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Abstract—Consider a polar code designed for some binary
memoryless symmetric channel. We develop a lower bound on
the probability of error of this polar code under successive-
cancellation decoding. The bound exploits the correlation between
the various codeword bits and improves upon existing lower
bounds.
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I. INTRODUCTION

Polar codes [1] achieve capacity on binary memoryless
symmetric (BMS) channels with low-complexity construction,
encoding, and decoding algorithms. Their error probability
is given by a union of correlated events. The union bound,
which ignores this correlation, is used to upper-bound the error
probability. In this work, we exploit this correlation to develop
a corresponding lower bound for any BMS channel.

The polar construction iteratively transforms N = 2n

identical and independent channel uses into a set of correlated
synthetic channels. Synthetic channel Wi has input ui and
output yN1 , u

i−1
1 , and assumes that the input bits of future

channels are uniform. As N → ∞ the synthetic channels
polarize into “good” (almost noiseless) and “bad” (almost
pure noise) channels. By determining which synthetic channels
are “good” and which are “bad”, one designs a polar code.
Information is transmitted over the “good” synthetic channels
and predetermined values over the “bad” synthetic channels.
Since their values are predetermined, we call the “bad”
synthetic channels frozen.

Decoding is accomplished via the successive-cancellation
(SC) decoder, which decodes the synthetic channels in suc-
cession using previous bit decisions. Decision for a synthetic
channel is either based on its likelihood or, if it is frozen, on
its predetermined value. Previous bit decisions are assumed to
be correct for non-frozen synthetic channels.

A genie-aided SC decoder has access to true values of
previous input bits. The performance of polar codes under
either SC or genie-aided SC decoding is identical [2, Lemma
1]. Henceforth, we assume a genie-aided SC decoder. Its
probability of error is given by P

{⋃
i∈A Ei

}
, where Ei denotes

the event that channel Wi errs given that a genie had revealed
to it the true previous bits.

The events Ei are correlated. Using the union bound,
P
{⋃

i∈A Ei

}
≤
∑

i∈A P {Ei}, Arıkan showed that polar
codes achieve capacity [1]. To assess the tightness of this

upper bound, we develop a lower bound on P
{⋃

i∈A Ei

}
.

A trivial lower bound is P
{⋃

i∈A Ei

}
≥ maxi∈A P {Ei}.

Tighter lower bounds may be obtained by considering pairs of
error events: P

{⋃
i∈A Ei

}
≥ maxi,j∈A P {Ei ∪ Ej}. A further

improvement combines multiple pairs of error events [3]:

P

{⋃
i∈A

Ei

}
≥
∑
i∈A

P {Ei} −
∑

i,j∈A, i<j

P {Ei ∩ Ej} , (1)

which can also be cast in terms of unions of error events using
P {Ei ∩ Ej} = P {Ei}+ P {Ej} − P {Ei ∪ Ej}.

Computing probabilities of unions of error events requires
the joint distribution of two synthetic channels. The size of
the joint distribution’s output alphabet is the product of each
synthetic channel’s alphabet size. A side effect of polarization
is an exponential increase in output alphabet size, rendering
the joint distributions infeasible to store. One remedy is to
approximate the joint distribution.

Previous attempts at a lower bound [2], [4] were also based
on (1). In [2], a density evolution approach was proposed. Due
to increasing alphabet size, practical implementation of density
evolution must involve quantization [5, Appendix B]. The
probability of error derived from quantized joint distributions
approximates, but does not generally bound, the real probability
of error (except for the BEC, for which, as noted and analyzed
in [2], no quantization is needed). In [4], the focus was the
BEC. By tracking the joint probability of erasure the authors
were able to show that the union bound is asymptotically tight
for a BEC.

In this work, we develop an algorithm to compute lower
bounds on the joint probability of error of two synthetic
channels. Our technique applies to synthetic channels that
are polar descendants of any BMS channel. Using (1), we
lower-bound the probability of error of polar codes. For the
BEC, our bounds recover the results of [2] and [4].

Our method is based on approximating the joint distribution
by a stochastically upgraded joint distribution with a smaller
output alphabet. However, key ideas that hold for a single
channel no longer apply to joint distributions. For example, a
degrading operation on a joint distribution may improve the
performance of an SC decoder. Therefore, we develop methods
that in one sense decouple the two synthetic channels yet in
another sense couple them even further.



