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We demonstrate an inverse scattering algorithm for reconstructing the structure of lossy fiber Bragg gratings.
The algorithm enables us to extract the profiles of the refractive index and the loss coefficient along the grating
from the grating transmission spectrum and from the reflection spectra, measured from both sides of the grat-
ing. Such an algorithm can be used to develop novel distributed evanescent-wave fiber Bragg sensors that
measure the change in both the refractive index and the attenuation coefficient of the medium surrounding the
grating. The algorithm can also be used to analyze and to design fiber Bragg gratings written in fiber am-
plifiers. A novel method to overcome instability problems in extracting the parameters of the lossy grating is
introduced. The new method also makes it possible to reduce the spectral resolution needed to accurately
extract the grating parameters. © 2004 Optical Society of America

OCIS codes: 050.2770, 060.2370.
1. INTRODUCTION
In recent years, there has been intensive work in the field
of fiber optic sensors. Fiber sensors are low cost, are re-
liable, and are not affected by electromagnetic
interference.1 Fiber Bragg gratings can be used as dis-
tributed sensors for measuring the profile of strain or
temperature along the grating with a resolution on the or-
der of tens of micrometers.2–4 The interrogation of such
sensors is based on extracting the refractive index of the
grating from the complex reflection spectrum by using the
Fourier or the Gabor transform.2 Evanescent-field fiber
sensors are used to measure the absorption or the refrac-
tive index of the medium surrounding the fiber. The ab-
sorption of the medium surrounding the sensor can be
found by measuring the total loss in the sensor.5–11 The
change in the refractive index of the medium surrounding
the fiber, averaged along the whole sensor length, can be
found by using an interferometer or a grating.12,13 In a
previous paper we showed that an evanescent-wave fiber
Bragg grating can be used as a distributed sensor with a
resolution on the order of tens of micrometers.14 The im-
pulse response of the evanescent-wave fiber Bragg grat-
ing was measured by using low-coherence spectral inter-
ferometry performed in the frequency domain.14,15 The
change in the refractive index of the medium surrounding
the fiber was extracted by using the Fourier transform.
However, in an evanescent-field sensor based on a fiber
Bragg grating, the absorption coefficient as well as the ef-
fective refractive index changes along the grating.
Therefore the measurement of the loss profile in an
evanescent-field fiber Bragg sensor can add important in-
formation about the medium surrounding the fiber. Ex-
tracting the spatial distribution of both the loss and the
effective refractive index of the grating may make it pos-
sible to develop novel evanescent-field sensors for interro-
gating highly absorbing media such as biological tissues.
The measurement of the absorption profile of the gratings
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may also help to detect defects in the grating and to im-
prove the writing process.

Inverse scattering algorithms were used in previous
work to extract the refractive-index profile of fiber Bragg
gratings when the loss of the grating was neglected.16–18

Inverse scattering algorithms for extracting the profile of
discrete layered lossy structures have been used to study
electromagnetic transmission lines.19,20 In this paper we
demonstrate an inverse scattering algorithm that enables
us to reconstruct the structure of fiber Bragg gratings
with loss. The algorithm permits determination of both
the effective refractive index and the absorption profile
along the grating. The algorithm is based on a layer-
peeling technique described in Refs. 19 and 20. A new
method was added to the algorithm to overcome instabili-
ties that may arise when a grating with high reflectivity
and/or high loss is analyzed. Such an instability can oc-
cur during analysis of fiber Bragg gratings. The new
method for solving the instability problem also permits
reduction of the spectral resolution needed to present the
grating spectra. Therefore the spectral resolution
needed in the algorithm described in this paper is smaller
than the resolution required in previously published algo-
rithms for analyzing highly reflecting lossless fiber Bragg
gratings. The derivation of the algorithm in this paper
does not require definition of a noncausal signal as in Ref.
19. Unlike in Ref. 20, we use a continuous formulation
for the direct scattering problem. We also use a complex
coupling coefficient for analyzing the grating rather than
the real coupling coefficient used in Refs. 19 and 20. We
note that the inverse scattering algorithm for interrogat-
ing lossy fiber Bragg gratings described in this paper may
also be used to interrogate fiber gratings written in am-
plifying media, such as Erbium-doped fiber amplifiers.
Therefore the algorithm may also be important for inter-
rogating active sensors and distributed fiber Bragg
lasers.21
2004 Optical Society of America
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2. MATHEMATICAL MODEL
In this section we give the mathematical model needed to
solve the inverse scattering problem for lossy fiber Bragg
gratings written in single-mode fibers. Our analysis in
this section is based on coupled-mode theory.22,23 The
grating can be modeled as a perturbation to the refractive
index along the fiber,

