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Abstract—In this paper we show a polar coding scheme for the
deletion channel with a probability of error that decays roughly
like 2−

√
Λ, where Λ is the length of the codeword. That is, the

same decay rate as that of seminal polar codes for memoryless
channels. This is stronger than prior art in which the square
root is replaced by a cube root. Our coding scheme is similar yet
distinct from prior art. The main differences are: 1) Guard-bands
are placed in almost all polarization levels; 2) Trellis decoding
is applied to the whole received word, and not to segments of
it. As before, the scheme is capacity-achieving. The price we pay
for this improvement is a higher decoding complexity, which is
nonetheless still polynomial, O(Λ4

).

I. INTRODUCTION

A. The deletion channel

Deletion errors, along with insertion errors, arise in com-
munication channels with symbol-timing mismatch [1]. These
synchronization errors are also common in polymer-based
storage solutions [2].

The simplest theoretical model for these errors is the dele-
tion channel with a constant deletion probability. The channel
output is a sub-string of the symbols in the input. Deletions
occur according to an i.i.d. process that deletes each input
symbol with probability δ.

B. Polar codes for the deletion channel

Polar codes [3] for a deletion channel with a fixed deletion
probability were first presented in [4]. See also [5]–[8], which
use polar codes for weaker settings. In [4], the authors show
that for a fixed regular hidden-Markov input process and a
fixed parameter ν ∈ (0, 1

3
), their coding scheme approaches

the mutual information rate between the input process and
the channel output. The encoding and decoding complexities
are O(Λ logΛ) and O(Λ1+3ν), respectively, where Λ is the
codeword length. Furthermore, for any 0 < ν′ < ν and large
enough Λ, the probability of a decoding block error is at most
2−Λ

ν′
. For completeness, the authors show that there exists a

sequence of regular hidden-Markov input processes for which
the mutual information rate approaches the deletion channel
capacity. This result follows as a special case of the work of Li
and Tan [9], which proved the above for finite-order Markov
processes.

We extend [4], and show that for a more elaborate decoding
scheme, the error probability decreases as 2−Λ

β′
where β′ ∈

(0, 1
2
) instead of the previous decay coefficient ν′ ∈ (0, 1

3
).
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II. MAIN THEOREM

Our main result builds upon the function g introduced in
[4]. We will define g shortly. For now, we note that g(x, n0, ξ)
recursively transforms x, a word of length 2n, into a slightly
longer word, where the length is controlled by the parameter
ξ, and n − n0 is the recursion depth. We say that g(x, n0, ξ)
is the result of adding guard-bands to x.

Throughout the paper, we assume a deletion channel with
a fixed deletion probability. We also assume a fixed regular
hidden Markov input distribution (see [4, Subsection II-D]
for the formal definition). Denote by I the information rate
between an input distributed according to this distribution and
the corresponding output of the deletion channel. Denote by
Z and K the Bhattacharyya parameter and the total-variation,
respectively (see, for example, [10, Section III]).

Here is our “stronger polarization” theorem. As we will
see, the proof uses a previously proven “weaker polarization”
theorem as a bootstrap.

Theorem 1 (Stronger Polarization): Fix ϵ > 0, ξ ∈ (0, 1
6
),

and parameters 0 < β′ < β < 1
2

. There exist nth(β′, β, ϵ, ξ)
and nth

0 (β′, β, ϵ, ξ) such that the following holds. Take n ≥ nth

and n0 ≥ nth
0 . Let X be of length N = 2n. The vector X is

partitioned into blocks of length 2n0 , and each block is in-
dependently distributed according to the hidden Markov input
distribution. Let U be the polar transform of X. Denote by
Y the result of transmitting g(X, n0, ξ) through the deletion
channel. The fraction of indices i for which:

Z(Ui∣U i−1
1 ,Y) < 2−N

β

< 1

2N
⋅ 2−Λ

β′
(1)

K(Ui∣U i−1
1 ) < 2−N

β

< 1

2N
⋅ 2−Λ

β′
(2)

is at least I − ϵ, where Λ is the length of g(X, n0, ξ).
Furthermore,

N

Λ
> 1 − ϵ .

By using the Honda-Yamamoto scheme [11], [12], we get
the following corollary.

Corollary 2: The above implies a coding scheme with rate
I − 2ϵ and probability of error at most 2−Λ

β′
, where Λ is the

length of the transmitted codeword.
Here is the “weaker polarization” theorem which we will

build on. This theorem follows from the proof of [4, Theo-
rem 1], and by recalling that the Bhattacharyya parameter is



upper bounded by twice the square-root of the probability of
error [13, by combining (4a) and (4c)].

Theorem 3 (Prior-art Polarization): Fix ϵ′ > 0 and 0 <
ν < 1

3
. There exists an npa−th(ν, ϵ′, ξ) such that the following

holds. Take n ≥ npa−th and n0 = ⌊νn⌋. Let U, X, Y, N , and
Λ be as in Theorem 1. The fraction of indices i for which:

Z(Ui∣U i−1
1 ,Y) < 2−N

ν

(3)

K(Ui∣U i−1
1 ) < 2−N

ν

(4)

is at least I − ϵ′. Furthermore, N
Λ
> 1 − ϵ′.

To recap: our stronger result promises a probability of error
that decays roughly like the square root of the codeword
length, as is the case for the seminal polar codes defined
for BMS channels [3]. In contrast, prior art only promises
a probability of error that decays roughly like the cube root
of the codeword length.

III. NOTATION

In this section we set up some notation and summarize key
concepts from [4].

A. Three related channels
We now introduce three related channels: the deletion chan-

nel; the trimming channel; and their composition, the trimmed
deletion channel.

Deletion Channel (DC) The deletion channel is the channel
we are to code over. As its name implies, it takes a binary
vector and deletes each bit with probability δ. Thus, the output
of the channel is typically shorter than its input. We will often
denote a random vector that is an input to such a channel by
G and denote the corresponding output by Y.

The following two channels were introduced in [4], and are
concepts we will need for our results as well.

Trimming Channel (TC) The trimming channel takes a
binary vector and removes from it all leading and trailing
zeros. Note that the trimming channel is deterministic. We
will often denote the input to this channel by either Y or Z.
We denote the trimming operation by appending a ‘∗’ as a
superscript. Thus, the outputs corresponding to Y and Z will
be Y∗ and Z∗, respectively.

Trimmed Deletion Channel (TDC) The trimmed deletion
channel is the composition of the above two channels. Thus,
if the input to the channel is G, then we first pass G through
the deletion channel and obtain Y, and then pass Y through
the trimming channel, which yields Y∗.

G
DC

deletion
Y

TC
trimming Y∗

TDC

We end this subsection by noting that Theorem 3 holds for
the TDC as well. This follows by carefully reading the proof
of [4, Theorem 1], and noting that in [4, Subclaim 2] the initial
step involves trimming Y into Y∗.

Remark 4 (Prior-art Polarization, for the TDC): Theorem 3
continues to hold if we replace Y with Y∗ in (3).

