = 3) would be to add

two white rectangular sons to (3, 3), and to change (3, 3)
from a white rectangle to a white circle. Note that the
pair (G, E ′) is valid.

• The depiction of E ′(d′ = 2, j′ = 2) would be to add two
white rectangular sons to (2, 2), and to change (2, 2) from
a red rectangle to a red circle. Note that the pair (G, E ′)
is valid.

• The depiction of G′(d′ = 2, j′ = 3) would be to change
the color of (3, 6) and (3, 7) from white to red, and to
change the color of (2, 3) from red to white. Note that
the pair (G′, E) is valid.

• Lastly, note that for G′(d′ = 2, j′ = 2) the pair (G′, E) is
not valid. In general, this happens if both (d′, j′) ∈ G and
(d′, j′) ∈ E . To keep validity for these cases, we enlarge
both sets. That is, (G′(d′, j′), E ′(d′, j′)) is valid. Thus,
the depiction of G′(d′ = 2, j′ = 2) and E ′(d′ = 2, j′ = 2)
is to add two red rectangular sons to (2, 2) and to change
(2, 2) from a red rectangle to a white circle.

The following propositions show that our thresholds become
tighter when replacing either G by G′ or E by E ′.

Proposition 20. For a valid G, and a vertex (d′, j′) ∈ G,

RU(G′) ≤ RU(G) . (49)

Proposition 21. For a valid pair (G, E), and a vertex (d′, j′) ∈
E ,

RL(G, E ′) ≥ RL(G, E) . (50)

Proposition 22. For a valid pair (G, E), and a vertex (d′, j′)
such that (d′, j′) ∈ G and (d′, j′) ̸∈ E ,

RL(G′, E) ≥ RL(G, E) . (51)

We denote G∗ ≥ G if G∗ is obtained from G by a finite
series of operations as in Definition 3. Similarly, we denote
E∗ ≥ E if E∗ is obtained from E by a finite series of operations
as in Definition 4.

As we will show, repeated application of the above three
propositions yield the following.

Corollary 23 (Monotonicity of rate thresholds). Let the pair
(G, E) be valid. Let the pair (G∗, E∗) be valid as well, where
G∗ ≥ G and E∗ ≥ E . Then,

RU(G∗) ≤ RU(G) (52)

and

RL(G∗, E∗) ≥ RL(G, E) . (53)

Recall the definition of G(V ) and E(M), given in (46) for
V = 2v and M = 2m. Note that for v′ ≥ v and m′ ≥ m, we

have G(V ′) ≥ G(V ) and E(M ′) ≥ E(M), where V ′ = 2v
′

and M ′ = 2m
′
. Thus, the above corollary implies that setting

the depths v and m larger in Section V-B indeed yields tighter
thresholds. Namely, RU(V

′) ≤ RU(V ) and RL(V
′,M ′) ≥

RL(V,M). Similarly, increasing dG or dE , or decreasing ϵ in
Section VI-A also yields tighter thresholds.

APPENDIX A
NON-RECURSIVE INTERPRETATION OF THE MSA

Recall the definition of L(i)
N in (7). This definition is explicit

(non-recursive). However, when implementing a decoder the
recursive definition given in (8)–(9) is used. For the MSA, the
corresponding recursive definition of L̃(i)

N is given in (10)–(11).
In this appendix we give an explicit definition of L̃(i)

N , under the
assumption λ(y) = LLR(y) = log2 (W (y; 0)/W (y; 1)). This
is (55) below, and is the analog of (7), which is rephrased below
as (54). To save space, we use standard shorthand. For example,
Pr(Y N−1

0 = yN−1
0 , U i−1

0 = ui−1
0 , Ui = 0, UN−1

i+1 = uN−1
i+1 ) is

shortened to p(yN−1
0 , ui−1

0 , ui = 0, uN−1
i+1 ).

Proposition 24. For the non-approximated setting,

L
(i)
N

(
yN−1
0 , ui−1

0

)
=

log2


∑

uN−1
i+1

p(yN−1
0 , ui−1

0 , ui = 0, uN−1
i+1 )

∑
uN−1
i+1

p(yN−1
0 , ui−1

0 , ui = 1, uN−1
i+1 )

 . (54)

Under the MSA with λ(y) = log2 (W (y; 0)/W (y; 1)),

L̃
(i)
N

(
yN−1
0 , ui−1

0

)
=

log2

max
uN−1
i+1

p(yN−1
0 , ui−1

0 , ui = 0, uN−1
i+1 )

max
uN−1
i+1

p(yN−1
0 , ui−1

0 , ui = 1, uN−1
i+1 )

 . (55)

Notice that the only difference between (54) and (55) is
that in the former we use a “

∑
” while in the latter we use a

“max”.
Although our paper would be self contained without this

appendix, we feel that the explicit definition (55) gives intuition
about the MSA. Specifically, consider stage i of the decoding,
in which we have already decided on ûi−1

0 , and must now
decide the value of ûi. Define

C(i)
0 ≜

{
uN−1
0 ∈ {0, 1}N : ui = 0, ui−1

0 = ûi−1
0

}
,

C(i)
1 ≜

{
uN−1
0 ∈ {0, 1}N : ui = 1, ui−1

0 = ûi−1
0

}
.

Recall from [1, Equation 4] the definition of the combined
channel

WN (yN−1
0 |uN−1

0 ) =

N−1∏
i=0

W (yi|xi) ,

where xN−1
0 = uN−1

0 BNF⊗n is the codeword corresponding
to uN−1

0 , BN is the bit-reversal matrix, and F ≜ ( 1 0
1 1 ) is the

Arıkan kernel. Recall also that in both the non-approximated
and approximated settings the decision rule is based on the



sign of L
(i)
N and L̃

(i)
N , respectively. Therefore, an immediate

corollary of Proposition 24 is the following decision rules. The
non-approximated SC decoder sets ûi according to

∑
uN−1
0 ∈C(i)

0

WN (yN−1
0 |uN−1

0 )
ûi=0
⩾
<

ûi=1

∑
uN−1
0 ∈C(i)

1

WN (yN−1
0 |uN−1

0 ) ,

(56)
whereas the min-sum SC decoder sets ûi according to

max
uN−1
0 ∈C(i)

0

WN (yN−1
0 |uN−1

0 )
ûi=0
⩾
<

ûi=1

max
uN−1
0 ∈C(i)

1

WN (yN−1
0 |uN−1

0 ) .

(57)
Indeed, the above follows by the assumption that the input
distribution is i.i.d. symmetric, which implies that a-priori, all
uN−1
0 are equally likely.
Informally, in both settings we must choose one of two

cosets: C(i)
0 or C(i)

1 . In the non-approximated setting we base
our decision on a weighting of all the words in each coset,
whereas in the min-sum setting we base our decision on only
the most probable word in each coset.

As we will see, the proof of (54) is straightforward. To prove
(55), we take an indirect but simple route. Namely, we define
L
⋆(i)
N as the RHS of (55). That is,

L
⋆(i)
N

(
yN−1
0 , ui−1

0

)
≜

log2

max
uN−1
i+1

p(yN−1
0 , ui−1

0 , ui = 0, uN−1
i+1 )

max
uN−1
i+1

p(yN−1
0 , ui−1

0 , ui = 1, uN−1
i+1 )

 . (58)

Our proof will follow by showing that L⋆(i)
N satisfies the same

recursive relations as L̃
(i)
N in (10)–(11). Indeed, by inspection

of (58),

L
⋆(0)
1 (y) = LLR(y) = log2 (W (y; 0)/W (y; 1)) .

Recalling (11) and our assumption that λ(y) = LLR(y), we
have that the starting condition is the same for L⋆(i)

N and L̃
(i)
N .

Thus, to prove (55) all that remains is to show that (10) holds
with “⋆” in place of “∼”.

In aid of the above we introduce the following notation:

µ
⋆(i)
N (yN−1

0 , ui−1
0 ;ui) (59)

≜max
uN−1
i+1

p(yN−1
0 , ui−1

0 , ui, u
N−1
i+1 )

and

ℓ
⋆(i)
N (yN−1

0 , ui−1
0 )=

(
µ
⋆(i)
N (yN−1

0 , ui−1
0 ;ui = 0)

µ
⋆(i)
N (yN−1

0 , ui−1
0 ;ui = 1)

)
. (60)

Therefore, L⋆(i)
N (yN−1

0 , ui−1
0 ) = log2 ℓ

⋆(i)
N (yN−1

0 , ui−1
0 ).

To derive the required recursive relations of L
⋆(i)
N we first

derive the following recursive relations of µ⋆(i)
N .

