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inside a fiber Bragg grating and its
application for obtaining an all-optical memory
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We study the interaction between two Bragg solitons in the vicinity of a defect inside a fiber Bragg grating.
A soliton that is trapped in the defect can be released by launching a second soliton. The effect can be used
to obtain an all-optical memory that is not strongly sensitive to the phase and the timing arrival of the

solitons. © 2008 Optical Society of America
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Bragg solitons are solitary waves that can propagate
in a fiber Bragg grating (FBG) with a velocity that
can be significantly lower than the speed of light in
the fiber [1,2]. It has been shown that two counter-
propagating Bragg solitons can merge into a single
standing localized pulse [3,4]. The method is sensi-
tive to soliton phases. Solitons can also be localized
by introducing a defect into the grating [5,6]. This
latter method is not sensitive to the soliton phase,
and it can also be applied to low-intensity solitons. In
this Letter we show that a control soliton can be used
to release a soliton that is trapped in a defect inside a
FBG. The trapped soliton is released regardless of
both the phase and the delay of the control soliton, as
was verified numerically for a large set of param-
eters. We give a physical explanation of the interac-
tion by considering the spatial asymmetry induced in
the local grating parameters due to the Kerr effect.
The novel interaction can be used to obtain a 1 bit
all-optical memory. We note that an all-optical
memory has been previously theoretically demon-
strated by using optical solitons in a resonant photo-
nic crystal [7]. However, the device operation re-
ported in [7] was strongly sensitive to the arrival
time of the control soliton, unlike in the device re-
ported here.

Wave propagation in nonuniform FBGs with Kerr
nonlinearity is described by nonlinear coupled mode
equations:

2idu, +iV,  Gu + rkp@us + T + 20usPu.,
+op(2)u. =0, (1)

where u, are the slowly varying amplitudes of the
forward (+) and the backward (—) propagating
waves, " is the nonlinear coefficient, V,=c/n is the
group velocity in the absence of the grating, n.gis the
effective refractive index, «y(z) is the grating
strength, and oy,(2) is the chirp parameter [8].

We demonstrate the soliton interaction in the vi-
cinity of a defect by using a grating with the chirp
function shown in Fig. 1. The defect used in this work
is obtained by adding a local perturbation to the
chirp parameter in the center of region II of the grat-
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ing, at z=0. The defect is given by o0ye2)
=5.75[cos(2mz/Az)+1] m~! with Az=0.8 mm. The de-
fect length is significantly smaller than the spatial
width of the solitons propagating in the grating. The
defect length is, however, 3 orders of magnitude
larger than the grating period, and hence the field’s
propagation around the defect can be accurately ana-
lyzed by using Eq. (1). Besides adding the defect, the
grating is similar to that used for obtaining an AND
gate [9]. Region II of the grating is used to trap the
soliton, while regions I and III are used to accelerate
the soliton after its release.

The lengths of the three grating regions are L;
=L3=5.14 cm and L,=0.78 cm, and hence the total
grating length is 11.06 cm. The grating parameters
are k=9000 m™!, n.g=1.45, and o (z), with oy (2)
—04.(2) being a piecewise linear function of z with a
slope of 888.6 m~2 in regions I, -888.6 m~2 in region
ITI, and zero in region II. The nonlinear coefficient is
equal to I'=5 km~! W-1. The input solitons have a
spatial full width at half-maximum (FWHM) of
0.39 cm, an energy of 64.014 nd, and a frequency off-
set of 297.478 GHz with respect to the local Bragg
frequency at the beginning of region I.

