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Reconstruction of a fiber Bragg grating from
noisy reflection data
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We develop a novel method that enables one to reconstruct the structure of highly reflecting fiber Bragg grat-
ings from noisy reflection spectra. When the reflection spectrum is noisy and the grating reflectivity is high,
noise in the Bragg zone of the reflection spectrum is amplified by the inverse scattering algorithms and pre-
vents the reconstruction of the grating. Our method is based on regularizing the reflection spectrum in fre-
quencies inside the Bragg zone by using the data on the grating spectrum outside the Bragg zone. The regu-
larized reflection spectrum is used to reconstruct the grating structure by means of inverse scattering. Our
method enables one to analyze gratings with a high reflectivity from a spectrum that contains a high level of
noise. Such gratings could not be analyzed by using methods described in previous work [IEEE J. Quantum
Electron. 39, 1238 (2003)]. © 2005 Optical Society of America

OCIS codes: 050.2770, 290.3200.
1. INTRODUCTION
The inverse scattering problem in fiber Bragg gratings
has been studied intensively in recent years. In such a
problem, the profile of the grating is extracted from its
complex reflection spectrum.1–5 Several inverse scatter-
ing algorithms were used for synthesizing the grating
profile from a desired spectral response1–4 and for recon-
structing the grating profile from the measured complex
reflection spectrum.6

In previous studies it has been shown that the inverse
scattering problem becomes very sensitive to noise in the
reflection spectrum when the grating reflectivity is
high.6–8 In strongly reflecting gratings, a forward-
propagating wave with a frequency inside the Bragg zone
of the grating attenuates strongly along the grating.
Therefore the reflection from the region located close to
the output end of the grating becomes very low and does
not significantly affect the grating spectrum. Thus a
small error in the amplitude of the spectrum inside the
Bragg frequency region of the grating may yield a very
large change in the reconstructed grating profile. In a
previous study we showed that even when no noise is
added to the reflection spectrum, most inverse scattering
algorithms are unstable in analyzing very strong gratings
because of numerical inaccuracies.5 When the reflection
spectrum is accurate, the integral layer-peeling (ILP)
algorithm5 can overcome the numerical instability that
limits previous inverse scattering algorithms. However,
when the reflection spectrum is inaccurate and the grat-
ing reflectivity is high, the reconstruction of the grating is
inherently unstable regardless of the inverse scattering
algorithm in use. When the reflection spectrum of the
grating is measured, there is always an error added to the
grating reflection spectrum. Because of the instability of
the inverse scattering problem, this error often prevents
the use of inverse scattering algorithms for characterizing
highly reflecting fiber Bragg gratings, as are used in opti-
cal communication systems.6
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The instability of the inverse scattering algorithms to
errors in the reflection spectrum can be significantly re-
duced by measuring the complex reflection spectrum from
both sides of the grating.6 For the case in which the re-
flection spectrum is measured from one side of the grat-
ing, several regularization methods have been
developed8,9 to reduce the instability of the inverse scat-
tering algorithms. In the work described in Ref. 8 a
regularization of the problem was obtained by slightly de-
creasing the amplitude of the reflection spectrum. A
small amount of a priori information on the grating pro-
file such as, for example, knowledge of its length was
needed to improve the result. The main disadvantage of
this method was its inherent reduction in the accuracy of
the result even when a noise-free spectrum was used.
Moreover, such a method cannot solve the instability
problem of the inverse scattering algorithm when the
noise in the reflection spectrum is not small enough.8 In
Ref. 9, conditions on the complex reflection spectrum of a
grating with a finite length were used to find an approxi-
mation to the noisy reflection spectrum. When the in-
verse scattering algorithm was used on the approximated
reflection spectrum, the result did not diverge. This
method requires an a priori knowledge of the grating
length. However, the calculation of the approximated re-
flection spectrum requires mathematical operations, such
as the Hilbert transform, that are very sensitive to noise
when the grating reflectivity is high.10 Therefore, al-
though the algorithm regularizes the solution, the error
between the original and the reconstructed profiles be-
comes very large for highly reflecting gratings. The two
methods given in Refs. 8 and 9 were demonstrated only
when the noise in the spectrum was weak and the signal
to noise inside the Bragg zone of the reflection spectrum
was on the order of 105.9

We demonstrate in this paper a new approach for re-
constructing highly reflecting gratings from a noisy reflec-
tion spectrum. In contrast to previous methods, we sepa-
2005 Optical Society of America
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rate data from the reflection spectrum inside and outside
the Bragg zone. Noise in the Bragg zone of a highly re-
flecting grating is amplified in the reconstruction of the
grating. Therefore the Bragg zone of a noisy reflection
spectrum does not contain a significant amount of infor-
mation on the output end of the grating. However, infor-
mation on the output end of the grating may still be ob-
tained from the reflection spectrum in frequencies outside
the Bragg zone. In this frequency region, the signal-to-
noise ratio may be lower than in the Bragg zone of the
grating; however, the error in the data located outside the
Bragg zone of the grating is not significantly enhanced in
the reconstruction of the grating. Our method is based
on regularizing the reflection spectrum inside the Bragg
zone of the spectrum by using the reflection spectrum
given outside the Bragg zone. After the reflection spec-
trum is regularized, the ILP inverse scattering algorithm
can be used to accurately reconstruct the grating profile.
The method is based on prior knowledge of the grating
length. We note that the use of the ILP algorithm en-
ables one to reduce numerical errors in the reconstruction
that may limit other inverse scattering algorithms in an
analysis of highly reflecting fiber Bragg gratings.5