neff~z ! 5 navg 1 n0~z ! 1 ih~z ! 1 n1~z !sinF2p

L
z 1 u~z !G ,

(1)

where navg is the average refractive index, n0(z) is the
spatially dependent average refractive index, h(z) is the
spatially dependent average absorption coefficient, n1(z)
is the amplitude of the refractive-index modulation, and L
is the average grating period. We assume that the func-
tions n0(z), h(z), n1(z), and u(z) are slowly varying with
respect to the grating period. We also assume that the
refractive index and the absorption of the grating do not
depend on the wavelength.

The electrical field is presented as a superposition of
the backward- and the forward-propagating fields,

E~x, y, z, t ! 5 @a1~z !exp~2ibz !

1 a2~z !exp~ibz !#e~x, y !exp~2ivt !,

(2)

where a1(z) and a2(z) are the slowly varying amplitudes
of the waves propagating in the 2z and 1z direction, re-
spectively; e(x, y) is the transverse distribution of the
field; and b 5 vnavg /c is the wave number, where c is the
speed of light in vacuum. Using coupled-mode theory
and averaging over the transverse field distribution,23 we
obtain

da1~z !

dz
5 2ia1~z !@ s~z ! 1 ia~z !# 1 a2~z !k~z !

3 exp~2iu~z ! 1 2ikz !,

da2~z !

dz
5 ia2~z !@ s~z ! 1 ia~z !# 1 a1~k !k~z !

3 exp~iu~z ! 2 2ikz !, (3)

where k 5 b 2 bB is the wave number detuning with re-
spect to the Bragg design wave number bB 5 p/L and
the coefficients s(z), h(z), and k(z) are equal to
s~z ! 5
v

c

E n0~x, y, z !ue~x, y !u2dxdy

E ue~x, y !u2dxdy

,

a~z ! 5
v

c

E h~x, y, z !ue~x, y !u2dxdy

E ue~x, y !u2dxdy

,

k~z ! 5
v

c

E n1~x, y, z !ue~x, y !u2dxdy

E ue~x, y !u2dxdy

. (4)

Using a vectorial notation V(k, z)
5 (v1(k, z), v2(k, z)) t, and using the transformation

v1~k, z ! 5 a1~k, z !

3 expF2ikz 2 E
0

z

a~z!dz 1 iE
0

z

s~z!dzG ,

v2~k, z ! 5 a2~k, z !

3 expF1ikz 1 E
0

z

a~z!dz 2 iE
0

z

s~z!dzG ,

(5)

we obtain

dV~k, z !

dz
5 F 2ik q1~z !

q2~z ! ik GV~k, z !, (6)

where z 5 0 denotes the location where the grating struc-
ture begins. The coupling coefficients, q1(z) and q2(z),
are given by

q1~z ! 5 q~z !expF22E
0

z

a~z!dzG ,

q2~z ! 5 q* ~z !expF12E
0

z

a~z!dzG . (7)

The coupling coefficient q(z) contains information about
the refractive-index structure of the grating and is given
by

q~z ! 5 k~z !expF2iu~z ! 1 2iE
0

z

s~z!dzG . (8)

We note that Eq. (6) resembles the coupled-mode equa-
tions for a lossless grating18; However, when the grating
is lossy, the coupling coefficients in Eq. (6), q1(z) and
q2(z), are two independent functions. The difference be-
tween the two coupling coefficients is determined by the
absorption.

In a lossless grating, the measurement of the complex
reflection from one side of the grating is sufficient to re-
construct the grating profile.24 However, in a lossy grat-
ing, the coupling coefficients q1(z) and q2(z) are two in-
dependent functions, and therefore additional
information is needed in order to uniquely determine the
grating parameters. Additional information on the grat-
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ing structure can be obtained by measuring the complex
transmission and reflection functions from both sides of
the grating. Measurement of the reflection spectrum
from both sides of a grating has been used previously for
extracting the profile of highly reflecting fiber Bragg
gratings.25 A similar experimental setup may be used to
measure the structure of lossy gratings.