Due to space limitations, this paper contains an outline of the
algorithm and statement of the results. A detailed presentation,
complete with proofs, appears in the full version of the paper,
available online [6].

A. Notation

We denote by ykj = yj , yj+1, . . . , yk for j < k. For a logical
expression expr, JexprK is 0 whenever expr is not true and
is 1 otherwise.

II. PRELIMINARIES

A. Degradation and Upgradation

Channel W (y|u) is (stochastically) degraded with respect
to Q(z|u), denoted W 4 Q, when there exists channel P (y|z)
such that W (y|u) =

∑
z P (y|z)Q(z|u). If W is degraded

with respect to Q, then Q is upgraded with respect to W .
Degradation implies error probability ordering under optimal
decoding [5, Chapter 4]: if W 4 Q then Pe(W ) ≥ Pe(Q).

The output alphabets of Q and W may differ. In [7],
methods of upgrading a BMS channel and reducing its output
alphabet were introduced. These methods do not apply to joint
distributions.

B. Joint Distribution of Two Synthetic Channels

Let W be a BMS channel that undergoes n polarization
steps. Let a and b, b > a, be indices of two synthetic
channels, Wa(ya|ua) and Wb(yb|ub), respectively, where
ya = (yN1 , u

a−1
1 ), yb = (yN1 , u

b−1
1 ), and N = 2n. We

respectively call the channels the a-channel and the b-channel.
Their joint distribution is Wa,b(ya, yb|ua, ub). With probability
1, the prefix of yb is (ya, ua). Namely, yb has the form
yb = ((yN1 , u

a−1
1 ), ua, u

b−1
a+1) ≡ (ya, ua, yr), where yr denotes

the remainder of yb after removing ya and ua. Thus,

Wa,b(ya, yb|ua, ub) = 2Wb(yb|ub) Jyb = (ya, ua, yr)K . (2)

The factor 2 stems from the uniform distribution of ua. With
some abuse of notation, we shall write

Wa,b(ya, yb|ua, ub) = Wa,b(ya, ua, yr|ua, ub).

Observe from (2) that Wb(ya, ua, yr|ub) is the joint dis-
tribution Wa,b up to a constant factor. Indeed, we will use
Wb(ya, ua, yr|ub) to denote the joint channel where convenient.

III. DECODING TWO DEPENDENT SYNTHETIC CHANNELS

Let Wa(ya|ua),Wb(yb|ub) be two jointly polar synthetic
channels with joint distribution Wa,b(ya, yb|ua, ub). The SC
decoder for these channels makes a maximum-likelihood (ML)
decision separately for each marginal. We call this decoder an
Individual Maximum Likelihood (IML) decoder. A different
decoder is the Individual Minimum Joint Pe (IMJP) decoder,
which seeks decoders ûa = φa(ya), ûb = φb(yb) that minimize
the joint probability that at least one of the decoded bits is in
error. We denote the probabilities of error of these decoders
by P IML

e (Wa,b) and P IMJP
e (Wa,b), respectively.

The performance of the IMJP decoder by definition lower-
bounds that of the SC decoder, and the decoders do not
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Fig. 1. The structure of proper degrading channels.

coincide in general. Since the IML decoder is suboptimal,
its probability of error may, in fact, decrease after degradation.
We demonstrate this in the following example.

Example 1. Let W be a BSC with crossover probability 0.4.
We perform 2 polarization steps and consider joint channel
W1,4, i.e., Wa = W−− and Wb = W++. We have 0.6544 =
P IMJP
e (W1,4) < P IML

e (W1,4) = 0.6976. We degrade the a-
channel to a useless channel by merging together all a-channel
symbols. This results in degraded joint channel W ′1,4, for which
the IML and IMJP decoder coincide, yielding P IMJP

e (W ′1,4) =
P IML
e (W ′1,4) = 0.6760. Hence, for the degraded channel, the

IML decoding error decreases.

Finding the IMJP decoder generally requires an exhaustive
search. For polar codes, thanks to the successive structure of
joint synthetic channels (2), we can explicitly find it.

Theorem 1. Let Wa(ya|ua) and Wb(yb|ub) be two jointly
polar synthetic channels. The IMJP decoder is given by setting
φb as an ML decoder for Wb and φa according to

φa(ya) = arg max
ua

∑
yr

max
ub

Wb(ya, ua, yr|ub).

