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Propagation of quasisolitons in a fiber Bragg grating written in a slow saturable fiber amplifier
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We show, by using numerical simulations, that quasisolitons can propagate over a long distance in a fiber Bragg
grating that is written in a slow saturable fiber amplifier, such as an erbium-doped fiber amplifier. During the
pulse propagation, the front end of the pulse experiences a net gain while the rear end of pulse is attenuated due to
the combination of gain saturation and loss. However, the pulse profile almost does not change after propagating
over a length of 5 m that is approximately 2500 times larger than the spatial pulse width. The pulse amplitude has
an approximately hyperbolic secant profile. We develop a reduced model by using a multiscale analysis to study
solitary-wave propagation whennonlinearity and gain are small. When gain saturation also becomes small we
find analytically a new family of solitary-wave hyperbolic-secant solutions that approximately solve the reduced
model. The solitary waves propagate slightly faster than Bragg solitons that propagate in fiber Bragg gratings
without gain and loss.
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I. INTRODUCTION

Bragg solitons (BSs) are solitary waves that propagate in
a uniform fiber Bragg grating (FBG). Such solitons were
predicted theoretically [1–4] and then observed in experi-
ments [5,6]. Due to high dispersion that can be obtained in
FBGs [5], the peak power of BSs can be high, on the order of
tens of kilowatts. Such pulses are advantageous for nonlinear
applications such as optical frequency conversion. BSs in the
low-intensity limit can be analyzed by using the nonlinear
Schrödinger equation that is obtained from the nonlinear
coupled mode equations (NLCMEs) by using a multiscale
analysis [7,8].

Loss in gratings is caused due to absorption, coupling to
cladding modes, and grating imperfections [9]. The loss limits
the generation and the minimum propagation velocity of BSs.
Erbium-doped fiber amplifiers (EDFAs) are attractive for am-
plifying signals in the 1.55-µm regime. Therefore, FBGs that
are written in EDFAs (BG-EDFAs) can be used to generate and
to amplify BSs. In a previous work we have developed a model
to study pulse propagation in FBGs written in slow saturable
amplifiers, such as erbium-doped fiber amplifiers [10]. We
have included in the model the effect of gain saturation on
the propagation of a single pulse. We have shown that the
saturation effect may not be neglected for BSs. The gain
saturation tends to split the input BS into multiple pulses.

Solitary-wave propagation in Bragg gratings with a fast
saturable absorber was studied in Ref. [11]. However, in that
work the saturation depends on the pulse instantaneous power
rather than on the pulse energy, as obtained in BG-EDFAs.

In this paper we show by using numerical simulations
that in the presence of loss, slow gain saturation and FBG
quasisolitons can propagate in a BG-EDFA. The quasisolitons
almost do not change their parameters while propagating over
a very long distance. For example, we show that the spatial
width, the peak power, and the propagation velocity of the
pulse change by up to 0.6% after propagating a length of 5 m
in a BG-EDFA that is approximately 2500 times larger than
the spatial pulse width.

*yuvalsh@tx.technion.ac.il

In order to understand the propagation of quasisolitons
in BG-EDFAs we developed a reduced model by using
a multiscale analysis. We found that the propagation of
low-intensity pulses in BG-EDFAs can be approximately
analyzed by using a modified nonlinear Schrödinger equa-
tion that includes saturable-gain and loss terms. When
gain saturation also becomes small, we find a family of
solitary-wave approximate solutions with a hyperbolic-secant
profile. The analytical solutions are in a good quanti-
tative agreement with the results of the full numerical
simulations.

The rest of this paper is structured as follows: In Sec. II we
describe the results of numerical simulations that demonstrate
the propagation of quasisolitons in BG-EDFAs. In Sec. III we
use a multiscale analysis and show that in the low-intensity
limit, pulse propagation in BG-EDFAs can be approximately
described by a modified nonlinear Schrödinger equation that
includes saturable gain and loss. We show that when the gain
saturation becomes small, a family of solitary-wave functions
exists with a hyperbolic-secant profile. In Sec. IV we present
the main conclusions.