The performance of our method depends on the accu-
racy of the data outside the Bragg zone of the reflection
spectrum. The required signal-to-noise ratio of the re-
flection spectrum outside the Bragg frequency region de-
pends on the product of the grating length and the band-
width of the Bragg zone and on the grating reflectivity.
We find that the stability of the method to noise is higher
when the product of the grating length and the bandwidth
of the Bragg zone of the grating is small. Therefore we
obtained the best reconstruction results for a uniform
grating, since the bandwidth of the Bragg zone in such a
grating is narrow compared with that of apodized or
chirped gratings with the same length and reflectivity.
When the grating is uniform, the new method can be used
to reconstruct gratings with a very high reflectivity, mea-
sured with a very high level of noise.

2. THEORETICAL BACKGROUND
In this section we derive the mathematical properties of
the reflection spectrum of fiber Bragg gratings that are
needed for our regularization method. We describe the
propagation of waves inside a fiber Bragg grating without
loss by using the coupled-mode equations11:

du1~k, z !

dz
1 iku1~k, z ! 5 q~z !u2~k, z !,

du2~k, z !

dz
2 iku2~k, z ! 5 q* ~z !u1~k, z ! , (1)

where k 5 b 2 bB is the wave-number detuning from the
Bragg wavelength; bB is the Bragg wave number of the
grating; u1(k, z) and u2(k, z) are the complex ampli-
tudes of the backward- and the forward-propagating
waves respectively; and q(z) is the complex coupling co-
efficient of the grating.5 We assume that the grating is
written in the region @0, L# and consider a solution
U(k, z) 5 @u1(k, z), u2(k, z)# with the boundary condi-
tions U(k, z 5 L) 5 (0, 1). We define the functions
b(k) and a(k) as @b(k), a(k)# 5 U(k, z 5 0). The re-
flection spectrum r(k) and the transmission spectrum
t(k) can be expressed by using the functions a(k) and
b(k):

r~k ! 5
b~k !

a~k !
,

t~k ! 5
1

a~k !
. (2)

In Appendix A we show that the functions a(k) and
b(k) can be represented by using two time domain func-
tions a(t) and b(t) in the following integral form:

a~k ! 5 exp~2ikL ! 1 E
2L

L

a~t!exp~ikt!dt,

b~k ! 5 E
2L

L

b~t!exp~ikt!dt. (3)

Equation (3) shows that the Fourier transforms of the
functions a(k) and b(k) are nonzero only for z
P @2L, L#. The boundary values of the functions a(t)
and b(t), derived in Appendix A, are given by

a~t 5 2L ! 5 2
1

2
E

0

L

uq~z !u2dz, a~t 5 L ! 5 0,

b~t 5 2L ! 5 2
q~z 5 0 !

2
, b~t 5 L ! 5 2

q~z 5 L !

2
. (4)

When the energy is conserved, the amplitudes of the re-
flection and the transmission spectra are connected by the
conservation-of-energy relation12:

ur~k !u2 1 ut~k !u2 5 1. (5)

Using Eqs. (2) and (5) we obtain

ua~k !u2 5 1 1 ub~k !u2 5
1

1 2 ur~k !u2
. (6)

Thus the intensity of the functions a(k) and b(k) can be
calculated from the intensity of the reflection spectrum,
r(k). The function a(k) is a minimum-phase-shift func-
tion, and therefore the phase of a(k) can be calculated
from the intensity ua(k)u2 by using the Hilbert
transform.12 Then the phase of the function b(k) can be
found from the phase of the function a(k) and from the
phase of the complex reflection spectrum r(k) by using
Eq. (2). Therefore the functions a(k) and b(k) can be
uniquely calculated from the reflection spectrum, r(k).
Alternatively, if the function b(k) is known, it can be used
to calculate the function a(k) and the reflection spectrum
r(k).10

Since the function b(k) contains the same information
as the complex reflection spectrum of the grating, r(k),
we can uniquely reconstruct the grating profile from the
function b(k). In a previous study it was shown8 that
when the grating reflectivity is high, even a small error in
the reflection spectrum can prevent the reconstruction of
the grating. The reconstruction error is largest near the
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output end of the grating (z 5 L). On the other hand,
when the function b(k) is known, we can calculate di-
rectly the coupling coefficient at the output end of the
grating (z 5 L) by using Eq. (4). Therefore it can be ex-
pected that the reconstruction of the grating from the
function b(k) is more stable than the reconstruction of
the grating from the reflection spectrum. This conclu-
sion is proved analytically for a uniform grating in Appen-
dix B.