A general degrading channel does not necessarily preserve
the successive structure (2). We now define a subset of degrad-
ing channels that, by construction, preserves this structure.

Definition 1. A proper degrading channel has the form

P (ya, ua, yr|za, ua, zr) = Pa(ya|za)Pb(yr|za, ua, zr, ya),

illustrated in Figure 1. We write Q
p

<W to denote that channel
Q is upgraded from W with a proper degrading channel. An
upgrading (degrading) procedure is proper if its degrading
channel is proper.

Unlike the IML decoder, the probability of error of the IMJP
decoder is guaranteed not to decrease after proper degradation.
Intuitively, this is because the decoder for the original channel
can simulate the degraded channel.

Lemma 2. If Qa,b

p

<Wa,b, then P IMJP
e (Qa,b) ≤ P IMJP

e (Wa,b).

The SC probability of error of a polar code with non-frozen
set A used on BMS channel W is P SC

e (W ) = P
{⋃

a∈A EML
a

}
,

where EML
a is the error probability of synthetic channel Wa

under ML decoding. The IMJP error probability lower-bounds
the SC error probability.



Lemma 3.

P SC
e (W ) ≥ max

a,b∈A
P IMJP
e (Wa,b) ≥ max

a∈A
P
{
EML
a

}
.

If two channels are ordered by degradation, so are their
polar transforms [8, Lemma 4.7]. This readily extends to joint
channels. For joint channel Wa,b we denote its jointly polarized
versions by Waα,bβ , where α, β ∈ {−,+} denote the type of
transform the a-channel and b-channel undergo, respectively.

Lemma 4. If Qa,b

p

<Wa,b then Qaα,bβ

p

<Waα,bβ .

Lemmas 2, 3, and 4 are the key to our lower bound: if we
perform a sequence of polarization and upgrading operations
on a joint distribution, and compute the IMJP probability of
error for the resultant joint distribution, we achieve a lower
bound on SC decoding that is tighter than the trivial one.

IV. REPRESENTATIONS OF JOINT SYNTHETIC CHANNELS

A. D-value Representation of Joint Synthetic Channels

Two channels W and W ′ are called equivalent if W <W ′

and W ′ <W . We denote this by W ≡W ′.

Definition 2. Joint channel Wa,b(ya, ua, db|ua, ub) is in D-
value representation if

db =
Wb(ya, ua, db|0)−Wb(ya, ua, db|1)

Wb(ya, ua, db|0) +Wb(ya, ua, db|1)
.

The following lemma affords a more convenient description
of the joint channel, in which, in line with the IMJP decoder,
the b-channel’s ML decision is immediately apparent. It also
greatly simplifies the expressions that follow.

Lemma 5. Channels Wa,b(ya, ua, yr|ua, ub) and
Wa,b(ya, ua, db|ua, ub) are equivalent and the degrading
channels from one to the other are proper.

We use the same notation Wa,b for both the regular and
the D-value representations of the joint channel due to their
equivalence. As in Section II-B, we will use Wb(ya, ua, db|ub)
to denote the joint synthetic channel distribution. Under D-
value representation, proper degrading channels admit the form

P (ya, ua, db|za, ua, zb) = Pa(ya|za)Pb(db|za, ya, ua, zb).

B. Symmetrization

Let Wb(ya, ua, db|ub) be a joint synthetic channel descen-
dant from BMS W . From the symmetry properties of polar
synthetic channels [1, Proposition 13], we conclude that for
every ya, db there exists y(b)a such that

Wb(ya, ua, db|ub) = Wb(y
(b)
a , ua,−db|ūb). (3)

In general y(b)a 6= ya, so (3) marks a departure from symmetry
for BMS channels, for which W (d|u) = W (−d|ū). Turning to
marginals, we observe that ya and y(b)a have the same a-channel
D-value. Thus, an SC decoder cannot distinguish between ya
and y(b)a when making its decision for the a-channel. A similar
conclusion can be shown to hold for the IMJP decoder. Thus,
if the a-channel were told only whether its output was one of

{ya, y(b)a }, either the SC or IMJP decoder would make the same
decision had it been told its output was, say, ya. Consequently,
either decoder’s probability of error is unaffected by obscuring
the a-channel output in this manner. Let ◦

ya , {ya, y(b)a } and
define a symmetrized version of the joint synthetic channel
distribution,

◦
Wa,b, as follows.