B. Blocks and guard-bands

Recall that in the previous theorems, X was partitioned into
independent blocks of length N0 = 2n0 . There are N1 = N

N0

such blocks, and we denote them by X(1),X(2), . . . ,X(N1).
That is, X is the concatenation of the above N1 blocks,

X =X(1)⊙X(2)⊙⋯⊙X(N1).
We denote the first and second halves of X by XI and XII.
Denoting the length of a vector by ∣⋅∣, we have ∣XI∣ = ∣XII∣ = N

2
and

X =XI ⊙XII.

Note that XI and XII are independent, a convention that will
also hold in other places in which we use the “I” and “II”
subscripts.

Recall that the function g mentioned previously transforms
a vector X of length 2n into a slightly longer vector with
“guard-bands”. We now define g recursively, and note that it
adds the guard-bands between blocks. For a vector X of length
≤ 2n0 , g(X, n0, ξ) is simply the identity function. For a vector
X of length greater than 2n0 ,

g(X, n0, ξ) ≜ g(X) ≜ g(XI)
´¹¹¹¹¸¹¹¹¹¶
≜GI

⊙
ℓnzÐÐÐÐx

000 . . .00
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜G∆

⊙ g(XII)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
≜GII

(5)

That is, we add
ℓn = ⌊2(1−ξ)(n−1)⌋ (6)

“0” symbols between the first and second halves of X, and
apply g recursively on each half. Note that ξ > 0 is a “small”
constant that we will define later. To summarize: X is a
concatenation of 2n−n0 independent blocks, each of length
N0 = 2n0 . The function g(X, n0, ξ) adds a guard-band of “0”
symbols between each two blocks, and the length of these
guard-bands varies. Here is an illustration, for the case in
which n = n0 + 2:

X(1) 00...0 X(2) 00........0 X(3) 00...0 X(4)

g(X, n0, ξ)

N0 ℓn0+1
N0 ℓn0+2

N0 ℓn0+1
N0

We remind the reader that G = GI ⊙G∆ ⊙GII is passed
through the DC. We denote the output of this channel by Y,
and denote the parts corresponding to GI, G∆, and GII by YI,
Y∆, and YII, respectively. We further denote the application
of the TC on Y by Z ≜Y∗, and denote the parts corresponding
to YI, Y∆, and YII by ZI, Z∆, and ZII, respectively. See Fig.
1, which is essentially [4, Figure 5]. Note that, in general, ZI
is formed by trimming off only the left side of YI. Hence,
typically, ZI ≠ (YI)∗ and ZII ≠ (YII)∗. Also, we note that in
the typical case, Z∆ =Y∆.

IV. TWO KEY LEMMAS

In this section we state the two lemmas that are key to our
main result. As we will see, the first lemma is specific to our
setting, while the second is more general.



X XI XII

G = g(X) GI G∆ GII

Y YI Y∆ YII

Z =Y∗ ZI Z∆ ZII

g g g

DC DC DCDC

TC

Fig. 1. The random variables X, G, Y, and Z.

A. Single-step bounds for the TDC

In the seminal paper [3, Proposition 5], it was shown that
a ‘+’ transform squares the Bhattacharyya parameter, while a
‘−’ transform at most doubles it. This was the key property
used to prove strong polarization in [14]. We will soon state a
similar claim for our setting. Our claim is significantly weaker
than the one derived for a memoryless channel in [3] and also
from the one derived for a Markovian setting in [15, Section
VI], but still strong enough to imply strong polarization.

We first set up some additional notation. We denote the
Arıkan transform of the vector X by U = A(X). Recall that
the two halves of X are XI and XII. Their Arıkan transforms
are denoted V ≜ A(XI) and V′ ≜ A(XII), and we have

U2j−1 = Vj + V ′j , U2j = V ′j ,

where addition is modulo 2. As in the seminal paper, the binary
vector corresponding to i−1 is denoted b1, . . . , bn. That is, for
1 ≤ i ≤ N = 2n,

i = i(b1, . . . , bn) = 1 +
n

∑
k=1

bk2
n−k.

The following lemma is cardinal to proving the stronger
polarization stated in Theorem 1. Recall that δ is the deletion
rate, and that the guard-band length is given in (6), and is a
function of ξ. The proof will be given in Section V.

Lemma 5 (Bhattacharyya single-step bounds for the TDC):
Fix a regular and non-degenerate hidden-Markov input distri-
bution. Let X = A(U) be of length N = 2n, comprised of
i.i.d. blocks of length N0 = 2n0 , each distributed according to
the input distribution. Let Y∗ = ZI⊙Z∆⊙ZII be the result of
transmitting g(X, n0, ξ) through the TDC. There exist mth

0 (ξ)
and mth(ξ, δ) s.t. for n0 ≥mth

0 and all n ≥max{mth, n0 +1}
the following holds. Let 1 ≤ i ≤ N and j = ⌊(i + 1)/2⌋. Then,

Z(Ui∣U i−1
1 ,Y∗) ≤ 3

2
N ⋅Z(Ui∣U i−1

1 ,Z∗I ,Z
∗
II) + 2−N

2
3 (7a)

≤
⎧⎪⎪⎨⎪⎪⎩

3
2
N ⋅ 2 ⋅Z(Vj ∣V

j−1
1 ,Z∗I ) + 2−N

2
3 if bn = 0 (‘−’)

3
2
N ⋅Z(Vj ∣V

j−1
1 ,Z∗I )

2
+ 2−N

2
3 if bn = 1 (‘+’) .

(7b)

We draw the reader’s attention to several important points.
First, note that in (7a), there is both an additive penalty of
2−N

2
3 as well as a multiplicative penalty of 3N

2
, associated

with conditioning on Z∗I ,Z
∗
II as opposed to conditioning on

Y∗. That is, there is a price to be paid for conditioning on
the pair of TDC outputs corresponding to g(XI) and g(XII),
as opposed to conditioning on the TDC output corresponding
to g(XI ⊙XII). Informally, this is because in the former we
have been given the correct partitioning of the output into
two halves (that are then further processed by the TC). The
inequality in (7b) shows us why such a penalty is worth
paying: since Z∗I and Z∗II are independent, we may now use
the standard arguments in [3] to reach a recursive relation. To
conclude, the lemma allows us to track the evolution of the
Bhattacharyya parameter after each polarization step.

B. The walking-to-running lemma

In the previous subsection, we’ve stated Lemma 5, which
gave upper bounds on the evolution of the Bhattacharyya
parameter. Due to the added penalties in these bounds, we
cannot use prior art in order to claim a polarization rate
of roughly 2−

√
N . Indeed, in this subsection we state the

second key lemma in the paper, Lemma 6, which implies
such a rate for the process in Lemma 5. Lemma 6 is stated
quite generally, in the hope that it will be useful to other
settings. We have termed it the “walking-to-running” lemma,
since we show that if we have “walking-speed” polarization
(for example, ≈ 2−

3√
N ) at some stage of the process, this

implies “running-speed” polarization (≈ 2−
√
N ) during later

stages. In our setting, the “walking-speed” is guaranteed by
[4, Theorem 1].