Lemma 25 (µ⋆ minus and plus transforms). For N ≥ 2 and
0 ≤ j < N/2,

µ
⋆(2j)
N (yN−1

0 , u2j−1
0 ;u2j) =

max
u2j+1

{
µ
⋆(j)
N/2

(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o ;u2j ⊕ u2j+1

)
· µ⋆(j)

N/2

(
yN−1
N/2 , u2j−1

0,o ;u2j+1

)}
(61)

and

µ
⋆(2j+1)
N (yN−1

0 , u2j−1
0 ;u2j) =

µ
⋆(j)
N/2

(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o ;u2j ⊕ u2j+1

)
· µ⋆(j)

N/2

(
yN−1
N/2 , u2j−1

0,o ;u2j+1

)
. (62)

Proof: For (61) we have

µ
⋆(2j)
N (yN−1

0 , u2j−1
0 ;u2j)

(a)
= max

uN−1
2j+1

p
(
yN−1
0 , u2j−1

0 , u2j , u
N−1
2j+1

)
(b)
= max

u2j+1

max
uN−1
2j+2

p
(
y
N/2−1
0 , yN−1

N/2 , u2j−1
0,e ⊕ u2j−1

0,o , u2j−1
0,o

, u2j ⊕ u2j+1, u2j+1, u
N−1
2j+2,e ⊕ uN−1

2j+2,o, u
N−1
2j+2,o

)
(c)
= max

u2j+1

max
uN−1
2j+2

p
(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o

, u2j ⊕ u2j+1, u
N−1
2j+2,e ⊕ uN−1

2j+2,o

)
· p
(
yN−1
N/2 , u2j−1

0,o , u2j+1, u
N−1
2j+2,o|y

N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o

, u2j⊕, u2j+1, u
N−1
2j+2,e ⊕ uN−1

2j+2,o

)
(d)
= max

u2j+1

max
uN−1
2j+2

p
(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o

, u2j ⊕ u2j+1, u
N−1
2j+2,e ⊕ uN−1

2j+2,o

)
· p
(
yN−1
N/2 , u2j−1

0,o , u2j+1, u
N−1
2j+2,o

)
(e)
= max

u2j+1

max
uN−1
2j+2,o

{
p
(
yN−1
N/2 , u2j−1

0,o , u2j+1, u
N−1
2j+2,o

)
· max
uN−1
2j+2,e

p
(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o

, u2j ⊕ u2j+1, u
N−1
2j+2,e ⊕ uN−1

2j+2,o

)}
(f)
= max

u2j+1

max
uN−1
2j+2,o

{
p
(
yN−1
N/2 , u2j−1

0,o , u2j+1, u
N−1
2j+2,o

)
µ
⋆(j)
N/2

(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o ;u2j ⊕ u2j+1

)}
(g)
= max

u2j+1

µ
⋆(j)
N/2

(
y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o ;u2j ⊕ u2j+1

)
·µ⋆(j)

N/2

(
yN−1
N/2 , u2j−1

0,o ;u2j+1

)
,

where (a) is by (59), (b) follows since there is a one-to-one
and onto mapping between the arguments of p on the LHS
and the arguments of p on the RHS, (c) is by the definition
of conditional probability, (d) is since we need not condition



on independent random variables, (e) is since maxx,y{f(x) ·
g(x, y)} = maxx{f(x) · maxy g(x, y)}, (f) is by (59) since
for fixed uN−1

2j+2,o the maximization over uN−1
2j+2,e ranges over

all possible values in XN/2−1−j , and (g) is again by (59).
For (62), we follow the same steps with maximization over

uN−1
2j+2 instead of uN−1

2j+1. Therefore, all the above equalities
remain the same, apart from not containing the outer maxu2j+1

.

proof of Proposition 24: For (54) we notice that

W
(i)
N (yN−1

0 , ui−1
0 ;ui) = p(yN−1

0 , ui−1
0 , ui)

=
∑
uN−1
i+1

p(yN−1
0 , ui−1

0 , ui, u
N−1
i+1 ) .

Thus, substituting the above into (7) with ui = 0 for the
numerator and ui = 1 for the denominator yields (54).

For (55) recall from the above discussion that the proof will
be completed once we show that (10) holds with “⋆” in place
of “∼”. We begin by proving the minus case (10a), and then
prove the plus case (10b). We define the following shorthand:

yL ≜ y
N/2−1
0 , yR ≜ yN−1

N/2−1 ,

u⊕ ≜ u2j−1
0,e ⊕ u2j−1

0,o , uo ≜ u2j−1
0,o ,

u ≜ u2j , v ≜ u2j+1 ,

ℓ⋆a ≜ ℓ
⋆(j)
N/2(yL, u⊕) , ℓ⋆b ≜ ℓ

⋆(j)
N/2(yR, uo) ,

L⋆
a ≜ log2 ℓ

⋆
a , L⋆

b ≜ log2 ℓ
⋆
b .

For (10a) we have

ℓ
⋆(2j)
N (yN−1

0 , u2j−1
0 )

(a)
=

(
µ
⋆(2j)
N (yN−1

0 , u2j−1
0 ;u2j = 0)

µ
⋆(2j)
N (yN−1

0 , u2j−1
0 ;u2j = 1)

)

(b)
=

maxv

{
µ
⋆(j)
N/2(yL, u⊕; 0⊕ v) · µ⋆(j)

N/2(yR, uo; v)
}

maxv

{
µ
⋆(j)
N/2(yL, u⊕; 1⊕ v) · µ⋆(j)

N/2(yR, uo; v)
}


(c)
=

(
max{α, β}
max{γ, δ}

)
,

where (a) is by (60), (b) is by (61), and (c) due to the following
notation:

α = µ
⋆(j)
N/2(yL, u⊕; 0) · µ⋆(j)

N/2(yR, uo; 0) ,

β = µ
⋆(j)
N/2(yL, u⊕; 1) · µ⋆(j)

N/2(yR, uo; 1) ,

γ = µ
⋆(j)
N/2(yL, u⊕; 1) · µ⋆(j)

N/2(yR, uo; 0) ,

δ = µ
⋆(j)
N/2(yL, u⊕; 0) · µ⋆(j)

N/2(yR, uo; 1) .

Thus, ℓ
⋆(2j)
N (yN−1

0 , u2j−1
0 ) can equal one of four possible

values: α/γ, β/γ, α/δ, β/δ. We consider each case separately.

• Consider the case α/γ. We have

ℓ
⋆(2j)
N (yN−1

0 , u2j−1
0 )

= α/γ

=
µ
⋆(j)
N/2(yL, u⊕; 0) · µ⋆(j)

N/2(yR, uo; 0)

µ
⋆(j)
N/2(yL, u⊕; 1) · µ⋆(j)

N/2(yR, uo; 0)

=
µ
⋆(j)
N/2(yL, u⊕; 0)

µ
⋆(j)
N/2(yL, u⊕; 1)

= ℓ⋆a

α ≥ β yields 1/ℓ⋆b ≤ ℓ⋆a. That is −L⋆
b ≤ L⋆

a.
γ ≥ δ yields ℓ⋆a ≤ ℓ⋆b . That is L⋆

a ≤ L⋆
b .

Combining both we have −L⋆
b ≤ L⋆

a ≤ L⋆
b . Thus,

sgn(L⋆
b) ≥ 0 and min{|L⋆

a|, |L⋆
b |} = |L⋆

a|. Therefore,

L
⋆(2j)
N (yN−1

0 , u2j−1
0 )

= L⋆
a

= sgn(L⋆
a) · |L⋆

a|
= sgn(L⋆

a) · sgn(L⋆
b) ·min{|L⋆

a|, |L⋆
b |}

= f̃(L⋆
a, L

⋆
b)

• Consider the case α/δ. We have

ℓ
⋆(2j)
N (yN−1

0 , u2j−1
0 )

= α/δ

=
µ
⋆(j)
N/2(yL, u⊕; 0) · µ⋆(j)

N/2(yR, uo; 0)

µ
⋆(j)
N/2(yL, u⊕; 0) · µ⋆(j)

N/2(yR, uo; 1)

=
µ
⋆(j)
N/2(yR, uo; 0)

µ
⋆(j)
N/2(yR, uo; 1)

= ℓ⋆b

α ≥ β yields 1/ℓ⋆a ≤ ℓ⋆b . That is −L⋆
a ≤ L⋆

b .
δ ≥ γ yields ℓ⋆b ≤ ℓ⋆a. That is L⋆

b ≤ L⋆
a.

Combining both we have −L⋆
a ≤ L⋆

b ≤ L⋆
a. Thus,

sgn(L⋆
a) ≥ 0 and min{|L⋆

a|, |L⋆
b |} = |L⋆

b |. Therefore,

L
⋆(2j)
N (yN−1

0 , u2j−1
0 )

= L⋆
b

= sgn(L⋆
b) · |L⋆

b |
= sgn(L⋆

a) · sgn(L⋆
b) ·min{|L⋆

a|, |L⋆
b |}

= f̃(L⋆
a, L

⋆
b)

• Consider the case β/γ. We have

ℓ
⋆(2j)
N (yN−1

0 , u2j−1
0 )

= β/γ

=
µ
⋆(j)
N/2(yL, u⊕; 1) · µ⋆(j)

N/2(yR, uo; 1)

µ
⋆(j)
N/2(yL, u⊕; 1) · µ⋆(j)

N/2(yR, uo; 0)

=
µ
⋆(j)
N/2(yR, uo; 1)

µ
⋆(j)
N/2(yR, uo; 0)

= 1/ℓ⋆b



β ≥ α yields ℓ⋆b ≤ 1/ℓ⋆a. That is L⋆
b ≤ −L⋆

a.
γ ≥ δ yields ℓ⋆a ≤ ℓ⋆b . That is L⋆

a ≤ L⋆
b .