◦
Wa,b(

◦
ya, ua, db|ua, ub) = Wa,b(ya, ua, db|ua, ub)

+Wa,b(y
(b)
a , ua, db|ua, ub).

The marginal synthetic channels
◦
Wa and

◦
Wb satisfy

◦
Wa(

◦
ya|ua) =

◦
Wa(

◦̄
ya|ūa),

◦
Wb(

◦
ya, ua, db|ub) =

◦
Wb(

◦̄
ya, ūa, db|ub)

=
◦
Wb(

◦
ya, ua,−db|ūb)

=
◦
Wb(

◦̄
ya, ūa,−db|ūb).

(4)

Definition 3. A joint distribution whose marginals satisfy (4)
is called symmetrized.

A symmetrized joint distribution remains symmetrized upon
polarization.

Clearly,
◦
Wa,b is degraded with respect to Wa,b, exactly the

opposite of our main thrust. Nevertheless, by the above, both
channels have the same error probability under SC and IMJP
decoding. This is preserved under polarization and upgrading.

Proposition 6. Let Wa,b be the joint distribution of two syn-

thetic channels. If
◦
Qa,b

p

<
◦
Wa,b then P SC

e (W ) ≥ P IMJP
e (

◦
Qa,b).

Due to Proposition 6, we henceforth assume that joint
channel Wa,b is symmetrized, and dispense with the (

◦·) symbol.
Replacing the joint channel with its symmetrized version need
only be performed once, at the first instance the two channels
go through different polarization transforms.

The great utility of symmetrization is that given ua, ya
becomes independent of ub, yielding the following lemma.

Lemma 7. Let Wb(ya, ua, db|ub) be a symmetrized joint
distribution. It admits the decomposition

Wb(ya, ua, db|ub) =
1

2
Wa(ya|ua)W2(db|ub; ya, ua). (5)

For any ya, ua, W2 is a BMS channel with input ub and output
db, i.e., W2(db|ub; ya, ua) = W2(−db|ūb; ya, ua).

We call (5) a decoupling decomposition for Wb. We obtain
Wa by marginalizing Wb. Once we know Wb and Wa, we
can obtain W2. We assume that W2 is a valid channel1, so if
Wa(ya|ua) = 0 we set W2 to an arbitrary BMS channel.

V. UPGRADING PROCEDURES FOR JOINT SYNTHETIC
CHANNELS

We now introduce two proper upgrading procedures for
joint synthetic channels. Each reduces the alphabet size of
one marginal without changing the other. Joint channel Wa,b

1Whence our notation W2(db|ub; ya, ua) (with a semicolon, as opposed
to W2(db|ya, ua, db)).



is assumed to be symmetrized and in D-value representation.
We do not distinguish symmetrized channels with any special
symbol.

A. Upgrading Channel Wa

Let symmetrized joint channel Wb(ya, ua, db|ub) admit
decoupling decomposition (5). Let Qb(za, ua, zb|ub) be another
symmetrized joint channel with decoupling decomposition

Qb(za, ua, zb|ub) =
1

2
Qa(za|ua)Q2(zb|ub; za, ua). (6)

Theorem 8. Let Wb and Qb be symmetrized joint distributions
satisfying (5) and (6). Then, Qb

p

<Wb if
1) Qa <Wa with degrading channel Pa(ya|za).
2) Q2 <W2 for all ua, ya, za such that Pa(ya|za) > 0.

The meaning of the second item is that, for fixed za, ua,
BMS channel Q2(zb|ub; za, ua) is upgraded from a set of BMS
channels {W2(db|ub; ya, ua)}ya .

A naive way to upgrade the a-channel using Theorem 8 is
to upgrade the marginal Wa to Qa and then find channel Q2

that satisfies the second item of Theorem 8. However, this
approach results in a trivial bound [6, Section VI.A].

The upgrade-couple transform enables upgrading the a-
channel without changing the b-channel. It splits each a-channel
symbol to several classes, according to the possible b-channel
outputs. Symbols in a class share the same W2 channel, so
confining upgrade operations to a class inherently satisfies the
second condition of Theorem 8, circumventing changes to the
b-channel.