II. MODEL AND RESULTS OF NUMERICAL
SIMULATIONS

Nonlinear pulse propagation along FBGs written in slow
saturable amplifiers such as Erbium-doped fiber amplifiers
(BG-EDFAs) was studied in Ref. [10]. Assuming that the
refractive index change caused by the gain saturation can be
neglected, the propagation of pulses in uniform BG-EDFAs
can be analyzed by using modified NLCMEs with saturable-
gain and loss terms modified NLCMEs with saturable gain and
loss terms (NLCME+GL):

j ∂zu + jVg
−1 ∂tu + κv + �(|u|2 + 2 |v|2)u

− j 1
2 [g (z,t) − l] u = 0, (1a)

−j ∂zv + jVg
−1 ∂tv + κu + �(|v|2 + 2 |u|2)v

− j 1
2 [g (z,t) − l] v = 0, (1b)

where u(z,t) and v(z,t) are the slowly varying amplitudes of
the coupled waves with positive and negative phase velocities,
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respectively, κ is the coupling coefficient, σ is proportional
to the average refractive index change along the grating [12],
g(z,t) is the amplifier gain coefficient, l is the loss coefficient,
� is the nonlinear Kerr coefficient, Vg = c/neff is the group
velocity in the absence of the grating, c is the velocity of light in
vacuum, and neff is the effective refractive index. To model gain
dynamics in EDFAs we used several assumptions as described
in detail in Ref. [10]: (a) The amplifier is a three-level energy
system; (b) the effect of the pumping on the gain during the
pulse propagation is negligible; (c) the small-signal gain along
the grating length is constant; and (d) amplified spontaneous
emission can be neglected. Assumption (b) is valid since the
duration of the pulses that we consider is on the order of 1
ns while the effective response time of the amplifier is on the
order of 10–100 µs [13]. Assumptions (c) and (d) are valid
since we consider a short enough amplifier that is pumped
with high enough power such that all erbium atoms are excited
before the pulse arrives. By using these assumptions, the gain
coefficient is given by [10]

g (z,t) = g exp

[− ∫ t

ts
Ps (z,s) ds

Esat

]
, (2)

where ts is an arbitrary time before the pulse arrives at the
amplifier and that can be mathematically set to ts → −∞,
Esat = Ps,satτ is the saturation energy, Ps,sat is the signal
saturation power of the amplifier, τ is the spontaneous decay
time, and Ps(z,t) = |u(z,t)|2 + |v(z,t)|2 is the instantaneous
pulse power.

The total energy that passes through the amplifier at location
z equals Es(z) = ∫ +∞

−∞ Ps(z,τ )dτ . For a single pulse this
energy equals the total pulse energy at location z. The change
in the total energy along the BG-EDFA can be calculated by
using Eqs. (1a), (1b), and (2):

d

dz

[∫ +∞

−∞
|u (z,τ )|2 − |v (z,τ )|2 dτ

]

= gEsat

{
1 − exp

[
−Es (z)

Esat

]}
− lEs (z) . (3)

According to Eq. (3), a steady-state solution Es(z) = Es,0 can
be obtained by setting the left-hand side of Eq. (3) to zero:

gEsat

[
1 − exp

(
−Es,0

Esat

)]
= lEs,0. (4)

A solution for Es,0 exists for positive coefficients g and l such
that g > l. In this case the total pulse energy does not change
while propagating in the amplifier.