Combining both we have L⋆
a ≤ L⋆

b ≤ −L⋆
a. Thus,

sgn(L⋆
a) ≤ 0 and min{|L⋆

a|, |L⋆
b |} = |L⋆

b |. Therefore,

L
⋆(2j)
N (yN−1

0 , u2j−1
0 )

= −L⋆
b

= − sgn(L⋆
b) · |L⋆

b |
= sgn(L⋆

a) · sgn(L⋆
b) ·min{|L⋆

a|, |L⋆
b |}

= f̃(L⋆
a, L

⋆
b)

• Consider the case β/δ. We have

ℓ
⋆(2j)
N (yN−1

0 , u2j−1
0 )

= β/δ

=
µ
⋆(j)
N/2(yL, u⊕; 1) · µ⋆(j)

N/2(yR, uo; 1)

µ
⋆(j)
N/2(yL, u⊕; 0) · µ⋆(j)

N/2(yR, uo; 1)

=
µ
⋆(j)
N/2(yL, u⊕; 1)

µ
⋆(j)
N/2(yL, u⊕; 0)

= 1/ℓ⋆a

β ≥ α yields ℓ⋆a ≤ 1/ℓ⋆b . That is L⋆
a ≤ −L⋆

b .
δ ≥ γ yields ℓ⋆b ≤ ℓ⋆a. That is L⋆

b ≤ L⋆
a.

Combining both we have L⋆
b ≤ L⋆

a ≤ −L⋆
b . Thus,

sgn(L⋆
b) ≤ 0 and min{|L⋆

a|, |L⋆
b |} = |L⋆

a|. Therefore,

L
⋆(2j)
N (yN−1

0 , u2j−1
0 )

= −L⋆
a

= − sgn(L⋆
a) · |L⋆

a|
= sgn(L⋆

a) · sgn(L⋆
b) ·min{|L⋆

a|, |L⋆
b |}

= f̃(L⋆
a, L

⋆
b)

To summarize, in all four cases (10a) holds with “⋆” in place
of “∼”.

For (10b) we have

ℓ
⋆(2j+1)
N (yN−1

0 , u2j
0 )

(a)
=

(
µ
⋆(2j+1)
N (yN−1

0 , u2j
0 ;u2j+1 = 0)

µ
⋆(2j+1)
N (yN−1

0 , u2j
0 ;u2j+1 = 1)

)
(b)
=

µ
⋆(j)
N/2(yR, uo; 0)

µ
⋆(j)
N/2(yR, uo; 1)

·
µ
⋆(j)
N/2(yL, u⊕;u⊕ 0)

µ
⋆(j)
N/2(yL, u⊕;u⊕ 1)

(c)
=

{
ℓ
⋆(j)
N/2(yR, uo) · ℓ⋆(j)N/2(yL, u⊕) if u = 0 ,

ℓ
⋆(j)
N/2(y

N−1
N/2 , u2j−1

0,o )/ℓ
⋆(j)
N/2(yL, u⊕) if u = 1

=

{
ℓ⋆b · ℓ⋆a if u = 0 ,

ℓ⋆b/ℓ
⋆
a if u = 1 ,

where (a) is by (60), (b) is by (62), and (c) is again by (60).
In log-domain the above is simply

L
⋆(2j+1)
N (yN−1

0 , u2j
0 ) =

{
L⋆
b + L⋆

a if u = 0

L⋆
b − L⋆

a if u = 1

= gu(L
⋆
a, L

⋆
b)

Therefore, (10b) also holds with “⋆” in place of “∼”.

APPENDIX B
PROOFS

A. Proofs for Section III

proof of Lemma 2: We prove (14a) and (14b). We begin
with (14a). Define θ ≜ (yN−1

0 , u2j−1
0 ), then by the definition

of the synthetic min-sum joint distribution in (13) we have

Q̃
(2j)
N (t;u2j) =

∑
θ:L̃

(2j)
N (θ)=t

W
(2j)
N (θ;u2j) . (63)

Further define the following: α ≜ (y
N/2−1
0 , u2j−1

0,e ⊕ u2j−1
0,o ),

β ≜ (yN−1
N/2 , u2j−1

0,o ), τa ≜ L̃
(j)
N/2(α), and τb ≜ L̃

(j)
N/2(β). By

(5) we have

W
(2j)
N (θ;u2j) =

∑
u2j+1

W
(j)
N/2(α;u2j⊕u2j+1)·W (j)

N/2(β;u2j+1),

and by (10a) we have

L̃
(2j)
N (θ) = f̃

(
L̃
(j)
N/2(α), L̃

(j)
N/2(β)

)
= f̃(τa, τb) .

Therefore, by applying a change of variables from θ to (α, β),
which by inspection iterate over the same set of possible values,
we can rewrite the sum in (63) as follows:∑

u2j+1

∑
α,β:

f̃(τa,τb)=t

W
(j)
N/2(α;u2j ⊕ u2j+1) ·W (j)

N/2(β;u2j+1) .

The sum over {α, β : f̃(τa, τb) = t} can be modified into two
sums: an outer sum over {ta, tb : f̃(ta, tb) = t} and an inner
sum over {α, β : L̃

(j)
N/2(α) = ta, L̃

(j)
N/2(β) = tb}. By doing that,

the innermost sum becomes∑
α,β:

L̃
(j)

N/2
(α)=ta

L̃
(j)

N/2
(β)=tb

W
(j)
N/2(α;u2j ⊕ u2j+1) ·W (j)

N/2(β;u2j+1)

= Q̃
(j)
N/2(ta;u2j ⊕ u2j+1) · Q̃(j)

N/2(tb;u2j+1) . (64)

where the equality follows by the definition in (13). Now, the
result in (64) is summed over {u2j+1, ta, tb : f̃(ta, tb) = t},
which is (14a).

Similarly, (14b) can be obtained by following the same steps,
using (6) instead of (5) and (10b) instead of (10a). That is,
define θ′ ≜ (θ, u2j). Then by (13) we have

Q̃
(2j+1)
N (t;u2j+1) =

∑
θ′:L̃

(2j+1)
N (θ′)=t

W
(2j+1)
N (θ′;u2j+1) . (65)

By (6) we have

W
(2j+1)
N (θ′;u2j+1)=W

(j)
N/2(α;u2j⊕u2j+1)·W (j)

N/2(β;u2j+1),

and by (10b) we have

L̃
(2j)
N (θ′) = gu2j

(
L̃
(j)
N/2(α), L̃

(j)
N/2(β)

)
= gu2j

(τa, τb) .



Therefore, by applying a change of variables from θ′ to
(α, β, u2j), we can rewrite the sum in (65) as follows:∑

u2j

∑
α,β:

gu2j
(τa,τb)=t

W
(j)
N/2(α;u2j ⊕ u2j+1) ·W (j)

N/2(β;u2j+1)

The rest of the proof is proceeds as before, by modifying the
inner sum and using the definition in (13).

proof of Lemma 3: We prove (15) by induction. For the
base case (N = 1, i = 0), we have W

(0)
1 (y;x) = W (y;x) and

L̃
(0)
1 (y) = λ(y), see (11). By the first item of Definition 1 we

have λ(π(y)) = −λ(y). Therefore, by (13) we have

Q̃
(0)
1 (−t;xi ⊕ 1) =

∑
y:λ(y)=−t

W (y;xi ⊕ 1)

=
∑

y:λ(π(y))=t

W (π(y);xi) = Q̃
(0)
1 (t;xi) .

We now assume that (15) holds for (N2 , j) and show that it also
holds for (N, 2j) and (N, 2j + 1). We define the shorthands:
u2j ≜ u, and u2j+1 ≜ v. Then, for (N, 2j),

Q̃
(2j)
N (−t, u⊕ 1)

(a)
=

∑
ta,tb,v:

f̃(ta,tb)=−t

Q̃
(j)
N/2(ta;u⊕ 1⊕ v) · Q̃(j)

N/2(tb; v)

(b)
=

∑
ta,tb,v:

f̃(ta,tb)=−t

Q̃
(j)
N/2(−ta;u⊕ v) · Q̃(j)

N/2(tb; v)

(c)
=

∑
tA,tb,v:

f̃(−tA,tb)=−t

Q̃
(j)
N/2(tA;u⊕ v) · Q̃(j)

N/2(tb; v)

(d)
=
∑

tA,tb,v:

f̃(tA,tb)=t

Q̃
(j)
N/2(tA;u⊕ v) · Q̃(j)

N/2(tb; v)

(e)
= Q̃

(2j)
N (t, u) ,

where (a) and (e) are by (14a), (b) is by the induction
hypothesis, (c) is by changing variables tA = −ta, and (d) is
by inspection of (3) which reveals that f̃(−tA, tb) = −t is the
same condition as f̃(tA, tb) = t.