We assume that the grating is written in the region
@0, L#. To mathematically define the reflection and the
transmission functions from both sides of the grating, we
introduce four solutions to the coupled-mode equations
[Eq. (6)]: F(k, z), F̄(k, z), C(k, z), C̄(k, z), with the
following boundary conditions24:

F~k, z 5 0 ! 5 S 1
0 D , C~k, z 5 L ! 5 S 0

1 D ,

F̄~k, z 5 0 ! 5 S 0
1 D , C̄~k, z 5 L ! 5 S 1

0 D . (9)

The Wronskian of two solutions to Eq. (6), V
5 (v1 , v2) t and U 5 (u1 , u2) t, is defined as W(U, V)
5 u1v2 2 u2v1 . Using Eq. (6) we can show that for any
two solutions U and V, d/dz@W(U, V)# 5 0. Using this
relation and the boundary conditions in Eqs. (9), we ob-
tain that the Wronskian of the solutions F(k, z) and
F̄(k, z) is equal to W(F, F̄) 5 1. Hence the two solu-
tions F(k, z) and F̄(k, z) are independent. Since Eq. (6)
is linear, each of its solutions can be expressed as a linear
combination of two independent solutions to Eq. (6):

C~k, z ! 5 a~k !F̄~k, z ! 1 b~k !F~k, z !,

C̄~k, z ! 5 ā~k !F~k, z ! 1 b̄~k !F̄~k, z !. (10)

A connection between the coefficients a(k), b(k), ā(k),
b̄(k), can be obtained from the Wronskian of the solutions
C(k, z) and C̄(k, z). Using the boundary conditions in
Eqs. (9), we obtain W(C, C̄) 5 21. Substituting Eqs.
(10) into the Wronskian W(C, C̄), we obtain a connection
between the coefficients:

b~k !b̄~k ! 2 a~k !ā~k ! 5 21. (11)

To define the complex transmission and reflection func-
tions of the grating we refer to the solution of Eq. (6),
U(k, z) 5 (u1(k, z), u2(k, z)) t 5 C(k, z)/a(k). The
solution U(k, z) satisfies the boundary conditions
u2(k, z 5 0) 5 1 and u1(k, z 5 L) 5 0, and therefore it
describes the scattering of a forward-propagating wave
that enters at the left side of the grating, z 5 0. The for-
ward reflection of the grating is defined as the ratio be-
tween the backward- and the forward-propagating waves
at the grating input end, z 5 0: rf(k) 5 u1(k, z
5 0)/u2(k, z 5 0) 5 b(k)/a(k). The forward transmis-
sion of the grating is defined as the transmission of the
forward-propagating wave: tf(k) 5 u2(k, z
5 L)/u2(k, z 5 0) 5 1/a(k). The forward impulse re-
sponse of the grating is equal to the Fourier transform of
the forward reflection, hf(t) 5 (1/2p)*2`

` rf(k)
3 exp(2ikt)dk. When the grating reflection is low and
the Born approximation can be used accurately, the cou-
pling coefficient q1(z) can be extracted directly from the
forward impulse response, q1(z) 5 22hf(2z), as obtained
in lossless gratings.18 However, as can be seen in Eqs.
(7), the extraction of the coupling coefficient q1(z), does
not make possible separation between the refractive-
index amplitude of the grating uq(z)u and the absorption
coefficient a(z). Therefore the forward reflection is not
sufficient for extracting the grating parameters even in
the simple case of weak gratings, when the Born approxi-
mation can be used.

The scattering of a backward-propagating wave that
enters at the right side of the grating, z 5 L, may also be
described by using the coefficients, a(k), b(k), ā(k),
b̄(k). The solution F(k, z) can be written as a linear
combination of the functions C(k, z) and C̄(k, z). Us-
ing Eqs. (10) and (11), we obtain F(k, z) 5 a(k)C̄(k, z)
2 b̄(k)C(k, z). The backward reflection and transmis-
sion of the grating are equal to rb(k) 5 2b̄(k)/a(k) and
tb(k) 5 1/a(k), respectively. Therefore, the backward
and the forward transmission functions are equal: t(k)
5 tf(k) 5 tb(k). The transmission function as well as
both the forward and the backward reflection functions
are needed to extract the grating parameters in the layer-
peeling algorithm, as described in Section 4. Since the
forward and the backward reflection functions are defined
at different sides of the grating whereas the peeling algo-
rithm, to be described in Section 4, is performed from one
side of the grating, we introduce a conjugate scattering
system.