In order to study nonlinear pulse propagation in BG-
EDFAs, we solve Eqs. (1) and (2) by using a numerical
simulation that extends the split-step method described in
Ref. [14] to include saturable-gain and loss terms. The
parameters of the BG-EDFA are neff = 1.45, κ = 9000 m−1,
� = 5 m−1 kW−1, Ps,sat = 104 µW [13], τ = 10 ms [15], and
hence Esat = 1.04 µJ. The loss parameter equals l = 0.5 m−1,
as estimated in experiments [6]. In all of our simulations,
the initial pulse is a BS with energy Es,0 that is an exact
solution of Eq. (13a) for a uniform FBG with g = l = 0. Since
quasisolitons are not equal to BSs, the pulse slightly changes its
parameters at the beginning of the grating (L <∼ 1 m). The time
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FIG. 1. (Color online) (a) Spatial pulse intensity P (ζ ), wave-
number detuning from the Bragg wave number of the (b) forward
propagating envelope u and (c) the backward propagating envelope v

at the time when the center of the pulse is located at z = 0 (blue solid
line), z = 1 m (red dashed line), and at z = 5 m (green dotted line) for
an amplifier with a small signal gain g0 of 3 dB/m. ζ is the location
around the peak of the pulse. (d) shows the effective gain saturation
geff = (g − l)/ν along the pulse at the time when the center of the
pulse is located at z = 5 m. The input pulse is a Bragg soliton with
parameters ν = 0.2, ρ = 0.114, and with energy E0 = 0.68Esat.

t = 0 is defined as the time when the pulse center propagates 4
m in the BG-EDFA. The location of the pulse center at t = 0 is
defined as z = 0. The pulse shape at the time when the center
of the pulse is located at z = 0, 1, and 5 m is shown in Fig. 1
for an amplifier with a small signal gain g0 of 3 dB/m and
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FIG. 2. (Color online) (a) Spatial pulse intensity P (ζ ), wave-
number detuning from the Bragg wave number of the (b) forward
propagating envelope u and (c) the backward propagating envelope v

at the time when the center of the pulse is located at z = 0 (blue solid
line), z = 1 m (red dashed line), and at z = 5 m (green dotted line),
for an amplifier with a small signal gain g0 of 5 dB/m. (d) shows the
effective gain saturation along the pulse at the time when the center of
the pulse is located at z = 5 m. The input pulse is a Bragg soliton with
parameters ν = 0.2, ρ = 0.228, and with an energy E0 = 1.37Esat.
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in Fig. 2 for an amplifier with g0 = 5 dB/m. The obtained
pulse energy equals 0.68Esat for g0 = 3 dB/m and 1.37Esat

for g0 = 5 dB/m. These results are in accordance with the
steady-state solution of Eq. (3). The initial normalized group
velocity of the pulse ν equals 0.2 in both figures.

Figures 1 and 2 show (a) the spatial pulse intensity P (ζ )
and the wave-number detuning from the Bragg wave number
of (b) the forward propagating envelope u and (c) the backward
propagating envelope v, as a function of the location, at
the time when the center of the pulse is located at z = 0
(blue solid line), z = 1 m (red dashed line), and at z = 5
m (green dotted line). ζ is the relative location with respect
to the peak of the pulse. The wave-number detuning from
the Bragg wave number of the wave envelopes u and v is
defined as dφ/dz, where φ is the phase of the envelopes u

and v, respectively. Figures 1(d) and 2(d) show the effective
gain saturation along the pulse, geff = (g − l)/ν. Although
significant gain saturation occurs along the pulse, no noticeable
change in the pulse amplitude is observed when the center of
the pulse propagates from z = 0 to z = 1 m.

Unlike BS that can theoretically propagate in FBGs without
changing their shape, our numerical simulations indicate that
the parameters of the quasisolitons that propagate in BG-
EDFAs change slighlty during the propagation. The change
becomes more significant as the saturation becomes stronger,
as shown in Fig. 2. Figure 3 shows the relative change of
the pulse amplitude and of the full width at half maximum
(FWHM) of the spatial profile of the pulse. The parameters
are the same as those used in Fig. 1. The peak power decreases
during the propagation and the relative peak-power error after
the center of the pulse propagates from z = 0 to z = 5 m is
∼0.6% in case shown in Fig. 1 and 4.4% in case shown in
Fig. 2. The FWHM of the pulse increases as the propagation
length increases, as shown in Fig. 3. The overall energy of the
pulse does not change, as obtain from the steady-state solution
of Eq. (3).