Lemma 6 (walking-to-running): Let B1,B2, . . . be i.i.d. uni-
formly distributed Bernoulli random variables. Fix constants
κ ≥ 1, d ≥ 0, γ > 1

2
and mth > 0. Let Z0, Z1, Z2, . . . be a

random process s.t. for all n ≥mth,

Zn+1 ≤
⎧⎪⎪⎨⎪⎪⎩

κNd ⋅Zn + 2−N
γ

if Bn+1 = 0 (‘−’)
κNd ⋅Z2

n + 2−N
γ

if Bn+1 = 1 (‘+’) .
(8)

Fix β ∈ (0, 1
2
), the “running speed” parameter, and ν > 0,

the “walking speed” parameter. For all ϵ′ > 0 there exists a
threshold nth

w = nth
w (ϵ′, β, ν, κ, d, γ,mth) ≥ mth such that if

for some nw ≥ nth
w we are assured “walking speed”:

Znw ≤ 2−(2
nw )ν , (9)

then there exists nth
r = nth

r (ϵ′, β, ν, κ, d, nw) > nw such that
above this threshold, with high probability, we are indefinitely
at “running speed”:

P(Zn < 2−N
β

, ∀n ≥ nth
r ) ≥ 1 − ϵ′ . (10)

V. PROOF OF LEMMA 5
The proof of Lemma 5 will be broken into three conceptual

parts. In the first part, we define the “Guard-Band in Middle”
event, termed GBM. That is, the event that after trimming
the output, it holds that the middle symbol originated from
the outermost guard-band. In the second part, we show that
under GBM, we have a recursive relation for Z similar to the
memoryless case, up to an extra multiplicative factor of 3N

2
,

see (7b). In the third part, we show that the GBM event is



Z =Y∗ ZI Z∆ ZII

imid

ZL ZR

TC TC

Z∗R = Z∗IIZ∗L = Z∗I

Fig. 2. The GBM event.

very likely. That is, the additive penalty of 2−N
2
3 in (7) comes

from bounding the probability that GBM does not occur.

A. The GBM event

In this subsection we define the “Guard-band in Middle”
(GBM) event, related notation, and consequences. Recall from
Section III and Figure 1 that Y∗ = Z = ZI ⊙ Z∆ ⊙ ZII
is the result of passing GI ⊙ G∆ ⊙ GII through the TDC.
The GBM event occurs if Z is not empty and its middle
index imid ≜ ⌊ ∣Z∣+12

⌋, falls within Z∆. That is, GBM occurs
if Zimid originates from the outermost guard-band G∆. The
complementary event is denoted ¬GBM.

We denote the left and right halves of Z = Y∗ as ZL =
(Z1, . . . , Zimid) and ZR = (Zimid+1, . . . , Z∣Z∣), see Figure 2. The
main utility of the GBM event is this (again, see Figure 2):
since Z∆ contains only ‘0’ symbols, under GBM

(ZL)∗ = (ZI)∗ , (11a)
(ZR)∗ = (ZII)∗ . (11b)

That is, under GBM, the simple operation of trimming the two
halves of Y∗ is assured to give us Z∗I ≜ (ZI)∗ and Z∗II ≜ (ZII)∗.
This simple observation will be used in the next subsection in
order to state a recursive relation. We end this subsection by
defining

L0 ≜ ∣Y∗∣ − ∣Z∗I ∣ − ∣Z∗II∣ .

Since Y∗ does not contain leading nor trailing ‘0’ symbols,
L0 equals the sum of the following: the number of trailing ‘0’
symbols in ZI, the length of Z∆, and the number of leading
‘0’ symbols in ZII. Hence,

Y∗ = Z∗I ⊙
L0zÐÐÐÐx

000 . . .00 ⊙Z∗II . (12)

Thus, by (12) and (11):

GBM⇒Y∗ = (ZL)∗⊙
L0zÐÐÐÐx

000 . . .00 ⊙(ZR)∗ . (13)

B. Bounding the Bhattacharyya parameter using GBM

In this subsection, we derive an upper bound on the Bhat-
tacharyya parameter corresponding to an index i. In order to
save space we use the following shorthand in the upcoming
probability expressions: ui−1

1 is short for U i−1
1 = ui−1

1 , z is
short for Y∗ = z, and 0 and 1 are short for Ui = 0 and Ui = 1,

respectively. To illustrate, we use both the long and short
notation in the following expression for the Bhattacharyya
parameter corresponding to index i.

Z(Ui∣U i−1
1 ,Y∗) = ∑

ui−1
1 ,z

¿
ÁÁÀP(Ui = 0, U i−1

1 = ui−1
1 ,Y∗ = z)

× P(Ui = 1, U i−1
1 = ui−1

1 ,Y∗ = z)

= ∑
ui−1
1 ,z

√
P(0, ui−1

1 ,z) ⋅ P(1, ui−1
1 ,z)

By the law of total probability over {GBM,¬GBM}, the
above equals (for n ≥ n0+1, assuring a guard-band was added):

= ∑
ui−1
1 ,z

¿
ÁÁÀ(P(0, ui−1

1 ,z,GBM) + P(0, ui−1
1 ,z,¬GBM))

× (P(1, ui−1
1 ,z,GBM) + P(1, ui−1

1 ,z,¬GBM))

≤ ∑
ui−1
1 ,z

√
P(0, ui−1

1 ,z,GBM) ⋅ P(1, ui−1
1 ,z,GBM) (14a)

+ ∑
ui−1
1 ,z

¿
ÁÁÁÁÀ

P(0, ui−1
1 ,z,GBM)⋅P(1, ui−1

1 ,z,¬GBM)

+ P(0, ui−1
1 ,z,¬GBM)⋅P(1, ui−1

1 ,z,GBM)

+ P(0, ui−1
1 ,z,¬GBM)⋅P(1, ui−1

1 ,z,¬GBM)

(14b)

We will bound both the sum in (14a) and the sum in (14b).
For the sum in (14a), we have:

∑
ui−1
1 ,z

√
P(0, ui−1

1 ,Y∗ = z,GBM) ⋅ P(1, ui−1
1 ,Y∗ = z,GBM)

(13)= ∑
ui−1
1 ,z

¿
ÁÁÀP (0, ui−1

1 ,Z∗L=z
∗
L,Z

∗
R=z

∗
R, L0=∣z∣−∣z

∗
L∣−∣z

∗
R∣,GBM)

× P (1, ui−1
1 ,Z∗L=z

∗
L,Z

∗
R=z

∗
R, L0=∣z∣−∣z

∗
L∣−∣z

∗
R∣,GBM)

(a)=
3
2N

∑
ℓ=1

∑
ui−1
1 ,z∗

L
,z∗

R

¿
ÁÁÀP(0, ui−1

1 ,Z∗L=z
∗
L,Z

∗
R=z

∗
R, L0=ℓ,GBM)

× P(1, ui−1
1 ,Z∗L=z

∗
L,Z

∗
R=z

∗
R, L0=ℓ,GBM)

≤
3
2N

∑
ℓ=1

∑
ui−1
1 ,z∗

L
,z∗

R

¿
ÁÁÀP(0, ui−1

1 ,Z∗L = z∗L,Z∗R = z∗R,GBM)
× P(1, ui−1

1 ,Z∗L = z∗L,Z∗R = z∗R,GBM)

(11)= 3

2
N ⋅ ∑

ui−1
1 ,z∗I ,z

∗
II

¿
ÁÁÀP(0, ui−1

1 ,Z∗I =z∗I ,Z∗II=z∗II,GBM)
× P(1, ui−1

1 ,Z∗I =z∗I ,Z∗II=z∗II,GBM)