We refer to the solution to Eq. (6), Ū(k, z)
5 C̄(k, z)/ā(k), that satisfies the boundary conditions:
ū1(k, z 5 0) 5 1 and ū2(k, z 5 L) 5 0. We define a
function Ũ(k, z) 5 (ũ1(k, z), ũ2(k, z)) t [ (ū2(2k, z),
ū1(2k, z)) t. The function Ũ(k, z) is a solution of the
following coupled-mode equations:

dŨ~k, z !

dz
5 F 2ik q2~z !

q1~z ! ik GŨ~k, z !, (12)

with the boundary conditions ũ2(k, z 5 0) 5 1 and
ũ1(k, z 5 L) 5 0. We will refer to the scattering system
described by Eq. (12) as the conjugate scattering system.
The coupled-mode equations, given in Eq. (12), describe
the scattering from a grating with coupling coefficients
q2(z) and q1(z). The difference between the conjugate
and the original scattering systems, described in Eq. (6),
is the swapping of the coupling coefficients q1(z) and
q2(z). The physical meaning of the swapping of the cou-
pling coefficients q1(z) and q2(z) can be understood from
the definition of the coupling coefficients in Eq. (7): The
loss coefficient a(z) in the original problem is converted
into a gain coefficient 2a(z) in the conjugate problem.
Therefore, when the original system corresponds to a
lossy grating, the conjugate system corresponds to a grat-
ing written in an amplifying medium. Similarly to the
definitions in the original scattering problem, we define
the forward reflection of the conjugate scattering problem
by r̃ f(k) 5 b̄(2k)/ā(2k). When the conjugate system is
stable, its forward impulse response is given by h̃ f(t)
5 (1/2p)*2`

` r̃ f(k)exp(2ikt)dk. Since the conjugate sys-
tem corresponds to a grating written in an amplifying me-
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dium, its solution may become unstable. The stability of
the conjugate scattering system is discussed in Section 3.

We note that the forward reflection function of the con-
jugate system cannot be measured experimentally, since
it corresponds to a grating that does not really exist.
However, using the connections b̄(k) 5 2rb(k)/t(k),
b(k) 5 rf(k)/t(k), and Eq. (11), we can find the forward
reflection of the conjugate system, r̃ f(k):

r̃ f~k ! 5 2
rb~2k !

@t~2k !#2 2 rf~2k !rb~2k !
. (13)

We note that the reflection and transmission functions
used in Eq. (13) were defined after transforming the fields
with Eqs. (5). To connect the reflections and transmis-
sion rf(k), rb(k), tf(k) to the measurable reflections and
transmission rm

f (k), rm
b (k), tm

f (k), one should use the fol-
lowing transformation:

rm
f ~k ! → rf~k !,

tm~k !expF1ikL 1 E
0

L

a~z!dz 2 iE
0

L

s~z!dzG → t~k !,

rm
b ~k !expF12ikL 1 2E

0

L

a~z!dz 2 2iE
0

L

s~z!dzG
→ rb~k !.

(14)

Although the backward reflection and the transmission
functions change because of the transformation, Eq. (13)
remains the same when the measurable reflection and
transmission functions rm

f (k), rm
b (k), tm

f (k) are substi-
tuted for the transformed functions rf(k), rb(k), tf(k).
Therefore the forward reflection functions of the original
and the conjugate systems do not change, in spite of the
variable transformation in Eqs. (5). Since the transmis-
sion function of the grating has a minimal phase, the
transmission intensity can be measured and can be used
to calculate the transmission phase by the Hilbert
transform.26 A linear phase shift exp(ikL) should be
added to the transmission function, calculated by the Hil-
bert transform, where L is the grating length. The grat-
ing length L can be extracted from the functions a(k) and
b(k), as explained in Section 3.

3. STABILITY OF THE CONJUGATE
SYSTEM
In this section we introduce a new method for solving the
instability problem that may arise in the conjugate scat-
tering system. When the grating in the original problem
is lossy, the conjugate system describes a grating written
in an amplifying medium. The combined effect of the
grating feedback and the amplification may cause the im-
pulse response to become unstable. When the impulse
response is unstable, the system behaves as a laser that
operates above threshold without the saturation effect
that stabilizes a laser operation. In this case, the energy
of the impulse response becomes infinite, and the
impulse-response function cannot be calculated by per-
forming a Fourier transform on the reflection spectrum.
In this section we show that the instability problem can
be solved by extending the solutions given in Eqs. (9) to
complex frequencies k 5 k 1 ih. In a grating with a fi-
nite length, the reflection, r̃ f(k), can be calculated from
two simple analytical functions that exist in a finite time
region, as described below. The impulse response of the
grating can be extracted accurately from the reflection
function, defined in the complex frequency plane, by using
the inverse Laplace transform instead of the Fourier
transform used in previous algorithms.