Unlike BSs in uniform FBGs that propagate with a constant
velocity, the velocity of the pulse that propagates in a BG-
EDFA decreases during its propagation. We have numerically
evaluated the normalized averaged energy velocity of the pulse
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FIG. 3. (Color online) Relative change of the pulse amplitude εP

and of the FWHM of the spatial profile of the pulse εL compared to
the pulse at t = 0 as a function of the propagation distance z.

as a function of its location along the BG-EDFA [10]:

νe(z) =
∫ +∞
−∞ [|u(z,τ )|2 − |v(z,τ )|2]dτ∫ +∞
−∞ [|u(z,τ )|2 + |v(z,τ )|2]dτ

. (5)

The result shown in Fig. 4 indicates that the pulse gradually
reduces its velocity by ∼0.05% per meter of propagation for
the example shown in Fig. 1 and by ∼0.5% per meter for the
example shown in Fig. 2. We have verified that the total pulse
energy does not change along the propagation. Hence, the
slowing down of the pulse decreases its amplitude as shown in
Figs. 1(a) and 2(b).

The resolution in both time and space domain was chosen
to be �z = 0.005 FWHM and �t = 0.005 FWHM/Vg,
respectively, where FWHM is the spatial fFWHM of the pulse.
We note that further reducing the resolution did not cause a
smaller change in quasisoliton parameters.

Figure 5 shows the pulse profile and the wave-number
detuning of the quasisoliton at z = 0 for the case shown in
Fig. 2 that is compared to a BS solution in a uniform grating
without gain or loss. The parameters of the BS were obtained
by requiring that the BS energy and its central frequency will
be the same as those of the quasisoliton that propagates in
the BG-EDFA. Excellent agreement between the spatial pulse
intensity profile and wave-number detuning was obtained
between the BS and the pulse at a BG-EDFA. This result
is not straightforward since the front end of the pulse that
propagates in the BG-EDFA experiences a net gain while the
rare end experiences effective loss due to the combination of
gain saturation and loss as shown in Figs. 1(d) and 2(d).

III. MULTISCALE ANALYSES OF THE NLCME+GL AND
NEW SOLITARY WAVE SOLUTION

In order to gain insight into quasisoliton propagation that
was obtained numerically, we have developed a reduced
analytical model. In the limit of low-intensity pulses we have
reduced Eqs. II to a couple of nonlinear equations by using
a multiscale analysis. One of the propagation equations is a
modified nonlinear Schrödinger (NLS) equation that includes
loss and saturable gain terms. When the gain saturation also
becomes small, we obtain a new family of approximate
solitary-wave solutions. The use of a multiscale analysis to
obtain BS in uniform FBGs was developed in Ref. [7]. In this
paper we apply a multiscale analysis to derive the propagation
equations of pulses in BG-EDFAs. We show that solitary waves
can propagate in such adevice when gain saturation is small.
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FIG. 4. (Color online) Evolution of the normalized energy veloc-
ity νe of the pulse as defined in Eq. (5) as a function of the propagation
distance for (a) the case shown in Fig. 1 and for (b) the case shown
in Fig. 2.
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FIG. 5. (Color online) Comparison of (a) the pulse profile and
the wave-number detuning from the Bragg wave number of (b) the
forward propagating envelope u and (c) the backward propagating
envelope v, between the quasisoliton shown in Fig. 2 at time t = 0
(blue solid line) and the fitted BS (red dashed line), with the
parameters ν = 0.1922, ρ = 0.2173. The fitted BS parameters were
obtained by calculating the pulse group velocity ν from the results of
the numerical simulation and comparing the expression for BS energy,
EBS = 4ρ(1 − ν2)/(3 − ν2)/(�Vgν), to the steady-state energy, Es,0.