We have simulated the wave propagation in the
grating by using the split-step method [10]. The re-
sults of the simulation are shown in Fig. 2. At =0 a
soliton with initial phase ¢$=5.9 rad was launched at
z=-6.7 cm. The soliton was trapped inside region II,
and it oscillated around the defect with a spatial am-
plitude that decayed over time, as is shown in Fig.
2(a). At t=20 ns the spatial amplitude of the oscilla-
tion was about 0.5 mm, and the soliton lost about
10% of its initial energy. At ¢=15.9 ns a control soli-
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Fig. 1. (Color online) Schematic structure of the grating
chirp parameter used to obtain the optical memory.
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Fig. 2. (Color online) Simulation results showing the in-
tensity I of the waves propagating in the grating in the case
when (a) a single soliton is trapped, and in cases when a
trapped soliton is released by a control soliton with an ini-
tial phase (b) ¢=12%/10 and (¢) ¢=27/10.

ton was launched at z=-7.1 em with an initial phase
¢=127/10 rad [Fig. 2(b)] and another with an initial
phase ¢=27/10 rad [Fig. 2(c)]. In both cases, the in-
teraction between the two solitons caused the release
of the trapped soliton. In the case shown in Fig. 2(b),
the trapped soliton moved toward the +z direction
and the control soliton was backreflected. In the case
shown in Fig. 2(c), the two solitons spatially over-
lapped. Our physical interpretation given below indi-
cates that in this case the trapped soliton was re-
leased and propagated toward the —z direction while
the control soliton was transmitted.

We have simulated the release of the trapped soli-
ton for 20 different initial phases of the control soli-
ton. For all the initial phases that were checked, the
trapped soliton was released, and after the interac-
tion ended two counterpropagating pulses exited the
grating. The energies of the backward and the for-
ward propagating pulses after the interaction are
shown in Fig. 3. Although the energies of the two
counterpropagating pulses change as a function of
the initial phase of the control soliton, the trapped
pulse was released for all the initial phases that were
checked. Since the trapped soliton oscillates around
the defect with a periodicity of about 6.4 ns, we have
also verified that the trapped soliton was released at
nine different launching times of the control soliton,
equally distributed between ¢#=16 ns and =23 ns.
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Fig. 3. (Color online) Energy of the forward (circles) and

the backward (squares) propagating solitons after the
trapped soliton was released, as function of the control soli-
ton phase.

For each launching time, ten different phases of the
control soliton were simulated.

We note that in a practical grating the lifetime of
the trapped soliton is limited owing to grating loss
[11]. However, the loss in FBGs can be reduced by us-
ing deuterium-loaded fibers, by optimizing the writ-
ing procedure, and by adding a small gain that com-
pensates for the loss. Assuming a loss of 0.1 dB/m,
the energy of the input wave decays to 50% of its ini-
tial value after about 0.15 us. This time duration is
about ten times longer than the time needed to re-
lease the trapped soliton. Therefore, we have ne-
glected the absorbtion effect in our simulations. The
loss can be also overcome by utilizing a refresh pro-
cedure as used in electronic devices.

To obtain a physical insight into the soliton inter-
action, we have studied the local, time-varying
changes in the grating structure caused by the Kerr
effect. We rewrite Eq. (1):

+idu, + ng‘latu,_, +4.(z;0us +o(z;0)u. =0, (2)

where  &(z;t)=op(2)+oni(z;t),  onu(z;t)=T(Ju,?
+Hu ) and  Gu(z;0)=ku@) +gni(z30),  gnia(z;t)
=T u;u,_,. Equation (2) describes wave propagation in
a linear nonuniform grating that varies in time, with
parameters o(z;t) and §.(z;¢). We define §(z;¢) and
0(z;t) as the amplitude and the phase of §.(z;t):
q.(z;t)=q(z;t)exp(xjO(z;t)). The local Bragg fre-
quency shift with respect to the local Bragg fre-
quency at the beginning of region I is given
by AQgp(z;t)=A01(2) +AQy1(2;t), where AQq(2)
=-V,01,(2) is the frequency shift caused by the chirp
of the grating and the defect and AQy(z;?)
=V,(30,0(z;t) - on1(2;t)) is the frequency shift caused
by nonlinearity. The local grating strength is given by
k(z;t)=k1(2) +Arni(z;t), where Axnp(z;t)=q(z;?)
—ky,(z) is the change in the local grating strength
caused by nonlinearity.