The inverse scattering problem can be stabilized by cal-
culating accurately the function b(k) from the reflection
spectrum. However, the calculation of the function b(k)
cannot be performed directly when the grating reflectivity
is strong and the reflection spectrum contains noise. In
Section 3 we show how to regularize the function b(k).
When the function b(k) is regularized, it can be used to
regularize the complex reflection spectrum and to accu-
rately reconstruct the grating profile by using the ILP al-
gorithm.

3. REGULARIZATION METHOD
When the grating is reconstructed from its reflection spec-
trum, noise located in the frequencies inside the Bragg
zone of the spectrum causes a very large error in the re-
construction of the grating. In Section 2 we showed that
the function b(k) uniquely defines the grating structure.
When the grating is reconstructed from the function b(k),
noise in the function b(k), located at frequencies inside
the Bragg zone of the spectrum, is not significantly en-
hanced by the inverse scattering algorithm. Therefore to
stabilize the inverse scattering algorithm it may be useful
to reconstruct the grating structure from the function
b(k). We show in this section how the properties of the
function b(k) can be used to regularize the inverse scat-
tering problem and develop a method for reconstructing
the function b(k) from a noisy reflection spectrum. Our
method requires an approximated prior knowledge of the
grating length.

When the reflection spectrum does not contain noise,
we can use Eq. (6) to accurately calculate the magnitude
of the functions b(k) and a(k) from the reflection spec-
trum r(k). The magnitude of the function a(k) can be
used to calculate the phase of a(k) by using the Hilbert
transform. Then, with Eq. (2), the phase of b(k) can be
found from the phase of the function a(k) and from the
phase of the complex reflection spectrum, r(k). When
the reflection spectrum is noisy, the noise in the Bragg
zone of the reflection spectrum is enhanced in the calcu-
lation of the functions ub(k)u2 and ua(k)u2 owing to the de-
nominator part in Eq. (6). Thus, when the grating reflec-
tivity is high, we cannot use Eq. (6) to calculate the
functions ua(k)u2 and ub(k)u2 for frequencies within the
Bragg zone of a noisy reflection spectrum. We develop a
method that allows us to reconstruct both the function
ub(k)u2 and the function ua(k)u2 inside the Bragg fre-
quency region using the data of the reflection spectrum
outside the Bragg region. Then the phases of the func-
tions a(k) and b(k) can be calculated similarly to the case
of a noiseless reflection spectrum. Once the functions
ub(k)u2 and ua(k)u2 are recovered, we are able to calculate
the function b(k), which contains all the information on
the grating structure. Therefore the calculation of the
functions ub(k)u2 and ua(k)u2 allows us to regularize the
inverse scattering problem. The regularization is per-
formed by replacing the amplitude of the noisy reflection
spectrum with the amplitude calculated from the function
ub(k)u2. Then the regularized reflection spectrum is used
to reconstruct the grating profile.

The calculation of the functions ua(k)u2 and ub(k)u2 in-
side the Bragg zone from the data outside the Bragg zone
is possible because of the analytical properties of these
functions. Equation (3) indicates that the functions a(k)
and b(k) are analytical functions for complex values of
the wave number k, since the integrals in the equation
are defined for all complex values of k.13 Therefore the
functions a(k)a(k* )* and b(k)b(k* )* are also analytical
in the complex plane of the wave number k. Analytical
functions are uniquely determined by their values on any
arc in the complex plane.14 Specifically, the values of the
functions ua(k)u2 and ub(k)u2 outside the Bragg zone are
theoretically sufficient to calculate the functions inside
the Bragg zone. However, in practice, the functions
ua(k)u2 and ub(k)u2 are not known continuously and ex-
actly as required by Ref. 14 but are sampled with a finite
resolution and also contain numerical and experimental
errors. Therefore some additional information should be
used in order to increase the accuracy of the extraction of
the functions ua(k)u2 and ub(k)u2 inside the Bragg zone.
In our work, we use an estimated knowledge of the grat-
ing length in order to calculate the functions ua(k)u2 and
ub(k)u2 inside the Bragg zone.

We denote the error in the reflection spectrum by
Dr(k) 5 r̄(k) 2 r(k), where r(k) and r̄(k) are the accu-
rate and the noisy reflection spectra, respectively. The
functions ub(k)u2 and ub̄(k)u2 can be calculated from the
reflection functions r(k) and r̄(k) by using Eq. (6). Be-
cause of the denominator part in Eq. (6), the function
ub̄(k)u2 may have a large error with respect to the noise-
free function ub(k)u2 for frequencies inside the Bragg zone
of the reflection spectrum. We denote the Fourier trans-
forms of the functions ub(k)u2 and ub̄(k)u2 by B(t) and
B̄(t), respectively.

The theoretical analysis given up to this point in the
paper was developed by using a continuous model for the
wave propagation inside the grating. In a practical prob-
lem the reflection spectrum is sampled with a finite reso-
lution. Therefore we assume that the reflection spec-
trum is sampled by using a wave-number sampling period
Dk. Since the error in the function ub̄(k)u2 receives its
maximum values inside the Bragg frequency region, we
assume that the error function DB(t) 5 B̄(t) 2 B(t) can
be approximated by

DB~t! . (
n51

N

cn exp~iknt!, (7)

where N is the number of sampled points inside the Bragg
frequency zone and $kn% are the corresponding wave-
number components inside the Bragg zone.