The dispersion relation of a uniform grating without gain
is obtained by substituting a continuous-wave solution into
Eqs. (1) and requiring g = l = � = 0 [7]:

u(z,t) =
(

u(z,t)

v(z,t)

)
= v exp [j (Qz − �t)] , (6)

where � and Q are the frequency and wave-number offset
with respect to the Bragg condition, respectively. We use bold
notation to assign vectors. The dispersion relation equals

�± = ± Vgκ√
1 − ν2

,Q = κν√
1 − ν2

, (7)

where ν = (1/Vg)d�+/dQ is the normalized group velocity.
The corresponding eigenvectors are

v+ =
⎛
⎝

√
1+ν√

2

−
√

1−ν√
2

⎞
⎠ , v− =

⎛
⎝

√
1−ν√

2√
1+ν√

2

⎞
⎠ . (8)

According to the method of multiscale analysis we intro-
duce new coordinates that describe the wave evolution on
different time and length scales: t = t0 + µt1 + µ2t2 + · · ·
and z = z0 + µz1 + µ2z2 + · · ·, where 0 < µ � 1 is a small
parameter. To separate between the different time scales we
need to make several assumptions. These assumptions are
justified for low-intensity pulses similar to those used in
experiments for demonstrating BSs [6]. We first assume that
the carrier frequency of the propagating pulse is close to
the upper edge of the band gap, i.e., � ≈ �+ ≈ Vgκ . We

define the fastest time scale T0
�= 2π�−1. For moderate and

strong uniform gratings, κ ∼ 1–10 mm−1 and T0 is on the
order of 1–10 ps. We define the shortest scale of the length
L0 = 2πQ−1. T0 and L0 are related through phase velocity, as

will be shown below. The variables t0 and z0 are the time and
the location coordinates that vary on the time scale T0 and the
length scale L0, respectively. We next assume that the spectral
width of the propagating pulse is much smaller in comparison
with the band-gap width. Therefore, we assume a solution,

u(z,t) = v (z1,z2; t1,t2) exp [j (Qz0 − �+t0)] , (9)

where we choose

v(z,t) = a(z1,z2; t1,t2)v+ + µb(z1,z2; t1,t2)v− + O(µ2).

(10)

Our third assumption is that the nonlinear length

Lnl
�= [� max(Ps)]−1, the gain length Lg

�= 1/g, and the loss

length Ll
�= 1/l are all on the order of L2 = µ−2L0. We

therefore substitute in Eq. (1): � → µ2�, g → µ2g, l → µ2l.
The variables z2 and t2 are the spatial and the temporal
coordinates that vary on the longest length scale L2 and the
longest time scale T2 = µ−2T0, respectively. The intermediate
time and length scales are T1 = µ−1T0 and L1 = µ−1L0,
respectively. We will show below that the length scale L1

is connected to the time scale T1 by the group velocity νVg.
We note that in the presence of the grating the nonlinear, gain,
and loss distances are different in comparison with the above
definitions due to the change in the propagation velocity of the
pulse.

Our last assumption is that gain saturation does not depend
on t0 and z0. The angular frequency of the propagating wave
is � + �B, where �B is the Bragg frequency. The bandwidth
of the band gap is on the order of 1 nm while the bandwidth
of the EDFA is on the order of 30 nm [13]. Therefore, the
saturation term in Eq. (2), which is obtained by solving the rate
equations [10], does not depend on the carrier frequency offset
� and hence it does not depend on the fastest time scale t0. Due
to the slow response time of the EDFA and the propagation of
the pulse, we also neglect the spatial hole burning effect and
hence we neglect the dependence of the saturation on z0.