≤ 3

2
N ⋅ ∑

ui−1
1 ,z∗I ,z

∗
II

¿
ÁÁÀP(0, ui−1

1 ,Z∗I = z∗I ,Z∗II = z∗II)
× P(1, ui−1

1 ,Z∗I = z∗I ,Z∗II = z∗II)

= 3

2
N ⋅Z(Ui∣U i−1

1 ,Z∗I ,Z
∗
II)

In (a), the length of L0 under GBM is at least 1 (the middle
bit of Y∗ is a GB bit, under GBM), and is at most 3

2
N , since:

L0 ≤ ∣G∣
(i)
≤ ∣X∣ ⋅ (1 + 2−(ξn0+1)

1 − 2−ξ
)

= N ⋅ (1 + 2−(ξn0+1)

1 − 2−ξ
)

(ii)
≤ 3

2
N . (15)

(i) follows from (5) and (6), and by summing all GB lengths
as in [4, Lemma 22]. For (ii), recall that ξ > 0 is a constant
and n0 ≥ mth

0 (ξ). Thus, we take mth
0 large enough such that

(ii) holds.



For the sum in (14b) we have:

∑
ui−1
1 ,z

¿
ÁÁÁÁÀ

P(0, ui−1
1 ,z,GBM) ⋅ P(1, ui−1

1 ,z,¬GBM)
+ P(0, ui−1

1 ,z,¬GBM) ⋅ P(1, ui−1
1 ,z,GBM)

+ P(0, ui−1
1 ,z,¬GBM) ⋅ P(1, ui−1

1 ,z,¬GBM)

= ∑
ui−1
1 ,z

¿
ÁÁÀP(0, ui−1

1 ,z,GBM) ⋅ P(1, ui−1
1 ,z,¬GBM)

+ P(0, ui−1
1 ,z,¬GBM) ⋅ P(1, ui−1

1 ,z)

≤ ∑
ui−1
1 ,z

¿
ÁÁÀP(ui−1

1 ,z) ⋅ P(1, ui−1
1 ,z,¬GBM)

+ P(0, ui−1
1 ,z,¬GBM) ⋅ P(ui−1

1 ,z)

= ∑
ui−1
1 ,z

√
P(ui−1

1 ,z) ⋅ P(ui−1
1 ,z,¬GBM)

= ∑
ui−1
1 ,z

P(ui−1
1 ,z)

√
P(¬GBM∣ui−1

1 ,z)

≤
√
P(¬GBM)

The last inequality follows by the Jensen inequality, applied
to the concave function

√ ⋅ .
Combining the bounds for the two sums in (14) yields

Z(Ui∣U i−1
1 ,Y∗) ≤ 3

2
N ⋅Z(Ui∣U i−1

1 ,Z∗I ,Z
∗
II) +
√
P(¬GBM) .

To complete the proof of (7a), it remains to show that the term√
P(¬GBM) is smaller than 2−N

2
3 , for large enough n and

n0. This will be shown in the next subsection. Lastly, since
Z∗I and Z∗II are i.i.d., the second inequality in our lemma, (7b),
is a direct consequence of [3, Proposition 5].

C. The GBM event occurs with high probability

In this section we show that there exist mth
0 (ξ) and

mth(ξ, δ) such that for n0 ≥ mth
0 and n ≥ max{mth, n0 + 1}

we have √
P(¬GBM) ≤ 2−N

2
3
. (16)

Proving this proves Lemma 5: for it, we take mth(ξ, δ) equal
to the one developed in this subsection and take mth

0 to be the
maximum of the mth

0 appearing in the previous subsection and
this subsection.

The proof follows from a strengthening of [4, Lemma 23].
That is, we show that there exist thresholds mth

0 , mth and a
constant θ > 0 such that

P(¬GBM) < 2−θ⋅2
(1−2ξ)n

, (17)

for all n0 ≥mth
0 and n ≥max{mth, n0+1}. Thus, if we require

that the constant ξ satisfy ξ ∈ (0, 1
6
), standard manipulations

yield (16), for large enough n.
In [4, Lemma 23], the RHS of (17) is weaker: n is replaced

by n0. For lack of space, we only give an outline of the differ-
ences between our proof of (17) and the proof of the weaker
claim in [4, Lemma 23]. The main difference lies in bounding
the probability that too much of ZI is lost due to trimming.
That is, event A′ in [4, Lemma 23, Subsection VII.C]. The
weaker result follows by showing that the probability of a
certain prefix of the leftmost block being completely lost due
to trimming and deletion is upper bounded by a term that

decays exponentially with N0, the length of the block. In
our proof, we show that for any prefix of G, the number
of block symbols is always greater than the number of guard-
band symbols. Thus, the probability of such a prefix being
lost due to deletion and trimming decays exponentially with
its length. The stronger bound then follows by taking the prefix
length to be proportional to N , as opposed to N0.

VI. PROOF OUTLINE FOR OUR MAIN THEOREM

The proof of Theorem 1 follows by combining Theorem 3,
Remark 4, Lemma 5, and Lemma 6. In essence, relabel the n
in Theorem 3 as ñ and take ϵ′ = ϵ

3
. Next, fix ν ∈ (0, 1

3
) and

take ñ large enough so that (3) and (4) hold, with Y∗ in place
of Y, for a fraction of at least I − ϵ′ = I − ϵ

3
indices. Recall

that this dictates n0 = ⌊νñ⌋ by Theorem 3. Furthermore, take
ñ large enough such that n0 > mth

0 and ñ > mth, where the
right-hand sides are given in Lemma 5. We also take ñ large
enough such that N

Λ
= ∣X∣∣G∣ > 1 − ϵ, which is possible by (15).

We now show that if we take ñ ≥ nth
w , then

Z(Ui∣U i−1
1 ,Y)

(a)
≤ Z(Ui∣U i−1

1 ,Y∗)
(b)
≤ 2−N

β

for at least (I − ϵ
3
) − ϵ

3
= I − 2ϵ

3
of the indices as n → ∞.

The inequality (a) results from the TDC being a degradation
of the deletion channel. That is, X −Y −Y∗ form a Markov
chain in that order. Inequality (b) indeed holds for the above
fraction of indices by Lemma 6. That is, the B1, . . . ,Bn in
Lemma 6 correspond to the index bits b1, . . . , bn of i, the
Zn process is set to Z(Ui∣U i−1

1 ,Y∗) and recall that ñ ≥ nth
w .

Notice (8) is satisfied by Lemma 5 (κ = 3, d = 1 and γ = 2
3

)
and condition (9) is satisfied from (3) for a fraction of at least
I − ϵ

3
indices. We have proven (1) from Theorem 1, i.e. the

strong polarization of the Bhattacharyya parameter. The proof
of (2) follows along the same lines as that of (4), and will be
given in the full version. In total, both (1) and (2) are satisfied
for at least I − ϵ of the indices, as n→∞.

VII. CODING SCHEME AND COMPLEXITY

Our encoder is the same as that in [4], where we only
differ in the selection of n0, i.e. the step from which we start
adding guard-bands. Still, the encoding complexity remains
O(Λ logΛ) for a codeword length of ∣G∣ = Λ.