Equation (3) shows that the function B(t) is confined to
the time interval @22L, 2L#. However, since the func-
tion B̄(t) contains a large error, it is not confined to the
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interval @22L, 2L#. The function B̄(t) in the region out-
side the interval @22L, 2L# is equal to the error function
DB(t) in that region. Therefore we can use the function
B̄(t) outside the interval @22L, 2L# to calculate the coef-
ficients $cn%, given in relation (7). After the coefficients
$cn% are calculated, they can be used to correct the func-
tion ub(k)u2 for frequencies inside the Bragg zone and to
reconstruct the grating. This procedure is summarized
in more detail below.

The time region in which we can calculate the function
B̄(t) is determined by the sampling period of the reflec-
tion spectrum Dk and is equal to @2p/Dk, p/Dk#. For
our method to be used, the sampling period should be
small enough that the interval @2p/Dk, p/Dk# is signifi-
cantly larger than the interval @22L, 2L#, as explained
below. We calculate the coefficients $cn% by minimizing
the square error between the function B̄(t) and the func-
tion (n51

N cn exp(iknt) in the time interval I 5 @2p/Dk,
22L# ø @2L, p/Dk#. Since the functions $exp(iknt)% are
not orthonormal in the Hilbert space L2(I), we cannot
find directly the coefficients $cn% by using Fourier analy-
sis. Instead, we need to find an orthonormal basis in
L2(I) for the space spanned by the functions $exp(iknt)%.
The new basis functions $ fn(t)% are found by using the
Gram–Schmidt orthonormalization procedure.15 The
new basis functions $ fn(t)% are a superposition of expo-
nential functions $exp(iknt)%.15 Therefore the functions
$ fn(t)% are defined in the whole interval @2p/Dk, p/Dk#,
although the orthonormality condition is fulfilled only in
the Hilbert space L2(I). The function DB(t) can then be
approximated accurately in the time interval @22L, 2L#
by use of

DB~t! . (
n51

N

dnfn~t!, (8)

where the coefficients of the new expansion $dn% can be
found from the connection dn 5 (DB, fn) and the opera-
tion (•, •) denotes the inner product in the Hilbert space of
L2(I).15 Once the coefficients $dn% are found, they can be
used to calculate the error function DB(t) over the inter-
val @2p/Dk, p/Dk# by use of relation (8). The function
DB(t) is then used to correct the error in the function
ub̄(k)u2 for frequencies inside the Bragg zone.

The separation in our algorithm between the data of
the function ub(k)u2 inside and outside the Bragg zone can
be performed owing to the denominator in Eq. (6). When
the reflectivity inside the Bragg zone is close to unity, the
value of the denominator in Eq. (6) becomes close to zero.
Therefore noise in the Bragg zone of the reflection spec-
trum is amplified in the calculation of the function
ub̄(k)u2. In this case, the estimation of the function
ub(k)u2 inside the Bragg zone by our method is more ac-
curate than the function ub̄(k)u2, calculated directly from
the Bragg zone of the noisy reflection spectrum. There-
fore, when the grating reflectivity is high (maximum re-
flectivity *0.95), the accuracy of our method is deter-
mined mainly by the transformation given in Eq. (6) and
is less affected by the specific statistics of the noise in the
reflection spectrum. As a result, our method gives accu-
rate results for a wide variety of noise statistics, as is
demonstrated in Section 4. When the grating reflectivity
is low (maximum reflectivity &0.95), the estimation of the
function ub(k)u2 in the Bragg zone according to the data
outside the Bragg zone may be less accurate than the
original data. In this case, our method does not reduce
the noise in the reconstruction of the grating but may cre-
ate an additional error. However, when the grating re-
flectivity is low, the reconstruction of the grating is stable
and there is no need for a regularization of the solution.

Our method is based on recovering the coefficients $dn%
from the function B̄(t) on the interval I. Thus, for the
function B̄(t) to be defined in the region I, the sampling
period Dk should be greater than p/(2L). In a previous
study we showed that the grating can be reconstructed
from a noiseless reflection spectrum sampled with a sam-
pling period of p/(2L).12 When the sampling period Dk
is only slightly larger than p/(2L), the method presented
in this paper may become unstable since the size of the
interval I is very small compared with the size of the in-
terval @22L, 2L#. Therefore our method requires in-
creasing the spectral resolution of the reflection spectrum
in order to reconstruct the grating from noisy data. Our
numerical simulations show that as the spectral sampling
period Dk is reduced, the stability of our method in-
creases. However, our numerical simulations also indi-
cate that there is no significant improvement in the sta-
bility of our method when the sampling period Dk is
decreased below ;p/(10L).