We start separating the propagation equation into different
time scales by expanding the integral in Eq. (2) according
to the multiscale expansion. We use the method described in
Ref. [16] to expand the saturation term into its different orders:

g(z1,z2; t1,t2) = g exp

[
− ∫ t1

−∞ Ps(z1,z2; s1,t2) ds1

Esat
+ O(µ)

]
.

(11)

We substitute Eqs. (9)–(11) into Eqs. (1) and equate the
terms of the same power in µ. The equation for the the
zero order µ0 is the same as the propagation equation for a
continuous-wave signal in a linear grating without loss or gain
(g = l = � = 0). Therefore, � and Q satisfy the dispersion
relation given in Eq. (7).

Collecting terms on the order µ1 results in the following
set of equations,

∂a

∂τ1
= 0, b = −j

1 − ν2

2κ

∂a

∂ζ1
, (12)

where ζi = zi − νVgti , τi = ti . Hence, up to the first order of
µ, both envelope functions a(ζ1,ζ2; τ1,τ2) and b(ζ1,ζ2; τ1,τ2)
propagate with a group velocity νVg that is equal to that
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obtained in a uniform grating without nonlinear effects, gain,
and loss.

Collecting terms of the order µ2 results in the following set
of equations for a(ζ1,ζ2; τ1,τ2),

j
∂a

∂τ2
+ 1

2
�′′

+
∂2a

∂ζ 2
1

+ �eff |a|2 a

− jVg

[
g exp

(
−

∫ ∞

ζ1

|a (s1,ζ2; τ1,τ2)|2 ds1/Esat

)
− l

]
× a = 0, (13a)

j
∂a

∂ζ2
− ν

√
1 − ν2

κ

∂2a

∂ζ 2
1

− 1

2
�ν |a|2 a = 0, (13b)

where �′′
+ = d2�/dQ2 and �eff = Vg�(3 − ν2)/2. Equation

(13a) is a modified NLS that includes loss and saturated-gain
terms. Equations (13a) and (13b) extend the equations obtained
in Ref. [8], where it was assumed that g = l = 0.

We note that Eq. (13a) is similar to the equation that
describes passive mode locking in lasers with a slow saturable
absorber and slow-gain saturation [17,18]. The model in
Refs. [17] and [18] also contains the effect of gain dispersion
or an intracavity filter. Its solution was obtained assuming
that the gain dispersion does not equal zero. In our model we
neglect the gain dispersion term since the bandwidth of the
quasisolitons is negligible in comparison to the bandwidth of
EDFA (≈20 nm).

We first solve Eq. (13a). In order to obtain an analytical
solitary-wave solution we add an assumption that the saturation
is small and hence the pulse energy, E = ∫ t

−∞ Ps (z,s) ds �
Esat. In this case, Eq. (13a) becomes

j
∂a

∂τ2
+ 1

2
�′′

+
∂2a

∂ζ 2
1

+ �eff |a|2 a

+ j

(
−g0 + g1

∫ ∞

ζ1

|a (s1,ζ2; τ1,τ2)|2 ds1

)
a = 0, (14)

where g0 = (g − l)Vg and g1 = g/(Esatν). Motivated by the
results of our numerical simulations such as those presented
in Fig. 5, we choose the ansatz,

ã = A sech[B(ζ1 − δνVgτ2)] exp [(Cζ1 − Dτ2)] , (15)

where A,B,C,D, and δν are real coefficients. Substituting
Eq. (15) into Eq. (14) gives

A = g0

g1

√
�eff

�′′+
, (16a)

B = g0

g1

�eff

�′′+
, (16b)

C = δνVg

�′′+
− g1

�eff
, (16c)

D = 1

2

⎛
⎝V 2

g δν2 − g2
0�2

eff

g2
1

�′′+
+ �′′

+g2
1

�2
eff

− 2Vgδνg1

�eff

⎞
⎠ , (16d)

where δν is a free parameter that will be defined by using
Eq. (13b). Hence we have obtained solitary-wave hyperbolic-
secant solutions to Eq. (14). Once ν is chosen, the pulse

intensity profile is uniquely determined by the steady-state
energy condition. Assuming a small saturation as used in
obtaining Eq. (14),