Our decoder is essentially the one described in [4, Subsec-
tion IV]. That is, a base trellis is constructed, and then ‘−’ and
‘+’ operations are applied to it. One major difference is that
in our case, the base trellis corresponds to all of the received
word. This is in contrast to [4], in which N/N0 base trellises
are constructed — one for each block. Since we operate on
a larger trellis, our complexity is O(Λ4), as opposed to at
most O(Λ2) in [4]. As explained in Theorem 1, this added
complexity is compensated for by a reduced probability of
error. That is, we reach the same asymptotic bound as [14].

Note that in our analysis, we’ve analyzed the probability of
the middle index falling within the outermost guard-band (the
GBM event). This was important in order to prove Theorem 1.
However, as opposed to [4], no corresponding operation of
partitioning the output is carried out by the decoder.
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APPENDIX A
DECODER

As in [4], we will use a trellis T to represent the joint prob-
ability of the deletion channel input and output. For simplicity
of exposition and lack of space, we describe the memoryless
input case here. We perform ‘−’ and ‘+’ operations on T ,
which merge two-edge paths in T and result in trellises with
half the number of sections: T [0] and T [1], respectively. A
pair/triplet of sections will be referred to as a sub-trellis sT .
After a ‘−’ or ‘+’ transform, each sT is merged into one
section. Our decoder will differ from that of [4, Section IV] in
one main point: we incorporate the probabilities of the GB bits
into our trellis T . That is, T is one big trellis encompassing
all of Y.

The decoder recursively performs ‘−’ and ‘+’ transforma-
tions on T as follows. First, we perform n ‘−’ transforms,
creating T [000...00]. We consider the two single-edge paths
from the left upper vertex to the right bottom vertex, which
represent the two possible values for Û0. The decision on Û0

(if it is not frozen) is by the most probable value, i.e. the
edge with the largest probability. Using Û0, we next create:

T
nzÐÐÐÐÐx

[000...01] =
⎛
⎝
T

n−1zÐÐÐÐx
[000...0]⎞

⎠

[1]

. We use T [000...01] to decide on

Û1. We repeat this procedure such that with trellis T [b0b1...bn]
we decide on the value of Ûi(b1,...,bn) (if it is not frozen). See
Figure 3 for an illustration of the decoding process.

T
T [0]−

T
T [1]

+

T [00]
T [01]
T [10]
T [11]

.....

T [000...00] decide Û0

T [000...01] decide Û1

T [111...10] decide ÛN−2

T [111...11] decide ÛN−1

..
.

..
..
.

trellis polarization depth

j
0 n − 11 n − 22 n − 3

Fig. 3. Recursive trellis transforms.

For an input distribution with ∣S ∣ states, the complexity of
our decoder is bounded by

n−1
∑
j=0

2j+1
±

(a)

⋅8N ∣S ∣3(2j + 1)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(b)

⋅ 2n−j
±

(c)

∈ O(N4)

where j is the trellis polarization depth (i.e. the number of ‘+’
or ‘−’ transforms performed on T ). (a) is the number of times
we return to the trellises of depth j. (b) bounds the number of
calculations on each sub-trellis of a given trellis of depth j.
(c) is the number of sub-trellises in a trellis of depth j. Note
that we think of ∣S ∣ as a constant.

In the first n0 in polarization steps on T , the ‘−’ and ‘+’
transformations are as defined in [4, Definitions 5,6]. We refer
to this as the ‘without GB’ phase. Next, we merge all paths in

the GB locations in the trellis, such that each GB is merged
into one section. In the following n1 transforms, referred to
as the ‘with GB’ transforms, each sT includes a GB section
between two non-guard-band sections. Thus, we first merge
the two-edge paths in the left section and the GB section.
This results in a two-section sT , as in the ‘without GB’ case.
We may now perform the ‘−’ or ‘+’ transformation as before.
See Fig. 4 for an illustration.

X(1) X(2) X(3) X(4)GB GB GB

Y

T

N0 ℓn0+1
N0 ℓn0+2

N0 ℓn0+1
N0

Perform n0 ‘without GB’ transforms, and
merge paths in GB locations:

a b c d e f g

T [b0...bn0
]

sT sT

1 1 1 1 1 1 1

Perform ‘with GB’ transform:
Step 1: in each sub trellis sT , merge two-edge
paths in the left section and GB section:
(a merge b, e merge f)

a
b c d

e
f

g

sT sT

1 1 1 1 1

Step 2: in each sub trellis sT , merge two-edge
paths as in the ‘without GB’ transform:
(a b merge c, e f merge g)

a
b
c

d
e
f
g

T [b0...bn0+1]

1 1 1

Fig. 4. Trellis evolution in the decoder.

APPENDIX B
HIGH PROBABILITY OF GBM – PROOF SKETCH

We state and prove the following Lemma, as a supplemen-
tary reading for Subsection V-C. This lemma states that the
GBM event, i.e. the event where the middle bit in the TDC
output is a GB bit, occurs with high probability.

Lemma 7 (Upper bounding
√
P(¬GBM)): Let X be of

length N = 2n and drawn as described in Lemma 5. Let Y∗ be
the TDC output for input g(X, n0, ξ). Let GBM be the event
defined in Subsection V-A. For a fixed deletion rate δ ∈ (0,1)
and a guard-band length parameter 0 < ξ < 1

6
used in (6),

there exists an mth(ξ, δ), which is a function of the input
distribution as well, such that:

√
P(¬GBM) ≤ 2−N

2
3

for all n ≥mth(ξ, δ) and n0 ≥mth
0 (ξ) = log2−ξ( 1−2

−ξ
2
).



Proof: As mentioned previously, the proof resembles the
steps taken in the proof of [4, Lemma 23]. We define the
following length differences due to channel deletion:

α = ∣GI∣ − ∣YI∣
β = ∣G∆∣ − ∣Y∆∣
γ = ∣GII∣ − ∣YII∣ ,

(18a)

and the following length differences due to trimming:

α′ = ∣YI∣ − ∣ZI∣
β′ = ∣Y∆∣ − ∣Z∆∣
γ′ = ∣YII∣ − ∣ZII∣ .

(18b)

We observe the event: A ∩ A′ ∩ B ∩ B′ ∩ C ∩ C ′, where
A,B,C are events constraining the number of deletions in
GI,G∆,GII, and A′,B′,C ′ are events constraining the num-
ber of bits trimmed in YI,Y∆,YII. These events will be
defined explicitly in a moment, but first, the main property
of these events is:

A ∩A′ ∩B′ ∩B ∩C ∩C ′ ⇒ GBM .

That is, under all of the events A,A′,B,B′,C,C ′ we are under
the GBM event. The justification of this property will soon
be given in (21).

We define:

A = {δ∣GI∣ − ℓ̂ < α < δ∣GI∣ + ℓ̂} (19a)
A′ = {0 ≤ α′ < ℓ̂} (19b)
B = {β < δ∣G∆∣ + ℓ̂} (19c)
B′ = {β′ = 0} (19d)
C = {δ∣GII∣ − ℓ̂ < γ < δ∣GII∣ + ℓ̂} (19e)
C ′ = {0 ≤ γ′ < ℓ̂} (19f)

where ℓ̂ is some length which is chosen such that not all of
the GB will be removed under event B. Specifically we select:

ℓ̂ = 1 − δ

4
ℓn (20)

For this selection, we notice that under the event A ∩ C, the
deletions in GI,GII are less than 1+δ

2
∣GI∣ of the bits. Also,

under A′∩C ′ we will trim less than
1−δ
2
∣GI∣ bits from ZI,ZII.