Let channel Wb have 2B possible D-values,
±db1,±db2, . . . ,±dbB .2 For each a-channel symbol ya
we define B2 upgrade-couple symbols yi,ja , i, j ∈ {1, 2, . . . B}.
The new symbols couple the outputs of the a- and b-channels:
for a-channel output yi,ja , if ua = 0, the b-channel output can
only be ±dbi; if ua = 1, the b-channel output can only be
±dbj .

The upgrade-couple channel W̌b(y
i,j
a , ua, db|ub) is defined

by W̌b(y
i,j
a , ua, db|ub) , Wb(ya, ua, db|ub) · Si,j(ya, ua, db),

where

Si,j(ya, ua, db) =



∑
d=±dbj

W2(d|ub; ya, ūa)
ua = 0,
db = ±dbi∑

d=±dbi

W2(d|ub; ya, ūa)
ua = 1,
db = ±dbj

0 otherwise,

and W2 is from the decoupling decomposition of Wb

in (5). Note that channel W̌b is symmetrized and
admits decoupling decomposition W̌b(y

i,j
a , ua, db|ub) =

1
2W̌a(yi,ja |ua)W̌2(db|ub; yi,ja , ua). It can be shown [6, Lemma
19] that for every ya,

W̌2(db|ub; yi,ja , ua) =

BSC
(

1−dbi
2

)
ua = 0

BSC
(

1−dbj
2

)
ua = 1.

(7)

2We assume that erasure symbols are duplicated. I.e., there is a “positive”
erasure and a “negative” erasure, see [7, Lemma 4].

Definition 4. The canonical channel W ∗(d|u) of channel
W (y|u) has a single entry for each D-value. I.e., denoting
by Dd the set of symbols y whose D-value is d, we have
W ∗(d|u) =

∑
Dd
W (y|u).

It can be shown that the canonical a-channel and b-channel
marginals of W̌b coincide with those of Wb.

Definition 5. The class Ci,j is the set of symbols yi,ja with
fixed i, j.

There are B2 classes. The size of each class is the number
of symbols ya. By (7), W̌2(db|ub; yi,ja , ua) is the same BSC for
all symbols of class Ci,j and fixed ua. Thus, the second item
of Theorem 8 is immediately satisfied if we confine upgrading
procedures to the same class Ci,j . In [7], two upgrading
procedures were introduced. Ugprade-merge-2 merges two
conjugate symbol pairs into a single conjugate symbol pair;
upgrade-merge-3 merges three conjugate symbol pairs into
two conjugate symbol pairs. It turns out that a symbol and its
conjugate belong to different classes. Since upgrade-merge-2
combines symbols and their conjugates, it cannot be confined
to a single class. Upgrade-merge-3 does not suffer from this,
so this is the upgrade-merge procedure we use.

Theorem 9. Let Wb(ya, ua, db|ub) be some joint distribution
with marginals Wa(ya|ua),W ∗b (db|ub) and upgrade-couple
counterpart W̌b(y

i,j
a , ua, db|ub). Let Qa(za|ua) <Wa(ya|ua)

obtained by an upgrade-merge-3 procedure. Then there exists
joint distribution Q̌b(z

i,j
a , ua, db|ub)

p

< W̌b(y
i,j
a , ua, db|ub)

with canonical marginals Q̌∗a(za|ua), Q̌∗b(db|ub) such that
Q̌∗a = Q∗a and Q̌∗b = W ∗b .

To use Theorem 9, one begins with a design parameter A
that controls the output alphabet size. Working one class at a
time, one applies upgrade operations in succession to reduce
the class size to 2A. This results in an a-channel with 2AB2

symbols, whose canonical version has at most 2A symbols.

B. Upgrading Channel Wb

The following theorem shows how to upgrade Wa,b to Qa,b

such that marginal Qb <Wb and marginal Qa = Wa.

Theorem 10. Let Wb(ya, ua, db|ub) with canonical b-
channel marginal W ∗b (db|ub). Let Q∗b(zb|ub) < W ∗b (db|ub)
with degrading channel P ∗b (db|zb). Then there exists joint

channel Qb(ya, ua, zb|ub) such that Qb(ya, ua, zb|ub)
p

<
Wb(ya, ua, zb|ub) and

∑
ya,ua

Qb(ya, ua, zb|ub) = Q∗b(zb|ub).