The performance of our reconstruction technique is de-
termined by the accuracy to which we are able to estimate
the function DB(t) in the interval @22L, 2L# from the
data of the function given outside that interval. Our nu-
merical simulation shows that the energy of the basis
functions $ fn(t)% inside the interval @22L, 2L# increases
exponentially as the function index n increases. There-
fore, for a given grating length and a sampling resolution,
the calculation of the coefficients $dn% will contain more
error as the number of basis functions N increases. Thus
for a given resolution it is desired that the bandwidth of
the Bragg frequency region of the grating be as narrow as
possible. Denoting the wave-number bandwidth of the
Bragg zone by BWB , the number of sampled points in the
Bragg zone is equal to N 5 BWB /Dk. Since we have
found from our numerical simulations that there is no sig-
nificant improvement in the stability of our method when
the sampling period Dk is reduced below p/(10L), the ac-
curacy of our method is better when the product BWBL is
as small as possible.

Numerical simulations show that for a grating with a
given product BWBL, our reconstruction technique gives
the lowest error for gratings with a high reflectivity.
When the reflectivity of the grating increases, the error in
the Bragg frequency region of the function B(k) is also
significantly enhanced, as indicated by Eq. (6). In this
case the energy of the function B̄(t) outside the time in-
terval @22L, 2L# also increases significantly, and the er-
ror function DB(t) can be more accurately found by using
relation (8).

The two limitations of our method described above in-
dicate that our reconstruction method is most accurate
when the grating reflectivity is high and the Bragg fre-



88 J. Opt. Soc. Am. A/Vol. 22, No. 1 /January 2005 A. Rosenthal and M. Horowitz
quency region is narrow. Since the bandwidth of the
Bragg zone of a uniform grating is narrow compared with
that of an apodized or a chirped grating with the same
length and reflectivity, our method gives the lowest error
for quasi-uniform gratings. Using this method we were
able to reconstruct theoretically a uniform grating with a
maximum reflectivity of 1 –1028 from a reflection spec-
trum that contained a high level of noise, as shown in Sec-
tion 4. Our method also works for apodized gratings;
however, for accurate results to be obtained, the noise
level in the reflection spectrum of apodized gratings
should be significantly lower than that in quasi-uniform
gratings, as shown in the next section.

4. NUMERICAL RESULTS
In this section we demonstrate our method for recon-
structing highly reflecting fiber Bragg gratings from noisy
reflection spectra and compare its performance with a
previous method given in Ref. 9. In all the examples
given below, we added to each calculated point of the re-
flection spectrum a complex random variable that repre-
sented the noise in the experiment. In the first four ex-
amples, the random variables were independent and had
a Gaussian distribution with zero mean and a uniformly
distributed phase in the region [2p, p]. In the last ex-
ample, the random variables were correlated Gaussian
random variables. The complex reflection spectra of the
gratings were calculated by using the method shown in
Ref. 10. The basis functions $ fn(t)%, given in relation (8),
were calculated by using a modified Gram–Schmidt
procedure16 with double-precision accuracy (64 bits) to
avoid numerical errors in our calculations.

In the first example, we compared our method with the
method given in Ref. 9. A uniform grating with a cou-
pling coefficient q 5 500 m21 and a length L 5 1 cm,
which was analyzed in Ref. 9, was reconstructed. The
complex reflection spectrum of the grating was sampled
with a bandwidth of 10 nm and resolution of 0.002 nm as
performed in Ref. 9. When the standard deviation of the
noise in the amplitude of the complex reflection spectrum
was 1025, our method as well as the method used in Ref.
9 could accurately reconstruct the grating. However,
when the noise level was increased, only our reconstruc-
tion technique resulted in an accurate reconstruction of
the grating. Figure 1 shows the reconstruction of the
grating by use of the method developed in Ref. 9 (solid
curve) compared with a direct reconstruction of the grat-
ing by using the ILP algorithm (dashed curve) and a re-
construction of the grating using the method developed in
this paper (dotted curve) when the standard deviation of
the noise variables was 5 3 1025, i.e., five times larger
than the noise level used in Ref. 9. The figure shows that
the method developed in Ref. 9 gives a large error in the
reconstruction of the grating even for a relatively low
noise level, which does not affect the stability of the ILP
algorithm. In contrast, the reconstruction technique
given in this paper, as well as the ILP algorithm per-
formed without any regularization, could accurately re-
construct the grating profile.

In the second example, we reconstructed a uniform
grating with a coupling coefficient q 5 2.5 3 103 m21 and
length L 5 4 mm. The maximum reflectivity of the grat-
ing was approximately 1 –1028. The reflection spectrum
of the grating was sampled with a bandwidth of 40 nm
and a resolution of 0.01 nm. The standard deviation of
the noise-variable amplitude, added to the complex reflec-
tion spectrum, was equal to 0.02. The Bragg zone was
defined as the frequency region where the grating reflec-
tivity was higher than 75%. We used the ILP algorithm
to reconstruct the grating profile from the regularized re-
flection spectrum obtained by using the technique de-
scribed in this paper. Figure 2 compares the amplitude
of the coupling coefficient reconstructed from the regular-
ized reflection spectrum (solid curve) with the original
coupling coefficient (dashed curve). The results in Fig. 2