Es,0 	 2Esat
g − l

g
= 2A2/B. (17)

We note that Eq. (13a) can also be used to model nonlinear
wave propagation in a slow saturable fiber amplifiers without a
grating. In this case �′′

+ represents the fiber dispersion and �eff

represents the fiber nonlinear coefficient. The solutions given
in Eqs. (15) and (16) show that solitary-wave solutions exist
for Eq. (13a) when the saturation effect is small. However, the
calculation of the solitary-wave pulse parameters for an EDFA
shows that such pulses cannot be obtained without adding a
grating. For example, assuming a dispersion coefficient of 15
ps/km nm, a loss of 0.2 dB/km, a gain coefficient of 3 dB/m,
and the saturation energy of 0.1 µJ, the obtained solitary-wave
pulse width is on the order of 10−22 s. This unphysical result
is obtained due to the small dispersion coefficient of the fiber
without the grating.

To present the solution in a similar form to that used for BSs
in Ref. [3], we rewrite the solitary-wave solution by using two
BS parameters, ν and ρeff . We require B = sin ρeffκ/

√
1 − ν2,

and by using Eq. (16) we obtain

sin ρeff = EsatVg�ν(3 − ν2)(g − l)

2(1 − ν2)g
. (18)

Then, the solitary-wave solution becomes

ã =
(

κ

�
√

1 − ν2

)1/2

α sin ρeffsech

[
κ sin ρeff√

1 − ν2
(ζ1 − δνVgτ2)

]
× exp (Cζ1 − Dτ2) . (19)

The solution ã solves Eq. (14). The full solution a must
also solve Eq. (13b). We look for a solution of the form a =
ã exp(jFζ2). Clearly this solution also satisfies Eq. (14). Direct
substitution into Eq. (13b) gives the following results:

C = 0, (20a)

−F + 2κν (sin ρeff)2

√
1 − ν2(3 − ν2)

+ O [sin ρeff]
4 = 0.

(20b)

Equation (20a) defines the value of the parameter δν:

δν = 2(1 − ν2)3/2g

EsatVg�κν(3 − ν2)
. (21)

The second equation can be solved only up to the third
order in sin ρeff , as was also the case in Ref. [8]. This
approximation is also consistent with our earlier assumption of
small nonlinearity, which allowed us to make the substitution
� → µ2�. The solution for the parameter F is given by

F = 2κ(sin ρeff)2ν√
1 − ν2(3 − ν2)

. (22)

We note that relatively small values of ρeff do not necessary
result in low peak-power pulses. For example, the fitted BS in
case of Fig. 5 has a peak power of 56 kW while the detuning
parameter is only ρ = 0.2173.
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Using Eqs. (12) and (15) and substituting ζi = z − νVgt,τi = t , µ → 1, we obtain

u(z,t) 	 A√
2

sech[B(z − (ν + δν)Vgt)] exp{j [(F + Q)z − (D + FVgν + �+)t]}

×
(

(1 + ν)1/2{1 + 1
2j (1 − ν) sin ρeff tanh[B(z − (ν + δν)Vgt)]}

−(1 − ν)1/2{1 − 1
2j (1 + ν) sin ρeff tanh[B(z − (ν + δν)Vgt)]}

)
, (23)

where the parameters A,B,D,F, δν, and ρeff are defined in
Eqs. (16), (18), and (22).