Omitting details to conserve space, we only state that
whenever W ∗b (db) > 0 the upgraded joint channel is given by

Qb(ya, ua, zb|ub) = Q∗b(zb|ub)
∑
db

P ∗b (db|zb)Wb(ya, ua, db)

W ∗b (db)
,

where W ∗b (db) =
∑

ub
W ∗b (db|ub) and Wb(ya, ua, db) =∑

ub
Wb(ya, ua, db|ub).

To use Theorem 10, one begins with design parameter B that
controls the output alphabet size. The channel Q∗b , with output
alphabet of size 2B, is obtained from W ∗b using a sequence



of upgrade operations. To obtain upgraded joint channel Qb,
one uses the theorem to turn them into a sequence of upgrade
operations to be performed on channel Wb.

VI. LOWER BOUND PROCEDURE

The input to our procedure is BMS channel W , number
of polarization steps n, indices a and b of the a-channel and
b-channel, respectively, and parameters A and B that control
the alphabet sizes of the a- and b-channels, respectively. The
binary expansions of a− 1 and b− 1 are a = 〈a1, a2, . . . , am〉
and b = 〈b1, b2, . . . , bm〉, respectively; they specify the order
of polarization transforms to be performed.

Algorithm A provides a high-level description of the proce-
dure. We first determine the first index m for which am and bm
differ (i.e., a` = b` for ` < m and am 6= bm). The first m− 1
polarization steps are of a single channel. Since these are single
channels, we utilize the upgrading procedures of [7] to reduce
the output alphabet size. At the mth polarization step, the a- and
b-channels differ. We perform joint polarization and symmetrize
the channel. This symmetrization need only be performed once
as subsequent polarizations maintain symmetrization. We then
perform the b-channel upgrading procedure, which reduces the
b-channel alphabet size to 2B. Following that, we upgrade the
a-channel by first upgrade-coupling the channel to generate
B2 classes and then upgrading each class separately to reduce
its size to 2A elements. We continue in this manner until
` = n. Finally, we compute the probability of error of the
IMJP decoder for the resulting channel.

Algorithm A: Lower bound on SC error probability
Input: BMS channel W , number of polarization steps n,

channel indices a,b, and control parameters A, B.
Output: A lower bound on the probability of error Wa,b.
m← first_difference(a,b)
Q← single_upgrade(W,max{A,B})
for ` = 1, 2, . . . , n do

if ` < m then
Q← single_polarize(Q, a`)
Q← D-Value_representation(Q)
Q← single_upgrade(Q,max{A,B})

else
Q← jointly_polarize(Q, a`, b`)
Q← D-Value_representation(Q)
if ` = m then

Q← symmetrize(Q)

Q← b-channel_upgrade(Q,B)
Q← upgrade_couple(Q)
foreach class ∈ Q do

Q← a-channel_upgrade(Q,A, class)

return P IMJP
e (Q)

The lower bound of this procedure compares favorably
with the trivial lower bound, max{P {Ea} ,P {Eb}}, since
the upgrading procedure only ever changes one marginal. By
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Fig. 2. Bounds on the probability of error of a rate 0.1 polar code of length
210 designed for a BSC with crossover probability 0.2.

leveraging single channel upgrading transforms, the marginal
channels obtained are the same as would be obtained on single
channels using the same upgrading steps. Thus, by Lemma 3
this lower bound is at least as good as max{P {Ea} ,P {Eb}}.
Remark 1. An initial step of Algorithm A is to upgrade the
channel W . This step enables us to apply our algorithm on
continuous-output channels, see [7, Section VI].

VII. NUMERICAL RESULTS

Figure 2 presents bounds on the error probability of a polar
code of length N = 210 used over various BSCs. The code
was designed for a BSC with crossover probability 0.2 using
the techniques of [7]. The non-frozen set A consists of the 102
synthetic channels with smallest probability of error. The upper
bound is an upper bound on

∑
a∈A Pe(Wa), and the trivial

lower bound is a lower bound on maxa∈A Pe(Wa); upper and
lower bounds on Pe(Wa) were obtained using the techniques
of [7]. For our lower bound we used 2A = 32 and 2B = 8 for
all possible pairs of the 10 worst channels in A and used (1)
computed for the subset of these channels that yielded the
highest bound.
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