Fig. 1. Reconstruction of a uniform grating with coupling coef-
ficient q 5 500 m21 and length L 5 1 cm from a noisy reflection
spectrum. The figure compares the reconstruction obtained
with the method developed in Ref. 9 (solid curve) with a direct
reconstruction by the ILP algorithm (dashed curve) and with a
reconstruction by the method presented in this paper (dotted
curve). The reflection spectrum of the grating was sampled with
a bandwidth of 10 nm and resolution of 0.002 nm. The standard
deviation of the noise variables, added to the complex reflection
spectrum, was equal to 5 3 1025. The ILP algorithm as well as
the algorithm presented in this paper have accurately recon-
structed the grating profile.

Fig. 2. Reconstruction of a uniform grating with length of L
5 4 mm, coupling coefficient q 5 2.5 3 103 (m21), and maxi-
mum reflectivity 1 –1028 from a noisy reflection spectrum. The
reconstruction was performed by using the method described in
this paper (solid curve) and was compared with the original pro-
file (dashed curve) and with a direct reconstruction of the grating
from the noisy reflection spectrum (dotted curve). The standard
deviation of the noise-variable amplitude added to the complex
reflection spectrum was equal to 0.02.
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were also compared with a direct reconstruction of the
coupling coefficient from the noisy reflection spectrum by
using the ILP method (dotted curve). The figure clearly
shows an excellent reconstruction of the grating by our
method, whereas the grating could not be reconstructed
directly.

In the third example, a grating with length L 5 4 mm
and a Gaussian profile given by q(z) 5 1900 exp@26.2
3 105(z 2 L/2)2# was reconstructed. The maximum re-
flectivity of the grating was approximately 0.999. The
reflection spectrum of the grating was sampled with a
bandwidth of 20 nm and a resolution of 0.02 nm. The
standard deviation of the amplitude of the noise variables
in the complex reflection spectrum was equal to 1023.
The Bragg zone was defined as the frequency region
where the grating reflectivity was higher than 75%. We
used the ILP algorithm to reconstruct the coupling coeffi-
cient from the regularized spectrum obtained by using the
technique shown in this paper. Figure 3 shows the cou-
pling coefficients reconstructed from the regularized
(solid curve) and noisy (dotted curve) reflection spectra,
compared with the original coupling coefficient (dashed
curve). An excellent reconstruction is again obtained
when the reflection spectrum is regularized, whereas the
grating could not be reconstructed directly.

In the fourth example, we reconstructed a uniform
grating from a reflection spectrum that contained a very
high level of noise. The grating had a coupling coefficient
of q 5 1320 m21 and a maximum reflectivity of ;0.9999.
The reflection spectrum of the grating was sampled with
a bandwidth of 20 nm and a resolution of 0.005 nm. The
standard deviation of the noise-variable amplitude in the
complex reflection spectrum was equal to 0.1. The noisy
reflection spectrum of the grating is shown in Fig. 4. The
Bragg zone was defined as the frequency region where the
grating reflectivity was higher than 50%. Figure 5 com-
pares the amplitude of the coupling coefficient recon-
structed from the regularized reflection spectrum (solid
curve) with the original grating structure (dashed curve).
The results in Fig. 5 were also compared with a direct re-
construction of the coupling coefficient from the noisy re-

Fig. 3. Reconstruction of a Gaussian grating with length L
5 4 mm, coupling coefficient q(z) 5 $1900 exp@26.2 3 105(z
2 L/2)2#% m21, and maximum reflectivity 0.999. The reflection
spectrum of the grating was sampled with a bandwidth of 20 nm
and a resolution of 0.02 nm. The standard deviation of the
noise-variable amplitude added to the complex reflection spec-
trum was equal to 1023. Curve definitions as in Fig. 2.
flection spectrum (dotted curve). The figure shows
clearly that a very good reconstruction of the grating can
be obtained with our method in spite of the high level of
noise that was added to the reflection spectrum.

In the last example, we reconstructed a uniform grat-
ing with a coupling coefficient of q 5 1320 m21 and a
maximum reflectivity of ;0.9999. We added to each
point in the reflection spectrum a Gaussian random vari-
able with zero mean. Unlike in previous examples, the
noise variables added to the reflection spectrum were cor-
related; they were generated by a Gaussian ARMA(1, 0)
process.17 The covariance matrix of the random vari-
ables is given by

cov@n~ki!, n~kj!# 5 2 3 1022r ui2ju (9)

where n(ki) and n(kj) are the noise variables in the wave
numbers ki and kj , respectively, and r 5 0.9. The reflec-
tion spectrum of the grating was sampled with a band-
width of 20 nm and a resolution of 0.02 nm. The Bragg
zone was defined as the frequency region where the grat-
ing reflectivity was higher than 75%. Figure 6 compares
the amplitude of the coupling coefficient reconstructed
from the regularized reflection spectrum (solid curve)
with the original grating structure (dashed curve). The
results in Fig. 6 were also compared with a direct recon-
struction of the coupling coefficient from the noisy reflec-
tion spectrum (dotted curve). The figure shows that a

Fig. 4. Noisy reflectivity of a uniform grating with length 4 mm,
coupling coefficient q 5 1320 (m21), and maximum reflectivity
0.9999. The standard deviation of the noise variable amplitude
added to the complex reflection spectrum was equal to 0.1.