When the system is unstable, the forward reflection
r̃ f(k) 5 b̄(2k)/ā(2k) contains poles in the upper half of
the complex plane of k: $k j% j51

N .26 Therefore the impulse
response can be calculated by using a transformation
similar to the inverse Laplace transform:

h̃f~t! 5
1

2p
E

2`1im

`1im

r̃ f~k!exp~2ikt!dk, (15)

where m is a real constant, chosen in order to perform the
integration in a contour that passes above all the singu-
larity points of the reflection function, $k j%: m
. max

j
(Im$kj%).

When the conjugate system is stable, we can choose m
5 0, and Eq. (15) gives the conventional calculation of
the impulse response with use of the Fourier transform,
as described in Section 2. For calculation of the integral
in Eq. (15), the reflection r̃(k) should be calculated over
the contour in the complex plane: k 5 k 1 im (2`
, k , `). Since the grating length is finite, the solu-
tion C̄(k, z) is an analytical function of k.24 Using Eqs.
(9) and (10), we obtain the boundary condition C̄(k, z
5 0) 5 (ā(k), b̄(k)) t. In Section 2 we showed that the
functions ā(k) and b̄(k) can be calculated from the reflec-
tion and transmission functions of the grating rm

f (k),
rm

b (k), tm
f (k). Similarly to the derivation in Ref. 24, we

express the solution C̄(k, z) by using a kernel vector
function K̄(t, z):

C̄~k, z ! 5 S 1
0 D exp@2ik~z 2 L !#

1 E
z2L

L2z

K̄~t, z !exp~ikt!dt, 0 < z < L.

(16)

The kernel vector function is unequal to zero only in the
interval z 2 L < t < L 2 z. By substituting the solu-
tion in Eq. (16) into the coupled-mode equations, Eq. (6),
we can show, using the theory of characteristics as per-
formed in Ref. 24, that the kernel functions exist and are
unique. Using Eq. (16), we can calculate the time-
domain functions ā(t) and b̄(t) by performing a Fourier
transform on the function C̄(k, z 5 0):

S ā~t!

b̄~t! D 5 S d ~t 2 L !

0 D 1 K̄~t, 0!. (17)

Equation (17) shows that the functions ā(t) and b̄(t) are
unequal to zero only in the interval 2L < t < L. This
result can also be easily obtained by using a discrete
model for the grating, which is used in the layer-peeling
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algorithm, to be discussed in Section 4. The functions
ā(k) and b̄(k) can be calculated over the contour k
5 2(k 1 im) by using

S ā~2k 2 im!

b̄~2k 2 im! D 5 S exp@2i~k 1 im!L#
0 D

1 E
2L

L

K̄~t, 0!exp@2i~k 1 im!t#dt,

(18)

where the kernel function K̄(t, z 5 0) can be calculated
from the boundary conditions by performing a Fourier
transform on the functions, (ā(k) 2 exp(ikL), b̄(k))t. The
reflection of the conjugate system can now be calculated
along the contour k 5 k 1 im by using the connection,
r̃ f(k 1 im) 5 b̄(2k 2 im)/ā(2k 2 im), and the impulse
response of the conjugate system is obtained by using Eq.
(15). We note that since the kernel functions K̄(t, 0) ex-
ist only in a limited time interval, 2L < t < L, the nu-
merical calculation of Eq. (18) can be easily performed.

The technique for calculating the impulse response de-
scribed in this section may be also useful when the conju-
gate system is stable and even in the case when the grat-
ing is lossless. When the poles of the reflection function
are located in the lower half of the complex plane, close to
the real axis of k, the impulse response decays over a long
time interval. In this case the spectral resolution of the
reflection function should be high enough to avoid errors
due to aliasing effects.27 On the other hand, the kernel
function K̄(t, 0) can be easily calculated since it exists
only in a limited time interval. By use of the technique
described above, the impulse response can be accurately
calculated with a smaller frequency resolution than
needed when it is calculated directly from the reflection
spectrum. Therefore the method described in this sec-
tion may be helpful even for lossless gratings that have a
very high reflectivity.