Solution (23) has the same spatial dependance as the
solution found in Ref. [8]. It was shown in that work that
the solution that is obtained by using the multiscale analysis
for the case when g = l = 0 is identical to the BS solution,
when terms on the order ρ3 and higher are dropped. Hence, the
solution found in this work has the same spatial dependence
as the BS of velocity ν and energy Es,0 in cases when the BS
peak power is limited. However, the solitary wave obtained in
this work propagates with a group velocity that is δνVg higher
than the group velocity obtained in the absence of saturable
gain and loss. The solution also has a different temporal
phase dependence than in the BS solution. The change in
the propagation velocity can be explained by the fact that
when the pulses propagate in the saturable amplifier, the front
tail of the pulse is amplified while the rear tail of the pulse
is attenuated. Therefore, the center of the pulse is shifted
toward its front tail and the group velocity of the pulse slightly
increases.

The analytical solution given in Eq. (23) was compared to
the results of the numerical simulations. Figure 6 compares
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FIG. 6. (Color online) (a) Spatial intensity profile, wave-number
detuning of (b) the forward propagating wave u, and (c) the backward
propagating wave v after propagating 4 m in a BG-EDFA, calculated
by using the numerical simulation (red dashed line), and by the
analytical expression in Eq. (23) (blue solid line). The small signal
gain equals g = 0.27583 m−1 and the steady-state pulse energy equals
0.2Esat. The free parameter of the analytical solution was obtained by
calculating the spatial frequency near the peak of the pulse obtained
using the numerical simulation.

the results in case of low saturation, when the steady-state
pulse energy equals 0.2Esat. The only free parameter of the
analytical solution, ν, was extracted by calculating from the
results of the numerical simulation the spatial frequency at the
center of the pulse and by using the dispersion relation (7).
A good agreement between the numerical simulation and
the analytical reduced model was obtained for both the
intensity profile and wave-number detuning. The discrepancy
between the analytical solution and the results of the numerical
simulations becomes larger when gain saturation increases.
However, even in the case of high saturation, such as in the
case shown in Figs. 2 and 5, an excellent fit can be obtained
between the numerically calculated pulse and a BS solution,
as shown in Fig. 5.

We have also quantitatively compared the change of the
group velocity of the reduced model to that obtained from the
numerical simulation. For the parameters used in Figs. 1 and 2,
the calculated normalized velocity increase δν is on the order
of 10−5. This velocity change is too small to be verified by
using the numerical simulation. By choosing another set of
parameters, g = 0.1522 m−1, l = 0.1446 m−1, Esat = 10 µJ,
and κ = 450 m−1, and a pulse energy of 0.1Esat, we have
obtained a normalized velocity increase δν of 2.16 × 10−4,
as compared to δν = 2.04 × 10−4 obtained by using the
numerical simulation.

IV. CONCLUSION

We have shown, by using a numerical simulation, that a
quasisoliton can propagate over a very long distance in a FBG
that is written in a slow saturable fiber amplifier, such as an
erbium-doped fiber amplifier (BG-EDFA). The front end of
the pulse experiences a net gain while the rear end of the
pulse experiences a net loss due to the combination of gain
saturation and loss. The spatial pulse profile is maintained
symmetrical despite the significant change in the net gain along
the pulse. However, unlike Bragg solitons, quasisolitons in
BG-EDFAs slightly decrease their velocity and their central
frequency during the propagation. By using a multiscale
analysis, we developed a reduced model to study low-intensity
pulse propagation in BG-EDFAs. The pulse propagation in the
reduced model is described by two simple equations. One of
the equations is a modified nonlinear Schrödinger equation that
includes saturable gain and loss terms. When gain saturation
becomes small, we were able to find analytically a new family
of solitary-wave hyperbolic-secant approximate solutions. The
obtained solutions have the same spatial dependence as BSs
that propagate in uniform gratings without loss or gain, in
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the limit of weak solitons. However, the pulses propagate
slightly faster than in FBGs without gain or loss, due to gain
saturation. The increase in the propagation velocity predicted
by the analytical solutions as well as the spatial profile of the
solutions were found to be in a good quantitative agreement
with the results of the numerical simulation. The newly found
quasisolitons may have a peak power on the order of tens

of kilowatts. Such intense pulses are important for nonlinear
applications such as frequency conversion.
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