Fig. 5. Reconstruction of the uniform grating with the reflectiv-
ity shown in Fig. 4. Curve definitions as in Fig. 2.
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very good reconstruction of the grating can be obtained by
our method even in the case where the noise variables
added to the reflection spectrum are correlated. We have
also verified that an accurate reconstruction is obtained
for other values of the parameter r that were tested: r
5 0.2, 0.5, 0.8, 0.99, 0.999.

5. CONCLUSION
We have demonstrated a new method for reconstructing
highly reflecting fiber Bragg gratings from noisy reflec-
tion spectra. In a case in which the grating reflectivity is
high, noise in the Bragg zone of the reflection spectrum is
enhanced by the inverse scattering algorithms. Our
method is based on regularizing the reflection spectrum
by using the data obtained outside the Bragg zone of the
reflection spectrum. The mathematical properties of the
reflection spectrum of a grating with a known length en-
able us to accurately regularize the data in the Bragg fre-
quency region of the reflection spectrum. Using our
method, we were able to accurately reconstruct the struc-
ture of uniform and apodized gratings from noisy reflec-
tion spectra. The performance of our method was opti-
mal for uniform gratings. Our algorithm can be used to
accurately reconstruct, to our knowledge for the first
time, the structure of highly reflecting gratings from a re-
flection spectrum that contains a high level of noise.
Such gratings cannot be reconstructed with methods de-
scribed in previous studies.

APPENDIX A
In this appendix we give the derivation of the results pre-
sented in Eqs. (3) and (4). We assume that the solution
U(k, z) with the boundary conditions U(k, z 5 L)
5 (0, 1) can be represented in the following integral
form:

Fig. 6. Reconstruction of a uniform grating with length 4 mm,
coupling coefficient of q 5 1320 (m21), and maximum reflectivity
0.9999. We added to each point in the reflection spectrum a
Gaussian random variable with zero mean. The noise variables
were generated by a Gaussian ARMA(1, 0) process with a cova-
riance matrix given in Eq. (9) with a parameter r 5 0.9. Curve
definitions as in Fig. 2.
U~k, z ! 5 S 0
1 D exp@ik~z 2 L !#

1 E
z2L

L2z

F~t, z !exp~ikt!dt, 0 < z < L,

(A1)

where F(t, z) 5 @ f1(t, z), f2(t, z)# is the time-domain
kernel function of the solution U(k, z). Substituting Eq.
(A1) into Eq. (1) we obtain the following equations,

df1~t, z !

dz
2

df1~t, z !

dt
5 q~z !f2~t, z !,

df2~t, z !

dz
1

df2~t, z !

dt
5 q* ~z !f1~t, z !, (A2)

with the boundary conditions

f1~z 2 L, z ! 5 2
q~z !

2
,

f2~L 2 z, z ! 5 0. (A3)

Using the theory of characteristics,18 as performed in Ref.
19 for an infinite grating, we obtain that Eq. (A2) with the
boundary conditions given in Eq. (A3) has a unique solu-
tion. Therefore the solution U(k, z) can be represented
in the integral form given in Eq. (A1). Integrating Eq.
(A2) we obtain

f1~L 2 z, z ! 5 2
q~z 5 L !

2
,

f2~z 2 L, z ! 5 2
1

2
E

z

L

uq~z !u2dz. (A4)

Equations (3) and (4) are obtained directly by using Eqs.
(A1), (A3), and (A4) and the definition of the functions
a(k) and b(k).

APPENDIX B
In this appendix we calculate the effect of a small pertur-
bation in the coupling coefficient of a highly reflecting
grating on the functions a(k) and b(k) and on the reflec-
tion spectrum r(k). We show that a perturbation in the
grating structure has a small effect on the reflection spec-
trum of the grating for frequencies inside the Bragg zone.
Thus any small inaccuracy or a noise in the reflection
spectrum in frequencies within the Bragg zone may cause
a large error in the reconstruction of the grating. We
also show that the spectral functions a(k) and b(k) are
significantly affected by a perturbation in the grating
structure. Thus the reconstruction of the grating struc-
ture is not sensitive to noise in the functions a(k) and
b(k). The analysis is performed for a uniform grating
since such gratings have a closed-form solution for the
coupled-mode equations. The results can be generalized
for gratings with a more general profile using approxi-
mated solutions such as the WKB method.20

We consider a uniform grating with a coupling coeffi-
cient q(z) 5 q, where q is a real constant. The fields
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that propagate inside the grating U(k, z) can be found by
using the following relation10:

U~k, z !

5 F cosh~gD! 1
ik
g sinh~gD! 2

q
g sinh~gD!

2
q
g sinh~gD! cosh~gD! 2

ik
g sinh~gD!