Thus, under A∩A′∩C ∩C ′, we stop the trimming of Y prior
to the received GB bits in Y∆. We get: A∩A′∩C ∩C ′ ⇒ B′.
Next, we notice:

{A ∩A′ ∩B ∩C ∩C ′}
⇔ {A ∩A′ ∩B ∩B′ ∩C ∩C ′}
(a)⊂ { α + α′ < γ + γ′ + ℓn − β

and γ + γ′ < α + α′ + ℓn − β
}

(18)⇔ {∣ZI∣ < ∣Z∆∣ + ∣ZII∣ and ∣ZII∣ < ∣Z∆∣ + ∣ZI∣}
⇔ GBM

(21)

(a) holds since under the event A ∩A′ ∩B ∩B′ ∩C ∩C ′,

γ + γ′ + ℓn − β
(19c),(19e),(19f)

> δ∣GII∣ − ℓ̂ + 0 + ℓn − δℓn − ℓ̂
(20)= δ∣GII∣ − ℓ̂ + 4ℓ̂ − ℓ̂

= δ∣GII∣ + 2ℓ̂
(19a),(19b)
> α + α′.

and γ + γ′ < α + α′ + ℓn − β by the same steps.
From (21) we get: P(GBM) ≥ P(A∩A′ ∩B ∩C ∩C ′). We

are interested in the complementary event, which will satisfy:

P(¬GBM) ≤ P(¬{A ∩A′ ∩B ∩C ∩C ′})
(a)
≤ P(¬A) + P(¬A′) + P(¬B) + P(¬C) + P(¬C ′)
(b)= 2P(¬A) + 2P(¬A′) + P(¬B)

(a) is by the union bound and (b) results from the symmetry
between events A,A′ and C,C ′ respectively, by (19).

P(¬A) and P(¬B) may be bounded using Hoeffding [16,
Theorem 4.12], as in [4, equations (89),(90)]. In Lemma 8 we
bound P(¬A′). In total, we reach the following upper bound
for P(¬GBM):

P(¬GBM) ≤ 2P(¬A) + 2P(¬A′) + P(¬B)

≤ 2 ⋅ 2e−
(1−δ)2
128 2(1−2ξ)n

+ 2 ⋅ e−D⋅2
(1−ξ)n

+ 2e−
(1−δ)2

32 2(1−ξ)n ,

where D > 0 is a constant dependent on the input distribution
and on the deletion rate δ. The value of D is given explicitly
in the proof of Lemma 8. We note that when bounding P(A′)
we used the fact that n0 ≥ mth

0 (ξ) ≥ log2−ξ( 1−2
−ξ

2
), and the

qualities of the input distribution we fixed.
Finally, for 0 < ξ < 1

6
and for a large enough n:

P(¬GBM) ≤ 8e−
(1−δ)2
128 2(1−2ξ)n≤2−2⋅N

2
3

specifically, this holds for:

n ≥mth(ξ, δ) ≜max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ξ
log2 (

(1−δ)2
128⋅D ),

1
1−2ξ log2 (

128⋅log2(5)
(1−δ)2(log2(e)−1)

),
1

1−2ξ− 2
3

log2 ( 128⋅2
(1−δ)2 )

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

A. Bounding the probability of event ¬A′

The following lemma is used for the proof of Lemma 7. In
this lemma we develop a bound on P(¬A′), the probability
that ‘too many’ bits were trimmed in YI. The bound we reach
decays with n (in contrast to the weaker bound in [4, equation
(94)] which decays with n0).

Lemma 8 (Upper bounding P(¬A′)): Let A′ be as in (19b),
and let mth

0 (ξ) ≥ log2−ξ( 1−2
−ξ

2
). Then, for n0 ≥mth

0 (ξ):

P(¬A′) ≤ e−D⋅2
(1−ξ)n

where D > 0 is a constant dependent on the input distribution
and on the deletion rate δ.

Proof: We consider the event A′′, defined as follows.
Under the event A′′, some index j < ℓ̂ in GI is a ‘1’ and
was not deleted (where ℓ̂ was set in (20)). Clearly: A′′ ⇒ A′,
hence,

P(¬A′) ≤ P(¬A′′) .



¬A′′ is the complementary event where no index j < ℓ̂ in GI
is a ‘1’ that was not deleted.

We denote #j
X as the number of bits to the left of index j

in g(X, n0, ξ) that originate from X, and denote #j
GB as the

number of GB bits to the left of index j. For n0 ≥mth
0 (ξ):

#j
X ≥#

j
GB, ∀j ∈ {1,2, . . . ,Λ} . (22)

That is, there are more bits from X than GB bits, for any
prefix of G. The proof of (22) is given in Lemma 9. The
proof follows from the recursive manner in which the GBs

are added and by ∣G∣
(15)
≤ ∣X∣(1 + 2−(ξn0+1)

1−2−ξ ) holding in each
recursive step.

By (22), there are at least j
2

bits from X prior to index j
in G, i.e.:

#j
X ≥

j

2
. (23)

For the case of X distributed according to a regular Markov
input distribution with states S, which we assumed is not
degenerate, there exists an integer τ > 0 and a probability
0 < p0 < 1 s.t. for any state s ∈ S:

P((X1,X2, . . . ,Xτ) = (0,0, . . . ,0)∣S0 = s) < p0 . (24)

That is, the probability of a ‘1’ bit in a series of τ bits in
X is greater than 1−p0. For each τ bits in X, the probability
of at least one of them being a ‘1’ bit that was not deleted in
the channel is greater than:

(1 − p0)(1 − δ) .

There are ⌊#ℓ̂
X/τ⌋ series of X bits (of length τ ) up to index

ℓ̂. Thus, by the Markov property:

P(¬A
′′
) ≤ (1 − (1 − p0)(1 − δ))⌊#

ℓ̂
X/τ⌋

(23)
≤ (p0(1 − δ) + δ)⌊ℓ̂/2τ⌋

We continue to upper bound the RHS from above:

(20)= (p0(1 − δ) + δ)⌊
(1−δ)ℓn

8τ ⌋

≤ (p0(1 − δ) + δ)
(1−δ)ℓn

16τ

(6)
≤ (p0(1 − δ) + δ) 1−δ

16τ 2(1−ξ)(n−1)−1

= (p0(1 − δ) + δ)
1−δ

32τ ⋅2(1−ξ) 2
(1−ξ)n

≤ (p0(1 − δ) + δ) 1−δ
32⋅2τ 2(1−ξ)n

= e−
1
2τ ln( 1

p0(1−δ)+δ )
1−δ
32 2(1−ξ)n

We mark: D ≜ 1
2τ

ln( 1
p0(1−δ)+δ)

1−δ
32

, where τ, p0 satisfy
(24). We note that D > 0, since 0 < p0(1 − δ) + δ < 1.