Similarly for (N, 2j + 1),

Q̃
(2j+1)
N (−t, v ⊕ 1)

(a)
=

∑
ta,tb,u:

gu(ta,tb)=−t

Q̃
(j)
N/2(ta;u⊕ v ⊕ 1) · Q̃(j)

N/2(tb; v ⊕ 1)

(b)
=

∑
ta,tb,u:

gu(ta,tb)=−t

Q̃
(j)
N/2(−ta;u⊕ v) · Q̃(j)

N/2(−tb; v)

(c)
=

∑
tA,tB ,u:

gu(−tA,−tB)=−t

Q̃
(j)
N/2(tA;u⊕ v) · Q̃(j)

N/2(tB ; v)

(d)
=

∑
tA,tB ,u:

gu(tA,tB)=t

Q̃
(j)
N/2(tA;u⊕ v) · Q̃(j)

N/2(tB ; v)

(e)
= Q̃

(2j)
N (t, v) ,

where now (a) and (e) are by (14b), (b) is by the induction
hypothesis, (c) is by changing variables tA = −ta and
tB = −tb, and (d) is by inspection of (2) which reveals that
gv(−tA,−tb) = −t is the same condition as gv(tA, tB) = t.

We now prove the claim in Lemma 3 with the tildes
removed. For the base case, the symmetry of W implies that
L
(0)
1 (π(y)) = −L

(0)
1 (y), see (9). Thus, by (12), we have

Q
(0)
1 (−t;xi ⊕ 1) =

∑
y:L

(0)
1 (y)=−t

W (y;xi ⊕ 1)

=
∑

y:L
(0)
1 (π(y))=t

W (π(y);xi) = Q
(0)
1 (t;xi) .

The induction is unchanged by removing the tildes. All that
must be verified is that f(−tA, tb) = −t is the same condition
as f(tA, tb) = t. This follows by (1), and recalling that tanh
is an odd function.

Proof of Lemma 4: We prove (20). Denote by [A] an
indicator of the event A.

Pe

(
Q̃

(i)
N

)
= Pr(ûi ̸= ui) =

∑
t,ui

Q̃
(i)
N (t;ui) · [ûi ̸= ui]

=
∑
t

Q̃
(i)
N (t; 0)·[ûi ̸= 0] +

∑
t

Q̃
(i)
N (t; 1)·[ûi ̸= 1]

(a)
=
∑
t<0

Q̃
(i)
N (t; 0) +

∑
t≥0

Q̃
(i)
N (t; 1)

(b)
=
∑
t<0

Q̃
(i)
N (t; 0) +

∑
t≥0

Q̃
(i)
N (−t; 0)

=
∑
t<0

Q̃
(i)
N (t; 0) +

∑
t≤0

Q̃
(i)
N (t; 0)

= Q̃
(i)
N (0; 0) + 2 ·

∑
t<0

Q̃
(i)
N (t; 0) ,

where (a) is by the decision rule of the decoder as described
in the MakeDecision function given in Algorithm A, and
(b) is by the symmetry property in (15).

proof of Corollary 5: The coefficient of ξt in Q̃
(i)
N (1/ξ)

is the coefficient of ξ−t in Q̃
(i)
N (ξ), which equals Q̃

(i)
N (−t; 0).

By (15) this is Q̃
(i)
N (t; 1).

proof of Lemma 6: We recall (20)–(22) and prove (23).
We have

Z
(
Q̃

(i)
N , ξ0

)
(a)
= 2 ·

∑
t

Q̃
(i)
N (t; 0) · ξt0

(b)
≥ Q̃

(i)
N (0; 0) + 2 ·

∑
t<0

Q̃
(i)
N (t; 0) · ξt0

(c)
≥ Q̃

(i)
N (0; 0) + 2 ·

∑
t<0

Q̃
(i)
N (t; 0)

(d)
= Pe

(
Q̃

(i)
N

)
,

where (a) is by (21) and (22), (b) is since we have thrown
away non-negative terms, (c) is since ξt0 ≥ 1, for t < 0 and
0 < ξ0 ≤ 1, and (d) is by (20).



We now prove Lemmas 8 and 9, which directly leads to the
proof of Lemma 7.

proof of Lemma 8: We prove (27). Using the shorthand
u2j+1 ≜ v we have

Q̃
(2j)
N (ξ)

(a)
=
∑
t

Q̃
(2j)
N (t; 0)ξt

(b)
=
∑
t

( ∑
ta,tb,v:

f̃(ta,tb)=t

Q̃
(j)
N/2(ta; v) · Q̃

(j)
N/2(tb; v)

)
· ξt

where (a) is by (21) and (b) is by (14a). Evaluating the inner
sum for the case v = 1 yields∑

ta,tb:

f̃(ta,tb)=t

Q̃
(j)
N/2(ta; 1) · Q̃

(j)
N/2(tb; 1)

(a)
=

∑
ta,tb:

f̃(ta,tb)=t

Q̃
(j)
N/2(−ta; 0) · Q̃(j)

N/2(−tb; 0)

(b)
=

∑
tA,tB :

f̃(−tA,−tB)=t

Q̃
(j)
N/2(tA; 0) · Q̃

(j)
N/2(tB ; 0)

(c)
=

∑
tA,tB :

f̃(tA,tB)=t

Q̃
(j)
N/2(tA; 0) · Q̃

(j)
N/2(tB ; 0) ,

where (a) is by (15), (b) is by changing variables tA = −ta
and tB = −tb, and (c) is by inspection of (3) which reveals
that f̃(−tA,−tB) = f̃(tA, tB). Therefore the inner sum is the
same for v = 1 and for v = 0. Therefore we have

Q̃
(2j)
N (ξ) = 2 ·

∑
t

( ∑
ta,tb:

f̃(ta,tb)=t

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0)

)
· ξt

= 2 ·
∑
ta,tb

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0) · ξf̃(ta,tb) (66)

To upper bound the above expression for 0 < ξ0 ≤ 1 in place of
ξ, we divide all pairs (ta, tb) ∈ T̃ (j)

N/2×T̃ (j)
N/2 into eight disjoint

sets denoted {Sk}8k=1. For each set we evaluate ξ
f̃(ta,tb)
0 and

upper bound this expression by either ξta0 or ξtb0 as described in
Table I. All the upper bounds are justified since for 0 < ξ0 ≤ 1
the function ξt0 is non-increasing in t.

We now define two disjoint sets regarding the two possible
values for upper bounds described in the table. That is,

A ≜ S1 ⊔ S3 ⊔ S7 ⊔ S8

⊆
{
(ta, tb) ∈ T̃ (j)

N/2 × T̃ (j)
N/2 : ξ

f̃(ta,tb)
0 ≤ ξta0

}
,

B ≜ S2 ⊔ S4 ⊔ S5 ⊔ S6

⊆
{
(ta, tb) ∈ T̃ (j)

N/2 × T̃ (j)
N/2 : ξ

f̃(ta,tb)
0 ≤ ξtb0

}
,

where “⊔” denotes disjoint union, and the “⊆” relations follow
from the last column of Table I. Note that by definition

T̃ (j)
N/2 × T̃ (j)

N/2 = A ⊔ B . (67)

sgn(ta) sgn(tb) min{|ta|, |tb|} ξ
f̃(ta,tb)
0

S1 +/0 +/0 |ta| ξ
|ta|
0 = ξta0

S2 +/0 − |ta| ξ
−|ta|
0 = ξ−ta

0 ≤ ξ
tb
0

S3 − +/0 |ta| ξ
−|ta|
0 = ξta0

S4 − − |ta| ξ
|ta|
0 = ξ−ta

0 ≤ ξ
tb
0

S5 +/0 +/0 |tb| ξ
|tb|
0 = ξ

tb
0

S6 +/0 − |tb| ξ
−|tb|
0 = ξ

tb
0

S7 − +/0 |tb| ξ
−|tb|
0 = ξ

−tb
0 ≤ ξta0

S8 − − |tb| ξ
|tb|
0 = ξ

−tb
0 ≤ ξta0

TABLE I
THE SETS S1 TO S8 .

Denote the shorthands q ≜ Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0) and T̃ ≜

T̃ (j)
N/2 × T̃ (j)

N/2. By (66) we have

Q̃
(2j)
N (ξ0) = 2 ·

∑
ta,tb∈T̃

q · ξf̃(ta,tb)0

(a)
= 2 ·

∑
ta,tb∈A

q · ξf̃(ta,tb)0 + 2 ·
∑

ta,tb∈B
q · ξf̃(ta,tb)0

(b)
≤ 2 ·

∑
ta,tb∈A

q · ξta0 + 2 ·
∑

ta,tb∈B
q · ξtb0

(c)
≤ 2 ·

∑
ta,tb∈T̃

q · ξta0 + 2 ·
∑

ta,tb∈T̃

q · ξtb0

= 2 ·
∑
ta

Q̃
(j)
N/2(ta; 0) · ξ

ta
0 ·
∑
tb

Q̃
(j)
N/2(tb; 0)

+2 ·
∑
ta

Q̃
(j)
N/2(ta; 0) ·

∑
tb

Q̃
(j)
N/2(tb; 0) · ξ

tb
0

(d)
= 2 · 1

2
·
∑
ta

Q̃
(j)
N/2(ta; 0) · ξ

ta
0

+2 · 1
2
·
∑
tb

Q̃
(j)
N/2(tb; 0) · ξ

tb
0

(e)
= 2 · Q̃(j)

N/2(ξ0) ,

where (a) is by (67), (b) is by the last column in Table I,
(c) is since we are adding non-negative terms, (d) is since
Q̃