G
3 U~k, z 5 L ! (B1)

where D 5 L 2 z and g 5 (q2 2 k2)1/2.
We add a small perturbation to the coupling coefficient

q(z) 5 q 1 eDq(z), where Dq(z) is a complex coupling
coefficient, and calculate the perturbation in the fields in-
side the grating up to the first order in e, U(k, z)
1 eDU(k, z). The propagation equation for the fields
DU(k, z) 5 @Du1(k, z), Du2(k, z)# is given by

d

dz
Du1~k, z ! 1 ikDu1~k, z ! 5 qDu2~k, z !

1 Dq~z !u2~z !,

d

dz
Du2~k, z ! 2 ikDu2~k, z ! 5 qDu1~k, z !

1 $Dq~z !%* u1~z !.

(B2)

Equation (B2) is an inhomogeneous equation for the vari-
able DU(k, z), with a null boundary condition, DU(k, z
5 L) 5 0.

Since Eq. (B2) is a linear equation, we solve it using the
superposition method.21 We first consider the solution to
Eq. (B2), DV(k, z), with the coupling coefficient Dq(z)
5 d (z 2 z0) and the boundary conditions DV(k, z 5 L)
5 0. The solution to Eq. (B2) for z , z0 is the same as
the solution to the homogeneous part of the equation
[with Dq(z) 5 0] and with the boundary condi-
tions DV(k, z 5 z0

2) 5 @2u2(k, z 5 z0
2), 2u1(k, z

5 z0
2)#. The unperturbed waves at z 5 z0

2 , u1(k, z
5 z0

2), and u2(k, z 5 z0
2) are calculated by using the

transmission matrix given in Eq. (B1). Then the homo-
geneous equation with the boundary conditions at z
5 z0

2 should be solved again by using the transmission
matrix given in Eq. (B1). After some calculations we ob-
tain

Dv1~k, z 5 0 ! 5 2
q2

g2
cosh~gL ! 1

k2

g2
cosh@g ~L 2 2z0!#

2 i
k

g
sinh@g ~L 2 2z0!#,

Dv2~k, z 5 0 ! 5
q

g
sinh~gL ! 2 i

k

g
cosh~gL !

1 i
k

g
cosh@g ~L 2 2z0!#. (B3)

Since the system is linear, the solution for an arbitrary
perturbation, Dq(z), can be calculated by using the con-
nection Dq(z) 5 *2`

` Dq(z0)d (z 2 z0)dz0 . The solution
in this case is given by the superposition integral,21
DU~k, z 5 0 ! 5 E
0

L

@Dq~z0!Dv1~k,z0!,

$Dq~z0!%* Dv2~k, z0!#dz0 . (B4)

The perturbation to the functions a(k) and b(k), eDb(k)
and eDa(k), respectively, can be obtained from Eq. (B4)
by using the relation @Db(k), Da(k)# 5 DU(k, z 5 0).
The perturbation to the amplitude of the reflection spec-
trum eDuru(k) can be calculated from the perturbation to
the functions a(k) and b(k), eDb(k) and eDa(k), and Eq.
(2).

To find the effect of the perturbation in the coupling co-
efficient on the functions a(k), b(k), and uru(k), we calcu-
late the relative change in these functions that is due to
the perturbation in the grating profile. We define the
functions q(k) and Dq(k) as the Fourier transforms of the
coupling coefficient q(z) and the perturbation to the cou-
pling coefficient Dq(z), respectively. When the grating is
highly reflecting, exp(qL) @ 1, we obtain that for frequen-
cies inside the Bragg zone that fulfill k ! 1/L, the rela-
tive change in the functions a(k), b(k), and uru(k) is
given by

UDa~k !/a~k !

Dq~k !/q~k !
U . qL,

UDb~k !/b~k !

Dq~k !/q~k !
U . qL,

U Duru~k !/ur~k !u

Re$Dq~k !%/q~k !
U . t~k !2qL. (B5)

Equation (B5) shows that the perturbation in the grat-
ing profile causes a relative change in the reflection spec-
trum inside the Bragg zone that is proportional to the
square of the transmission function of the grating, t(k)2.
When the grating reflectivity is high, the transmission of
the grating is very small for frequencies located inside the
Bragg zone of the grating. Therefore a large change in
the grating profile causes only a small change in the am-
plitude of the reflection spectrum for frequencies located
inside the Bragg zone of the grating. Thus in the inverse
scattering problem a perturbation in the amplitude of the
reflection spectrum may be amplified by a factor of
1/ut(k)u2 in the calculation of the coupling coefficient.
This conclusion is in agreement with the results given in
Ref. 8. In contrast, Eq. (B5) shows that a perturbation in
q(z) causes a significant change in the functions a(k) and
b(k) for frequencies inside the Bragg zone. Thus pertur-
bations in the functions a(k) and b(k) are not amplified
in the reconstruction of the grating structure.

The authors may be reached by email as follows: Amir
Rosenthal, eeamir@tx.technion.ac.il; Moshe Horowitz,
horowitz@ee.technion.ac.il.
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