Figure 4 shows the change in the local Bragg fre-
quency of the grating, AQyy, for two different initial
phases of the control soliton as used in Figs. 2(b) and
2(c). The grating parameters are shown at the begin-
ning of the interaction when the distance between
the solitons peaks was approximately 1.17 and
0.96 cm. In each plot we compare the grating param-
eters in the case when the soliton interaction exists
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Fig. 4. (Color online) Local nonlinear Bragg frequency
shift, AQyq,(z;t), in the beginning of the interaction at (a)
t=19.7 ns and (b) #=20.1 ns, calculated for the cases when
the control soliton was launched with an initial phase of
¢$=127/10 (solid curve) and of ¢=27/10 (dashed curve)
and for the case when the control soliton was not launched
(dotted curve).

and in the case when the control soliton is not
launched. The interaction between the solitons
causes a change in the grating parameters. Since the
spatial FWHM of the soliton is about 354!, and since
a uniform grating section with a length of 3K£1 re-
flects about 99% of the power of an incident wave lo-
cated inside the bandgap of this section, there is a
physical meaning in referring to changes in the local
bandgap in the grating regions where the soliton
power is low and the waves are backreflected. At a
given time, the local reflectivity, i.e., the reflectivity
from a short section of the time-varying grating, de-
creases as the nonlinear Bragg frequency shift AQyy,
decreases and as the nonlinear grating strength Axyg,
decreases, since the central soliton frequency is lo-
cated around the upper frequency edge of the grating
bandgap [1]. In the case shown in Fig. 2, the soliton
velocity in the interaction region is very small, and
hence |u,(z;t)| =|u_(z;t)]. Therefore, Axyi(z;t)
=0.5A0n1,2;%), and both Axyr, and AQyg, have a simi-
lar effect on the local grating reflectivity.

The interaction between the solitons causes a spa-
tial asymmetry in the grating parameters with re-
spect to the center of the trapped soliton. The asym-
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metry was maintained during all of the beginning of
the interaction as indicated by Fig. 4. In the case ¢
=127/10, the interaction increases the local reflectiv-
ity in the region where the left tail of the trapped
soliton is located because of destructive interference
between the two soliton fields in that region. There-
fore, the soliton is pushed toward the +z direction,
whereas the control soliton is pushed toward the —z
direction. Owing to the grating chirp in region III,
the soliton accelerates and is released toward the +z
direction. In the case ¢=2#/10 the interference in
the left tail region of the trapped soliton is construc-
tive. As a result, the local reflectivity in that region is
decreased, the trapped soliton is pushed toward the
—z direction, and the control soliton is pushed toward
the +z direction. Similar asymmetries in the grating
profile with respect to the trapped soliton center were
observed for all the different phases that were used
to calculate Fig. 3. We note that at a certain time and
for a specific phase of the control soliton, the interfer-
ence does not cause an asymmetry in the grating pa-
rameters. However, because of the relative movement
of the two solitons, this condition is not maintained,
and an asymmetry in the grating profile is eventually
obtained. Hence, the trapped soliton can be released
regardless of the initial phase of the control soliton.

In conclusion, we have demonstrated an optical
memory based on an all-optical trapping and releas-
ing of an optical soliton, using a novel soliton inter-
action in the vicinity of a defect inside a fiber Bragg
grating. The release of the trapped soliton did not de-
pend on the phase and the delay of the control soli-
ton, as was verified numerically for a large set of pa-
rameters. We have given a physical explanation of
the results based on calculating the local change in
the grating parameters due to nonlinear interaction.
The nonlinear interaction causes an asymmetry in
the grating parameters that is responsible for the re-
lease of the trapped soliton.
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