(j)
N/2(t; v) is a joint distribution and summing over all t yields

Pr(v = 0) = 1/2, and (e) is by (21).
proof of Lemma 9: We prove (28). Using the shorthand

u2j ≜ u we have

Q̃
(2j+1)
N (ξ)

(a)
=
∑
t

Q̃
(2j+1)
N (t; 0)ξt

(b)
=
∑
t

( ∑
ta,tb,u:

gu(ta,tb)=t

Q̃
(j)
N/2(ta;u) · Q̃

(j)
N/2(tb; 0)

)
· ξt

=
∑

ta,tb,u

Q̃
(j)
N/2(ta;u) · Q̃

(j)
N/2(tb; 0) · ξgu(ta,tb)



=
∑
ta,tb

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0) · ξg0(ta,tb)

+
∑
ta,tb

Q̃
(j)
N/2(ta; 1) · Q̃

(j)
N/2(tb; 0) · ξg1(ta,tb)

(c)
=
∑
ta,tb

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0) · ξta+tb

+
∑
ta,tb

Q̃
(j)
N/2(ta; 1) · Q̃

(j)
N/2(tb; 0) · ξtb−ta

=
∑
ta

Q̃
(j)
N/2(ta; 0) · ξta ·

∑
tb

Q̃
(j)
N/2(tb; 0) · ξtb

+
∑
ta

Q̃
(j)
N/2(ta; 1) · ξ−ta ·

∑
tb

Q̃
(j)
N/2(tb; 0) · ξtb

(d)
= 2 ·

(∑
ta

Q̃
(j)
N/2(ta; 0) · ξta

)2

= 2 ·
(
Q̃

(j)
N/2(ξ)

)2
,

where (a) is by (21), (b) is by (14b), (c) is by (2), and (d)
is by using change of variables tA = −ta and the symmetry
property in (15). That is, (d) follows since∑

ta

Q̃
(j)
N/2(ta; 1) · ξ−ta =

∑
tA

Q̃
(j)
N/2(−tA; 1) · ξtA

=
∑
tA

Q̃
(j)
N/2(tA; 0) · ξtA .

proof of Lemma 7: We first consider the “-” case, and
prove (25a) and (26a). To prove (25a), we have by (27) that for
all 0 < ξ0 ≤ 1 that Q̃(2j)

N (ξ0) ≤ 2 ·Q̃(j)
N/2(ξ0). Plugging the def-

inition of Z from (22), which is Q̃(2j)
N (ξ0) =

1
2 ·Z

(
Q̃

(2j)
N , ξ0

)
,

yields (25a). To obtain (26a) we optimize both sides of (25a)
separately, such that Z⋆

(
Q̃

(j)
N/2

)
= Z

(
Q̃

(j)
N/2, ξopt1

)
, and

Z⋆
(
Q̃

(2j)
N

)
= Z

(
Q̃

(2j)
N , ξopt2

)
. Therefore,

Z⋆
(
Q̃

(2j)
N

)
= Z

(
Q̃

(2j)
N , ξopt2

)
≤ Z

(
Q̃

(2j)
N , ξopt1

)
≤ 2 · Z

(
Q̃

(j)
N/2, ξopt1

)
= 2 · Z⋆

(
Q̃

(j)
N/2

)
,

where the first inequality is by the optimization and the second
inequality is by (25a).

We now consider the “+” case, and prove (25b) and (26b).
To prove (25b) we have by (28) (for all ξ and specifically
for 0 < ξ0 ≤ 1) that Q̃

(2j+1)
N (ξ0) = 2 · Q̃(j)

N/2(ξ0). Again,

plugging Q̃
(2j+1)
N (ξ0) = 1

2 · Z
(
Q̃

(2j+1)
N , ξ0

)
, yields (25b).

To obtain (26b) we use the same optimization argument as
before. This concludes the proof. We remark that the equality
in (25b) implies that now ξopt1 = ξopt2. This has a practical
computational advantage: it implies that roughly half of the
optimizations in Section VI need not be carried out.

proof of Lemma 10: We prove (34) by considering each
coefficient of Q̃(2j)

N (ξ) separately.

[ξt] Q̃
(2j)
N (ξ)

(a)
= Q̃

(2j)
N (t; 0)

(b)
=

∑
ta,tb,u:

f̃(ta,tb)=t

Q̃
(j)
N/2(ta;u) · Q̃

(j)
N/2(tb;u)

=
∑
ta,tb:

f̃(ta,tb)=t

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0)

+
∑
ta,tb:

f̃(ta,tb)=t

Q̃
(j)
N/2(ta; 1) · Q̃

(j)
N/2(tb; 1)

(c)
= 2 ·

∑
ta,tb:

f̃(ta,tb)=t

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0) . (68)

where (a) is by (21), (b) is by (14a), and (c) is since by (15)
we have

Q̃
(j)
N/2(ta; 1) · Q̃

(j)
N/2(tb; 1) = Q̃

(j)
N/2(−ta; 0) · Q̃(j)

N/2(−tb; 0) ,

and by (3) we have f̃(−ta,−tb) = f(ta, tb).
We define the set Ct as the set of pairs (ta, tb) which

contribute to the sum in (68),

Ct =
{
(ta, tb) ∈ T̃ (j)

N/2 × T̃ (j)
N/2 : f̃(ta, tb) = t

}
. (69)

We first consider the case t > 0. By inspection of f̃ in (3),
the set Ct can be partitioned into six disjoint sets denoted
SI, SII, . . . SVI and defined as follows:

SI ≜ {(ta, tb) ∈ Ct : ta = t, tb > t} , (70a)
SII ≜ {(ta, tb) ∈ Ct : ta > t, tb = t} , (70b)
SIII ≜ {(ta, tb) ∈ Ct : ta = −t, tb < −t} , (70c)
SIV ≜ {(ta, tb) ∈ Ct : ta < −t, tb = −t} , (70d)
SV ≜ {(ta, tb) ∈ Ct : ta = t, tb = t} , (70e)
SVI ≜ {(ta, tb) ∈ Ct : ta = −t, tb = −t} . (70f)

Thus, the sum in (68) can be broken into six sums. By the
symmetry between ta and tb in (68), both (70a) and (70b) have
the same contribution, as well as both (70c) and (70d). We
now consider the contribution of each sum.

For SI (and also for SII, as explained above) we have∑
(ta,tb)∈SI

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0)

(a)
=
∑
ta=t

Q̃
(j)
N/2(ta; 0) ·

∑
tb>t

Q̃
(j)
N/2(tb; 0)

(b)
= [ξt] Q̃

(j)
N/2(ξ) · [ξt] Ã

(j)
N/2(ξ)

(c)
= [ξt] Q̃

(j)
N/2(ξ) · [ξt] pos

〈
Ã

(j)
N/2(ξ)

〉
,

where (a) is by (70a), (b) is by (21) and (29), and (c) is by
(31) since t > 0.



For SIII (and also for SIV, as explained above) we have∑
(ta,tb)∈SIII

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0)

(a)
=
∑

ta=−t

Q̃
(j)
N/2(ta; 0) ·

∑
tb<−t

Q̃
(j)
N/2(tb; 0)

(b)
= [ξ−t] Q̃

(j)
N/2(ξ) · [ξ−t] B̃

(j)
N/2(ξ)

(c)
= [ξt] Q̃

(j)
N/2(1/ξ) · [ξt] neg

〈
B̃

(j)
N/2(ξ)

〉
,

where (a) is by (70c), (b) is by (21) and (30), and (c) is by
(32) since t > 0.

For SV we have∑
(ta,tb)∈SV

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0)

(a)
=
∑
ta=t

Q̃
(j)
N/2(ta; 0) ·

∑
tb=t

Q̃
(j)
N/2(tb; 0)

(b)
= [ξt] Q̃

(j)
N/2(ξ) · [ξt] Q̃

(j)
N/2(ξ) , (71)

where (a) is by (70e) and (b) is by (21).
For SVI we have∑

(ta,tb)∈SVI

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0)

(a)
=
∑

ta=−t

Q̃
(j)
N/2(ta; 0) ·

∑
tb=−t

Q̃
(j)
N/2(tb; 0)

(b)
= [ξ−t] Q̃

(j)
N/2(ξ) · [ξ−t] Q̃

(j)
N/2(ξ)

= [ξt] Q̃
(j)
N/2(1/ξ) · [ξt] Q̃

(j)
N/2(1/ξ) , (72)

where (a) is by (70f) and (b) is by (21).
Plugging all six sums into (68) yields (for t > 0)

[ξt] Q̃
(2j)
N (ξ) = (73)

[ξt] 2
(
Q̃

(j)
N/2(ξ)⊙

(
2 · pos

〈
Ã

(j)
N/2(ξ)

〉
+ Q̃

(j)
N/2(ξ)

))
+ [ξt] 2

(
Q̃

(j)
N/2(1/ξ)⊙

(
2 · neg

〈
B̃

(j)
N/2(ξ)

〉
+ Q̃

(j)
N/2(1/ξ)

))
,

where we used the definition of “⊙” in (33).
We now consider the case t < 0. Similarly to what we did

before for the case t > 0, we partition the set Ct defined in
(69) into six disjoined sets denoted S̃I, S̃II, . . . S̃VI as follows:

S̃I ≜ {(ta, tb) ∈ Ct : ta = t, tb > −t} , (74a)
S̃II ≜ {(ta, tb) ∈ Ct : ta > −t, tb = t} , (74b)
S̃III ≜ {(ta, tb) ∈ Ct : ta = −t, tb < t} , (74c)
S̃IV ≜ {(ta, tb) ∈ Ct : ta < t, tb = −t} , (74d)
S̃V ≜ {(ta, tb) ∈ Ct : ta = t, tb = t} , (74e)
S̃VI ≜ {(ta, tb) ∈ Ct : ta = −t, tb = −t} . (74f)

We now consider the contribution of each sum.