Finally,

P(¬A′) ≤ P(¬A′) ≤ e−D⋅2
(1−ξ)n

B. Guard-band presence in g(X)
To show (22), we state and prove the following lemma.
Lemma 9: If n0 ≥ log2−ξ( 1−2

−ξ
2
), then for any n ≥ n0 + 1

and for any given index j in g(X, n0, ξ),

#j
X ≥#

j
GB .

where #j
X is the number of X bits in the prefix up to j in

g(X, n0, ξ), and #j
GB is the number of GB bits up to j.

Proof: We divide our proof to three claims.
Claim B.1: We assume there exists an index j0 for which

our lemma does not hold, i.e. #j0
X < #

j0
GB. Then, there must

exist some index j1 which is located at the right edge of
some guard-band that also does not satisfy the lemma, i.e.
#j1

X <#
j1
GB.

Proof: If j0 is an index of a GB bit, we may continue to
the right edge of the GB containing j0, making the rightmost
index of this GB the desired j1. This j1 satisfies:

#j1
X =#

j0
X <#

j0
GB ≤#

j1
GB .

If j0 is an index of an X bit, we may continue to the left
edge of the block of X containing j0, making the rightmost
index of the GB to the left of this block the desired j1. This
j1 satisfies:

#j1
X <#

j0
X <#

j0
GB =#

j1
GB .

Claim B.2: We define index jmid as the rightmost index of
the middle GB of g(X). We remind that g(X) is created from
N1 = 2n1 blocks of data, each block of length N0 = 2n0 .

If, #jmid

X ≥#jmid

GB for all n1, then,

#j
X ≥#

j
GB

for any index j in g(X).
Proof: We name the series of bits leading to jmid, where

g(X) was generated according to a given n0 and n1, as:

(n1, n0)ser
For a general n1, the full g(X) will be the concatenation:

(n1, n0)ser ⊙ (n1 − 1, n0)ser ⊙ . . .⊙ (2, n0)ser ⊙ (1, n0)ser ⊙X(N1) .

See example below, for g(X) = (2, n0)ser⊙(1, n0)ser⊙X(4).

X(1) 00...0 X(2) 00........0 X(3) 00...0 X(4)

j1

jmid

j1 j1

(2, n0)ser (1, n0)ser

We notice the following quality. For each index j1 located
at the right edge of some guard-band in g(X), the series of
bits to the left of j1 are concatenations of the building-blocks:

{(i, n0)ser}i∈J
where J is some subset of {1,2, . . . , n1}.



Therefore, if #jmid

X ≥#jmid

GB is satisfied for any n1, then each
building-block (n1, n0)ser consists of more (or equal) bits of
X than GB bits, leading to:

#j1
X ≥#

j1
GB ,

for any rightmost index j1 of a GB in g(X). By Claim B.1,
this leads to: #j

X ≥#
j
GB ∀j ∈ {1, . . . ,Λ}.

Claim B.3: For any n1, #jmid

X ≥#jmid

GB .
Proof: In the series of bits up to jmid, there are half of

the bits of X:
#jmid

X = 1

2
∣X∣ = 2n−1 (25)

Also, up to jmid, there are half of the GB bits of g(X), plus
the additional bits from the middle GB:

#jmid

GB =
1

2
(Λ −N) + 1

2
ℓn (26)

The total number of GB bits satisfies:
∣g(X)∣ − ∣X∣ = Λ −N

(15)
≤ 2n ⋅ ( 2−(ξn0+1)

1−2−ξ )
≤ 2n ⋅ ( 2−ξn0

1−2−ξ )
(27)

where the last inequality holds since 2−ξ ∈ (0,1) for ξ > 0.
The length of the middle GB satisfies:

ℓn
(6)
≤ 2(1−ξ)(n−1) ≤ 2n−1 ⋅ 2−ξn0 , (28)

where the last inequality is by n ≥ n0 + 1. Thus,

#jmid

X

(25)= 2n−1

(a)
≥ 1

2
⋅ 2n ⋅ ( 2−ξn0

1−2−ξ ) + 2n−1 ⋅ 2−ξn0

(27),(28)
≥ 1

2
(Λ −N) + ℓn

(26)
≥ #jmid

GB

(29)

where (a) is satisfied for n0 ≥ log2−ξ( 1−2
−ξ

2
) and any ξ > 0.

By combining the results from Claims B.2 and B.3, we have
proven the Lemma.

APPENDIX C
PROOF SKETCH OF THE WALKING-TO-RUNNING LEMMA

We now prove Lemma 6.
Proof: We will assume WLOG that ν ∈ (0, 1

3
). For

example, set ν ∶= min{ν, 1
4
}, and note that if (9) holds for

the “old" value of ν, then it surely holds for the “new" value
as well.

Let us first define the process Z̄n as:

Z̄n+1= 2 ⋅ κNd
⎧⎪⎪⎨⎪⎪⎩

Z̄n if Bn+1 = 0 (‘−’)
Z̄2
n if Bn+1 = 1 (‘+’)

, n ≥ nw (30a)

Z̄nw= 2−(2
nw )ν (30b)

This process is defined from some starting point nw ≥ nth
w ,

where nth
w is a parameter that will be fixed later on. Note that

the process Z̄n is “simpler" than Zn: the inequalities in (8)
and (9) have been replaced by equalities, and the additive term

2−N
γ

in (8) has been removed from (30a). The price we pay
for this simplification is a multiplicative factor of 2.

Let nth
r > nw be a parameter that will be fixed later on as

well. We now fix γa and νb such that,

1

2
<γa< γ (31a)

0 <νb< ν <
1

3
(31b)

We define the following events for the processes Zn, Z̄n:

Σa ≜ {Z̄n ≥ 2−N
γa

, ∀n ≥ nw} (32a)

Σb ≜ {Z̄n ≤ 2−N
νb
, ∀n ≥ nw} (32b)

Σc ≜ {Z̄n <
1

2N
2−N

β

, ∀n ≥ nth
r } (32c)

Σd ≜ {Zn ≤ Z̄n, ∀n ≥ nw} (32d)

The first three events discuss bounds concerning the new
process Z̄n, and the forth discusses a relation between Z̄n

and the original process Zn. For the events above we list the
following claims:

Claim C.1: For all ϵa > 0 there exists an nth
aI
(ϵa, ν, κ, d, γa)

s.t. if nw ≥ nth
aI

, then:

P(Σa) > 1 − ϵa (33)

Claim C.2: For all ϵb > 0 there exists an nth
bI
(ϵb, ν, κ, d, νb)

s.t. if nw ≥ nth
bI

, then:

P(Σb) > 1 − ϵb (34)

Claim C.3: For all ϵc > 0 there exist nth
cI
(β,κ, d, νb) and

nth
cII
(β, ϵc, nw, κ, d, νb) s.t. if nw ≥ nth

cI
, nth

r > nth
cII

and nth
r >

nw, then:
P(Σc) > 1 − ϵc − P(¬Σb) (35)

Claim C.4: There exists an nth
dI
(γ, γa) s.t. if nw ≥ nth

dI
and

if Z̄nw ≥ Znw , then event Σa implies Σd, i.e.:

Z̄nw ≥ Znw ⇒ P(Σd∣Σa) = 1 (36)

The proof for Claims C.1–C.3 is briefly discussed in the
following subsection. The proof of Claim C.4 is given in
Subsection C-B. We set:

ϵa = ϵb = ϵc =
ϵ′

3
(37)

We also set the starting point:

nw ≥ nth
w ≜max{nth

aI
, nth

bI
, nth

cI
, nth

dI
,mth} (38)

and set:
nth
r ≜max{nth

cII
, nw + 1} (39)

Notice that if Znw satisfies (9), then by (30b), Z̄nw ≥ Znw .
Using the four claims above, we can bound the probabilities

of events Σc,Σd. For Σc, we have:

P(Σc)
(a)
> 1 − ϵc − P(¬Σb)
(b)
> 1 − ϵc − ϵb

(40)



Where in (a) we applied (35) from Claim C.3, and in (b)
we applied (34) from Claim C.2, since their conditions are
satisfied by our selection of nw and nth

r in (38) and (39).
We next note that:

P(Σd) ≥ P(Σd∣Σa) ⋅ P(Σd)
(a)
> 1 ⋅ (1 − ϵa) = 1 − ϵa

(41)

In (a) we applied (33) from Claim C.1, and (36) from Claim
C.4, since their conditions are satisfied by our selection of nw

in (38), and by (9) and (30b).
By inspection, the intersection of Σc and Σd implies the

event in (10). Thus,

P(Zn <
1

2N
2−N

β

, ∀n ≥ nth
r )

≥ P({Z̄n <
1

2N
2−N

β

, ∀n ≥ nth
r }⋂{Zn ≤ Z̄n, ∀n ≥ nw})

= P(Σc ∩Σd)
= 1 − P(¬Σc ∪ ¬Σd)
In the last equality we denoted events ¬Σc,¬Σd as the
complementary events of Σc,Σd respectively.

We now upper bound P(¬Σc ∪ ¬Σd):
P(¬Σc ∪ ¬Σd) ≤ P(¬Σc) + P(¬Σd)

(40),(41)
< ϵa + ϵb + ϵc

(37)= ϵ′

Thus:

P(Zn <
1

2N
2−N

β

, ∀n ≥ nth
r ) ≥ P(Σc ∩Σd) ≥ 1 − ϵ′

A. High-level discussion on the proof of claims C.1–C.3
The proofs of Claims C.1 and C.2 are similar and will

be given in the full version. For now, we give an outline of
the main steps. The first step is setting some threshold ∆th

for which Hoeffding [16, Theorem 4.12] assures us that the
fraction of {Bi+1}ni=nw

which are 0 (‘−’) and the fraction of
{Bi+1}ni=nw

which are 1 (‘+’) are both close to half, for all
n ≥ nw + ∆th. When this occurs, we can derive the “soft”
bounds in (32a) and (32b) for all n ≥ nw +∆th. For the initial
period of nw ≤ n ≤ nw + ∆th, we use the initial condition
(30b) and take a large enough nw to set a “low enough”
starting point. The low starting point promises we will not
cross the “soft” bounds during the initial period, even for the
most problematic cases (which we can prove are when only
‘+’ or only ‘−’ are drawn).

The proof of Claim C.3 will also be given in the full version.
The main step in the proof is using event Σb in order to replace
Zn in (30a) with the bound from (32b). This leads to a bound
on Z̄n+1, which, given Bn+1, is a deterministic function of
n. Since Z̄n is bounded by 2−2

νbn , the multiplicative factor
of 2 ⋅ κNd is neglectable for a large enough n. That is, the
function of n bounding Z̄n+1 is monotonically decreasing for
a large enough n. Next, using Hoeffding [16, Theorem 4.14]
once more, we complete the proof for Claim C.3.

B. Proof of Claim C.4

Proof: We define processes Z
′
n, Z

′′
n which will assists us

in proving the claim. First, Z
′
n is defined to be:

Z
′
n+1 =

⎧⎪⎪⎨⎪⎪⎩

κNd ⋅Z ′
n + 2−2

γn

if Bn+1 = 0 (‘−’)

κNd ⋅Z ′
n

2
+ 2−2

γn

if Bn+1 = 1 (‘+’)
, n ≥ nw

Z
′
nw
= Znw

i.e. Zn from (8), with the weak inequality replaced by equality.
By the monotinicity of the terms in (8) and the above, we
easily prove by induction that: Zn ≤ Z

′
n, ∀n ≥ nw.

Next, Z
′′
n is set to be:

Z
′′
n+1=

⎧⎪⎪⎨⎪⎪⎩

κNd ⋅Z ′′
n + 2−2

γn

if Bn+1 = 0 (‘−’)

κNd ⋅Z ′′
n

2
+ 2−2

γn

if Bn+1 = 1 (‘+’)
, n ≥ nw

Z
′′
nw
= 2−(2

nw )ν (42)

For any given draw of Bnw , . . . ,Bn, the processes Z
′
n, Z

′′
n go

through the same transformations, and the only difference is
that the starting point of Z

′′
n is at a higher value, by (9). Again,

by monotinicity we prove by induction that Z
′
n ≤ Z

′′
n, ∀n ≥

nw. Next, we prove that under event Σa from (32a), Z̄n of
(30) dominates Z

′′
n. That is,

Σa ⇒ Z
′′
n ≤ Z̄n, ∀n ≥ nw .

Under Σa: Z̄n ≥ 2−N
γa
, ∀n ≥ nw. Since γa

(31a)
< γ, for n ≥

nth
dI
(γ, γa) ≜ 1

γ−γa
we get γn ≥ γan+1. Meaning Z̄n satisfies:

κNd ⋅ Z̄n ≥ Z̄n ≥ 2−2
γan ≥ 2−2γn

κNd ⋅ Z̄2
n ≥ Z̄2

n ≥ 2−2
γan+1 ≥ 2−2γn (43)

If we assume Z̄n ≥ Z
′′
n, then Z̄n+1 ≥ Z

′′
n+1(regardless of Bn+1),

since:

Z̄n+1 =
⎧⎪⎪⎨⎪⎪⎩

κNd ⋅ Z̄n + κNd ⋅ Z̄n if Bn+1 = 0 (‘−’)
κNd ⋅ Z̄2

n + κNd ⋅ Z̄2
n if Bn+1 = 1 (‘+’)

, n ≥ nw

(43)
≥
⎧⎪⎪⎨⎪⎪⎩

κNd ⋅ Z̄n + 2−2
γn

if Bn+1 = 0 (‘−’)
κNd ⋅ Z̄2

n + 2−2
γn

if Bn+1 = 1 (‘+’)
, n ≥ nw

(a)
≥
⎧⎪⎪⎨⎪⎪⎩

κNd ⋅Z ′′
n + 2−2

γn

if Bn+1 = 0 (‘−’)

κNd ⋅Z ′′
n

2
+ 2−2

γn

if Bn+1 = 1 (‘+’)
, n ≥ nw

= Z
′′
n+1

where (a) holds under the hypothesis that Z̄n ≥ Z
′′
n.

We remind that: Z̄nw

(30b)= 2−(2
nw )ν (42)= Z

′′
nw

. That is, Z
′′
n, Z̄n

begin at the same value. Thus, we may show by induction that
under Σa, Z̄n ≥ Z

′′
n, ∀n ≥ nw. We have shown:

Zn ≤ Z
′
n ≤ Z

′′
n ≤ Z̄n, ∀n ≥ nw .