For S̃I (and also for S̃II) we have∑
(ta,tb)∈S̃I

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0)

(a)
=
∑
ta=t

Q̃
(j)
N/2(ta; 0) ·

∑
tb>−t

Q̃
(j)
N/2(tb; 0)

(b)
= [ξt] Q̃

(j)
N/2(ξ) · [ξ−t] Ã

(j)
N/2(ξ)

(c)
= [ξt] Q̃

(j)
N/2(ξ) · [ξt] pos

〈
Ã

(j)
N/2(ξ)

〉
,

where (a) is by (74a), (b) is by (21) and (29), and (c) is by
(31) since t < 0.

For S̃III (and also for S̃IV) we have∑
(ta,tb)∈S̃III

Q̃
(j)
N/2(ta; 0) · Q̃

(j)
N/2(tb; 0)

(a)
=
∑

ta=−t

Q̃
(j)
N/2(ta; 0) ·

∑
tb<t

Q̃
(j)
N/2(tb; 0)

(b)
= [ξ−t] Q̃

(j)
N/2(ξ) · [ξt] B̃

(j)
N/2(ξ)

(c)
= [ξt] Q̃

(j)
N/2(1/ξ) · [ξt] neg

〈
B̃

(j)
N/2(ξ)

〉
,

where (a) is by (74c), (b) is by (21) and (30), and (c) is by
(32) since t < 0.

For S̃V and for S̃VI we have exactly the same expressions
as for SV and SVI given in (71) and (72), respectively. Indeed,
this is because in deriving these we did not use the assumption
that t > 0, and by comparing (70e) and (70f) to (74e) and
(74f), respectively. Plugging all six sums into (68), reveals that
(73) also holds for t < 0.

For the case t = 0 we follow the same steps as those for
the case t > 0, but note that now SV = SVI. That is, the
contribution of SV ∪ SVI is now

[ξ0] Q̃
(j)
N/2(ξ)·[ξ0] Q̃

(j)
N/2(ξ) = [ξ0] Q̃

(j)
N/2(1/ξ)·[ξ0] Q̃

(j)
N/2(1/ξ) ,

as opposed to the contribution for t > 0:

[ξt] Q̃
(j)
N/2(ξ)·[ξt] Q̃

(j)
N/2(ξ)+[ξt] Q̃

(j)
N/2(1/ξ)·[ξt] Q̃

(j)
N/2(1/ξ) .

Thus, (73) will hold also for t = 0, once we subtract

2
(
[ξ0] Q̃

(j)
N/2

)2
, which yields (34).

B. Proofs for Section IV

This subsection is devoted to proving the results in Section IV
regarding the complexity of calculations for the finite-length
case. That is, we show how the posynomials Q̃

(i)
N (ξ) are

efficiently calculated. Recall that Q̃
(i)
N (ξ) is defined in (21),

where the summation index t ranges over T̃ (i)

N given in (19).
Recall that T̃ (i)

N contains all integers from −γ · 2wt(i) to
γ · 2wt(i). Thus, we represent Q̃(i)

N (ξ) by an array indexed over
this integer range, where entry t contains the coefficient of ξt.
Namely, if we denote this array as q[·], then q[t] = [ξt] Q̃

(i)
N (ξ).

The same representation is used for all posynomials arising
from intermediate steps in the calculation.

proof of Lemma 11: We first note by inspection that all
intermediate posynomials taking part in the calculation have



the same range of indices. That is, all these posynomials have
indices ranging over T̃ (j)

N/2 = T̃ (2j)

N , where the equality is also
in accordance with (19) since wt(2j) = wt(j). The result will
follow by showing that all the intermediate calculations in (34)
can be carried out in linear time. That is, in time O

(
|T̃ (j)

N/2|
)

.

Denote the array of Q̃(j)
N/2(ξ) as q[·]. First consider the calcu-

lation of Ã(j)
N/2(ξ), defined in (29). This is done by allocating an

array a[·], indexed over T̃ (j)

N/2, and populating its entries from
highest to lowest. That is, we set a[γ · 2wt(j)] = 0 and for all
smaller t we set a[t] = a[t+1]+q[t+1]. Clearly, this calculation
is linear in the size of a[·]. Similarly, B̃(j)

N/2(ξ), defined in (30),
is calculated by allocating an array b[·], and populating its
entries from lowest to highest such that b[−γ · 2wt(j)] = 0 and
for all larger t, b[t] = b[t−1]+q[t−1]. This operation is linear
as well. By inspection, all the other operations involved in (34)
are also linear. Note that Q̃(j)

N/2(1/ξ) is simply the posynomial

Q̃
(j)
N/2(ξ), reversed. That is, [ξt] Q̃(j)

N/2(1/ξ) = [ξ−t] Q̃
(j)
N/2(ξ).

proof of Lemma 12: By (19), the largest and smallest
powers of Q̃

(j)
N/2(ξ) are γ′ ≜ 2wt(j)γ and −γ′, respectively.

We recast (28) as follows:

Q̃
(2j+1)
N (ξ) = 2 ·

(
Q̃

(j)
N/2(ξ)

)2
= 2 · ξ−2γ′ ·

(
ξγ

′ · Q̃(j)
N/2(ξ)

)2
.

Notice that ξγ
′ · Q̃(j)

N/2(ξ) is a polynomial. Therefore, the

complexity of calculating Q̃
(2j+1)
N (ξ) is that of squaring a

polynomial of degree 2γ′. By [29, Chapter 30], this can be
done using fast Fourier transform in time O(2γ′ · log(2γ′)) =

O
(
|T̃ (j)

N/2| · log(|T̃
(j)

N/2|)
)

, where the equality follows by (19).

proof of Theorem 13: We first note that both |T̃ (2j)
N | and

|T̃ (2j+1)
N | are at least |T̃ (j)

N/2|, by (19). Hence, by Lemmas 11
and 12 we may bound the computational complexity of
calculating Q̃(i)(ξ) from Q̃(⌊i/2⌋)(ξ) by O(|T̃ (i)

N | log |T̃ (i)
N |).

That is, using (19), by O(2wt(i) · γ · log(2wt(i) · γ)).
For 1 ≤ m ≤ n, consider the complexity of the last step

of calculating all Q̃(j)
M (ξ), where 0 ≤ j < M = 2m. That is,

calculating the Q̃
(j)
M (ξ), when we have already calculated all

Q̃
(k)
M/2(ξ), 0 ≤ k < M/2 = 2m−1. Since the number of indices

j of weight w is
(
m
w

)
, the complexity is of order

m∑
w=0

(
m

w

)
2wγ log2(2

w · γ) .

Thus, the overall complexity is of order
n∑

m=1

m∑
w=0

(
m

w

)
2wγ log2(2

w · γ) . (75)

We start by bounding the inner sum in (75). We have

m∑
w=0

(
m

w

)
2wγ log2(2

w · γ)

= γ

m∑
w=0

(
m

w

)
2ww + γ log2 γ

m∑
w=0

(
m

w

)
2w . (76)

The first sum on the RHS of (76) is bounded by
m∑

w=0

(
m

w

)
2ww =

m∑
w=1

(
m

w

)
2ww

=

m∑
w=1

m!

w!(m− w)!
2ww

=

m∑
w=1

m · (m− 1)!

(w − 1)!(m− w)!
2w

=

m∑
w=1

m

(
m− 1

w − 1

)
2w

= 2m

m∑
w=1

(
m− 1

w − 1

)
2w−11(m−1)−(w−1)

= 2m

m−1∑
k=0

(
m− 1

k

)
2k1(m−1)−k

(a)
= 2m(1 + 2)m−1

= 2m · 3m−1 ,

where (a) follows by the binomial theorem.
The second sum on the RHS of (76) is bounded by

m∑
w=0

(
m

w

)
2w =

m∑
w=0

(
m

w

)
2w1m−w = 3m .

Plugging the above simplifications into (75) yields an overall
complexity of order

n∑
m=1

γ · 2m · 3m−1 + γ log2 γ · 3m

= γ

n∑
m=1

(
2

3
·m+ log2 γ

)
· 3m

(a)
= γ

(
2

3
· 3
4
(1 + (2n− 1) · 3n) + log2 γ · 3

n+1 − 3

3− 1

)
≤ γ

(
1

2
(2n · 3n) + log2 γ · 3n+1

)
= γ

(
n · 3n + log2 γ · 3n+1

)
= γ

(
n · 2n log2 3 + log2 γ · 3 · 2n log2 3

)
= γ

(
log2 N ·N log2 3 + log2 γ · 3 ·N log2 3

)
= O(γ ·N log2 3 logN + γ log γ ·N log2 3) ,

where (a) follows by the methods in [30, Section 2.6]. The
above can be further bounded as O(γ log γ · N log2 3 logN).
Since 1.585 > log2 3, we can also bound this as O(γ log γ ·
N1.585).

C. Proofs for Section V

proof of Corollary 15: The corollary is obtained by a
reduction to Proposition 14 with appropriate parameters. Since
the same symbols n′, η, ϵ′, and δ′ are used in both Corollary 15



and Proposition 14, we apply hats to all symbols in Corollary 15
to avoid ambiguity.

Thus, our setting is that we are given ϵ̂′, η̂, and must find
n̂′(ϵ̂′, η̂) such that if S0 ≤ η̂, then

Pr (Sn ≤ ϵ̂′ for all n ≥ n̂′) ≥ 1− δ̂′(η) ,

where
δ̂′(η̂) = 2 · (8η̂)log2 φ . (77)

We now consider Proposition 14 with ϵ′ = ϵ̂′, δ′ = δ̂′(η̂),
and κ = 2. Consider first the corresponding η. By (38) and
(77), this is

η = η(ϵ′, δ′) =
1

8

(
δ′

2

)1/ log2 φ

=
1

8

(
δ̂′(η̂)

2

)1/ log2 φ

=
1

8

(
1

2
· 2(8 · η̂)log2 φ

)1/ log2 φ

= η̂ .

Thus, if S0 ≤ η̂, we have for n′(ϵ′, δ′, κ = 2) that (37)
holds. Comparing (37) and (39), we deduce that we may
take n̂′(ϵ̂′, η̂) ≜ n′(ϵ̂′, δ̂′(η̂), κ = 2), where n′ is the function
promised in Proposition 14.

proof of Proposition 16: We prove (41) by following
similar steps as in [31]. The proof is given for completeness.
Let εa, εb > 0 and na < nb be parameters. Define the following
events:

A : Sn ≤ εa for all n ≥ na , (78)

B :

∣∣∣∣ |{na < i < n : Ti = t}|
n− na

− 1

2

∣∣∣∣ ≤ εb ,

for all n ≥ nb and all t ∈ {0, 1} . (79)

We will use the following three observations shortly:
1) By Corollary 15, for given εa > 0 and η > 0 there exists

an na such that

Pr(A) ≥ 1− δ′(η) . (80)

2) By the strong law of large numbers, for given εb, na,
and δ − δ′(η) > 0 there exists nb > na such that

Pr(B) ≥ 1− (δ − δ′(η)) . (81)

3) If the inequalities (80) and (81) hold, then

Pr(A ∩B) = Pr(A) + Pr(B)− Pr(A ∪B)

= Pr(A) + Pr(B)−
(
1− Pr(Ā ∩ B̄)

)
(a)
= Pr(A) + Pr(B)− 1 + Pr(Ā ∩ B̄)
(b)
≥ Pr(A) + Pr(B)− 1
(c)
≥
(
1− δ′(η)

)
+
(
1− (δ − δ′(η))

)
− 1

= 1− δ , (82)

where (a) is by De Morgan’s laws, (b) is since we throw
away a non-negative term, and (c) is by (80) and (81).

Define the shorthand

θ ≜ − logεa(κ) = log1/εa(2) .

Note that for εa < 1 we have θ > 0 and limεa→0 θ = 0.
Moreover define the shorthands d0 = 1 and d1 = 2.

Following the same steps in [31], we require that εa is small
enough such that dt − θ > 0 for t ∈ {0, 1}, and also require
εa, εb < 1/2. For εa, εb satisfying the above and nb > na that
are yet to be fixed, we have under A ∩B that for all n > nb,

Sn ≤ 2−2(
1
2
−∆)n

,

where

∆ =
∑

t∈{0,1}

1

2
log2

(
dt

dt − θ

)
−

∑
t∈{0,1}

±εb log2(dt − θ)

+
∑

t∈{0,1}

na

n

(
1

2
± εb

)
log2(dt − θ) , (83)

and

± ≜

{
+ if dt − θ ≤ 1,

− otherwise.

Now, for a given 0 < β < 1/2, η > 0 and δ > δ′(η), our aim
is to show that there exists a choice of parameters εa, εb > 0
and na < nb such that (82) holds and ∆ < 1/2−β. We choose
εa small enough such that the first sum in (83) is less than
1/2−β

3 , dt − θ > 0 for t ∈ {0, 1}, and εa < 1/2. We choose
εb small enough such that the second sum in (83) is less than
1/2−β

3 and that εb < 1/2. Note that εa has been set and η
is given. As justified by Observation 1, we choose na large
enough such that (80) holds. Then, we choose nb large enough
such that both (81) holds (as justified by Observation 2) and
the third sum in (83) is less than 1/2−β

3 . The above choices
indeed satisfy our aim: by Observation 3, (82) holds since
both (80) and (81) hold, and ∆ < 1/2− β since each one of
the three sums in (83) is smaller than 1

3 (1/2− β). Therefore,
setting n0 = nb ensures (41) holds.

D. Additional proofs for Section VI

proof of Proposition 20: By (47) we have

RU(G′) = RU(G)−
1

2d′ · I
(
Q̃

(j′)

2d′

)
+

1

2d′+1
· I
(
Q̃

(2j′)

2d′+1

)
+

1

2d′+1
· I
(
Q̃

(2j′+1)

2d′+1

)
Therefore, the claim will follow by showing that

I
(
Q̃

(2j′)

2d′+1

)
+ I

(
Q̃

(2j′+1)

2d′+1

)
≤ 2 · I

(
Q̃

(j′)

2d′

)
.

For brevity denote

Γ ≜ Q̃
(j′)

2d′
,

Λ− ≜ Q̃
(2j′)

2d′+1 ,

Λ+ ≜ Q̃
(2j′+1)

2d′+1 ,

and
u ≜ u2j′ , v ≜ u2j′+1 .



Hence, our goal is to show that

I(Λ−) + I(Λ+) ≤ 2 · I(Γ) .

For this, we further denote by Γ− and Γ+ the minus and plus
transforms of Γ, respectively. That is,

Γ−(ta, tb;u) =
∑
v

Γ(ta;u⊕ v) · Γ(tb; v) , (84a)

Γ+(ta, tb, u; v) = Γ(ta;u⊕ v) · Γ(tb; v) . (84b)

By the chain rule,

I(Γ−) + I(Γ+) = 2 · I(Γ) .

Since (stochastic) degradation reduces mutual information, we
will be done once we prove that Λ− is degraded with respect to
Γ−, and Λ+ is degraded with respect to Γ+. By inspection of
(14) versus (84), this is indeed the case. Namely, Γ− is degraded
to Λ− by deterministically mapping (ta, tb) to f̃(ta, tb) while
Γ+ is degraded to Λ+ by deterministically mapping (ta, tb, u)
to gu(ta, tb).

proof of Proposition 21: By (44) we have

RL(G, E ′) = RL(G, E)−
1

2d′ ·max
{
1− δ′(ζ

(j′)

2d′
), 0
}

+
1

2d′+1
·max

{
1− δ′(ζ

(2j′)

2d′+1), 0
}

+
1

2d′+1
·max

{
1− δ′(ζ

(2j′+1)

2d′+1 ), 0
}

.

Therefore, the claim will follow by showing that

2 ·max
{
1− δ′(ζ

(j′)

2d′
), 0
}
≤ max

{
1− δ′(ζ

(2j′)

2d′+1), 0
}

+max
{
1− δ′(ζ

(2j′+1)

2d′+1 ), 0
}

.

Recall (42) and denote for brevity

ζ ≜ (ζ
(j′)

2d′
) ,

ζ− ≜ (ζ
(2j′)

2d′+1) = 2 · ζ ,

ζ+ ≜ (ζ
(2j′+1)

2d′+1 ) = ζ2 .

Hence, our goal is to show that

2 ·max{1− δ′(ζ), 0} ≤ max{1− δ′(ζ−), 0}
+max{1− δ′(ζ+), 0} . (85)

We assume that the LHS is positive, otherwise the claim is
trivial. Under this assumption, we show that

2 · (1− δ′(ζ)) ≤
(
1− δ′(ζ−)

)
+
(
1− δ′(ζ+)

)
,

which implies (85). Using the definition of δ′(·) in (40) and
plugging ζ− = 2 · ζ and ζ+ = ζ2, the above simplifies to

x ·
(
x− (2− 2log2 φ)

)
≤ 0 , (86)

where we use the shorthand x ≜ ζ log2 φ. Therefore, the
inequality holds for x ∈ [0, 2− 2log2 φ], which is ζ ∈ [0, 1/4].
That is, (85) holds if ζ ∈ [0, 1/4]. Since ζ is non-negative, it

remains to show that ζ ≤ 1/4. Indeed, by our assumption that
the LHS in (85) is positive and by (40),

ζ <
1

8
·
(
1

2

)1/ log2 φ

≈ 0.046 .

proof of Proposition 22: Recall (44) and consider the
calculation of RL(G, E) versus RL(G′, E). To distinguish and
compare between the terms of these two sums, we use the
notation ζ̂ for G′. That is,

RL(G, E) =
∑

(d,j)∈E

1

2d
·max

{
1− δ′(ζ

(j)

2d
), 0
}

,

RL(G′, E) =
∑

(d,j)∈E

1

2d
·max

{
1− δ′(ζ̂

(j)

2d
), 0
}

.

By Definition 3 of G′(d′, j′), only nodes (d, j) ∈ E which
are descendants of (d′, j′) contribute differently to the sum.
The proof will follow by showing that for each such term,
the contribution does not decrease when changing G to G′.
Thus, our goal is to show that for all (d, j) ∈ E which is a
descendant of (d′, j′) it holds that

δ′(ζ̂
(j)

2d
) ≤ δ′(ζ

(j)

2d
) .

By the monotonicity of δ′(·), defined in (40), it is sufficient
to show that

ζ̂
(j)

2d
≤ ζ

(j)

2d
. (87)

Recall how ζ
(j)

2d
is calculated: we use (42), where the base of

the recursion is node (d′, j′) whose corresponding ζ
(j′)

2d′
equals

Z⋆(Q̃
(j′)

2d′
). In contrast, for ζ̂

(j)

2d
, we use the same recursive

relations in (42), but the base case is one level deeper: either
ζ̂
(2j′)

2d′+1 = Z⋆(Q̃
(2j′)

2d′+1) or ζ̂
(2j′+1)

2d′+1 = Z⋆(Q̃
(2j′+1)

2d′+1 ), depending
on the value of j. By inspection of (42) versus (26), we
have that ζ̂

(2j′)

2d′+1 ≤ ζ
(2j′)

2d′+1 and ζ̂
(2j′+1)

2d′+1 ≤ ζ
(2j′+1)

2d′+1 . By the
monotonicity of the two operations in (42), doubling and
squaring, we deduce that this inequality persists throughout
the path to (d, j), and hence (87) indeed holds.

proof of Corollary 23: To prove (52), recall the definition
of G∗. That is, for some finite integer T , there exists a sequence

G = G0,G1, . . . ,GT = G∗ , (88)

where for each 0 ≤ t < T we have Gt+1 = G′
t(d, j), for

some (d, j) ∈ Gt. Thus, by (49), for each 0 ≤ t < T we have
RU(Gt+1) ≤ RU(Gt). Hence, (52) follows.

To prove (53) we show that

RL(G, E) ≤ RL(G, E∗) ≤ RL(G∗, E∗) . (89)

Consider the first inequality. For this, note that as before,
we have for some finite integer S the sequence

E = E0, E1, . . . , ES = E∗ , (90)

where for each 0 ≤ s < S we have Es+1 = E ′
s(d, j), for

some (d, j) ∈ Es. Thus, by (50), for each 0 ≤ s < S we have



RL(G, Es+1) ≥ RL(G, Es). Hence, the first inequality in (89)
follows.

Consider now the second inequality in (89). Recall that
(G∗, E∗) is a valid pair. Next, note that if (Gt+1, E∗) is a valid
pair, then so is (Gt, E∗). Hence, since G∗ = GT , all pairs
(Gt, E∗) are valid for 0 ≤ t ≤ T . We wish to apply (51)
repeatedly to show that RL(Gt+1, E∗) ≥ RL(Gt, E∗), from
which the second inequality in (89) follows. Recalling the
conditions in Proposition 22, we must show that Gt+1 is not
constructed from Gt by a node (d′, j′) ∈ E∗. Indeed, if this
were the case, then (Gt+1, E∗) would not be valid, contradicting
what we have already established.

proof of Proposition 19: Note that I(Q̃(0)
1 ) ≤ I(W ) ≜ C,

since Q̃
(0)
1 is obtained by stochastically degrading W using

the labeling function λ(·). Next, we define the set G(0,0) ≜

{(0, 0)}. By inspection of (47), RU(G(0,0)) = I(Q̃
(0)
1 ). Hence,

RU(G(0,0)) ≤ C. The claim follows by noting that each valid
G satisfies G ≥ G(0,0). Therefore by applying (52) we have
RU(G) ≤ RU(G(0,0)) ≤ C.
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[5] E. Şaşoğlu and I. Tal, “Polar coding for processes with memory,” IEEE
Trans. Inform. Theory, vol. 65, no. 4, pp. 1994–2003, April 2019.

[6] B. Shuval and I. Tal, “Fast polarization for processes with memory,”
IEEE Trans. Inform. Theory, vol. 65, no. 4, pp. 2004–2020, April 2019.

[7] R. Wang, J. Honda, H. Yamamoto, R. Liu, and Y. Hou, “Construction of
polar codes for channels with memory,” in Proc. IEEE Inform. Theory
Workshop (ITW’2015), Jeju Island, Korea, 2015, pp. 187–191.

[8] Y. Wang, M. Qin, K. R. Narayanan, A. Jiang, and Z. Bandic, “Joint
source-channel decoding of polar codes for language-based sources,” in
Proc. IEEE Global Telecommun. Conf. (Globecom’2016), Washington,
DC, 2016.

[9] I. Tal, H. D. Pfister, A. Fazeli, and A. Vardy, “Polar codes for the deletion
channel: weak and strong polarization,” IEEE Trans. Inform. Theory,
vol. 68, no. 4, pp. 2239–2265, April 2022.

[10] D. Arava and I. Tal, “Stronger polarization for the deletion channel,” in
2023 IEEE International Symposium on Information Theory (ISIT), 2023,
pp. 1711–1716.

[11] H. D. Pfister and I. Tal, “Polar codes for channels with insertions,
deletions, and substitutions,” in Proc. IEEE Int’l Symp. Inform. Theory
(ISIT’2021), Melbourne, Victoria, Australia, 2021, pp. 2554–2559.

[12] E. Arıkan, “Source polarization,” in Proc. IEEE Int’l Symp. Inform.
Theory (ISIT’2010), Austin, Texas, 2010, pp. 899–903.

[13] S. B. Korada and R. Urbanke, “Polar codes for Slepian-Wolf, Wyner-
Ziv, and Gelfand-Pinsker,” in Proc. IEEE Inform. Theory Workshop
(ITW’2010), Cairo, Egypt, 2010.

[14] E. Hof and S. Shamai, “Secrecy-achieving polar-coding for binary-input
memoryless symmetric wire-tap channels,” arXiv:1005.2759v2,
2010.

[15] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap
channels using polar codes,” IEEE Trans. Inform. Theory, vol. 57, pp.
6428–6443, 2011.

[16] B. Shuval and I. Tal, “Strong polarization for shortened and punctured
polar codes,” in Proc. IEEE Int’l Symp. Inform. Theory (ISIT’2024),
Athens, Greece, 2024.

[17] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures
for successive cancellation decoding of polar codes,” in Proc. IEEE Int’l
Conf. Acoust. Speech Signal Process. (ICASSP’2011), Prague, Czech
Republic, 2011, pp. 1665–1668.

[18] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation,”
IEEE Transactions on Communications, vol. 47, no. 5, pp. 673–680,
1999.

[19] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inform.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[20] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics letters,
vol. 48, no. 12, pp. 695–697, 2012.

[21] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Transactions on
Signal Processing, vol. 61, no. 2, pp. 289–299, 2013.

[22] N. Miki, S. Suyama, and S. Nagata, “Performance of polar codes under
successive cancellation decoding employing approximation algorithm,”
in 2019 13th International Conference on Signal Processing and
Communication Systems (ICSPCS), 2019, pp. 1–6.

[23] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Transactions
on Signal Processing, vol. 63, no. 19, pp. 5165–5179, 2015.

[24] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inform.
Theory, vol. 59, no. 10, pp. 6562–6582, October 2013.

[25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[26] B. Shuval and I. Tal, “Universal polarization for processes with memory,”
Accepted for publication in IEEE Trans. Inform. Theory, 2025, available
online at https://ieeexplore.ieee.org/document/10836796.

[27] R. G. Gallager, Information Theory and Reliable Communications. New
York: John Wiley, 1968.

[28] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley,
1991.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 4th ed. Cambridge, Massachusetts: The MIT Press, 2022.

[30] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics,
2nd ed. Reading, Massachusetts: Addison-Wesley, 1994.

[31] I. Tal, “A simple proof of fast polarization,” IEEE Trans. Inform. Theory,
vol. 63, no. 12, pp. 7617–7619, December 2017.

https://ieeexplore.ieee.org/document/10836796

	Introduction
	Notation
	Posynomial representation
	Finite-Length Case
	Asymptotic Case
	Fair Labeler
	Good Labeler

	Improved Thresholds
	Definition of RL(G, E) and RU(G)
	Justification of RL(G, E)
	Definition of block-genie and justification of RU(G)
	Monotonic Properties of RL(G, E) and RU(G)

	Appendix A: Non-recursive interpretation of the MSA
	Appendix B: Proofs
	Proofs for sec: posynomial representation
	Proofs for sec: finite length case
	Proofs for sec: asymptotic case
	Additional proofs for sec: improved thresholds

	References