4. LAYER-PEELING ALGORITHM
In this section we describe the layer-peeling algorithm for
extracting the parameters of a grating with loss or gain.
The algorithm is based on modeling the grating by using
discrete scatterers, as performed for lossless gratings.16,17

We divide the grating into N layers, each with a width Dz.
Each layer is modeled by a discrete reflector, with cou-
pling coefficients q1 and q2 , and by a free propagation
with a length Dz. The layer-peeling algorithm is per-
formed in two steps that are repeated recursively. In the
first step, the two coupling coefficients of a layer are ex-
tracted from the local forward reflections of the original
and the conjugate systems. In the second step, the ex-
tracted coupling coefficients are used to propagate the lo-
cal reflections of the original and the conjugate systems to
the next layer. The algorithm is repeated until the entire
grating is reconstructed.

In the original system, the fields of layer n are con-
nected to the fields of layer n 1 1 by the transfer matrix,
Tn(k):
S u1~k, ~n 1 1 !Dz !

u2~k, ~n 1 1 !Dz ! D 5 Tn~k !S u1~k, nDz !

u2~k, nDz ! D , (19)

where

Tn 5 ~1 2 q1,nq2,nDz2!21/2

3 Fexp~2ikDz ! 0

0 exp~ikDz !
GF 1 q1,nDz

q2,nDz 1 G ,
(20)

and qi,n 5 qi(z 5 nDz) (n 5 0, 1...N 2 1).
The matrix in Eq. (20) is an approximation to the trans-

fer matrix used in Refs. 16 and 17. The hyperbolic func-
tions in Ref. 17 were approximated by
tanh@(q1,nq2,n)1/2Dz# . (q1,nq2,n)1/2Dz. This approxima-
tion does not add a significant error, since the assumption
that the reflectivity of each grating layer is very low,
(q1,nq2,n)1/2Dz ! 1, is essential for using a discrete model
to analyze the grating. The accuracy of this approxima-
tion was verified numerically, and we found out that it did
not add an observable error to the solution for the ex-
amples given in Section 5.

The fields Ũ(k, z) in the conjugate system are propa-
gated through the same equation used in the original
problem, Eq. (19); However the transfer matrix for the
conjugate system is equal to

T̃n 5 ~1 2 q1,nq2,nDz2!21/2Fexp~2ikDz ! 0

0 exp~ikDz !
G

3 F 1 q2,nDz

q1,nDz 1 G .
We define the local forward reflection for the original

and the conjugate problems:

rf~k, z ! 5 u1~k, z !/u2~k, z !,

r̃ f~k, z ! 5 ũ1~k, z !/ũ2~k, z !. (21)

The local forward reflections rf(k, z) and r̃ f(k, z) are the
forward reflections of the grating section located at the re-
gion @z, L# for the original and the conjugate system, re-
spectively. The local discrete reflection of each layer of
the original and the conjugate system is defined as rn

f (k)
5 rf(k, nDz) and r̃n

f (k) 5 r̃ f(k, nDz), respectively.
Using Eqs. (19)–(21) we obtain the propagation equa-

tions:

rn11
f ~k ! 5 exp~22ikDz !

rn
f ~k ! 1 q1,n

1 1 rn
f ~k !q2,n

, (22)

r̃n11
f ~k ! 5 exp~22ikDz !

r̃n
f ~k ! 1 q2,n

1 1 r̃n
f ~k !q1,n

. (23)

Equations (22) and (23) are a generalization of the equa-
tion given in Ref. 17 for lossless gratings.

The forward local impulse response of the original
problem, hn

f (t), is obtained by performing a discrete Fou-
rier transform on the local reflection, rn

f (k).16,17 The lo-
cal impulse response, hn

f (t), is equal to the forward im-
pulse response of the grating section located in the
grating region @nDz, L#. The impulse response at t
5 0 is equal to the average of the reflection function,
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hn
f (t 5 0) 5 1/M(m51

M rn
f (km), where the sum is taken

over all the sampled frequencies of the grating spectrum.
Owing to the causality of the system, the local impulse re-
sponse at t 5 0, hn

f (t 5 0) is determined only by the first
reflector located at z 5 nDz. The reflection of the single
scatterer, which corresponds to the nth layer, is obtained
by using Eq. (20), rn

f (k) 5 2q1,nDz, and therefore the lo-
cal impulse response at t 5 0 is equal to hn

f (t
5 0) 5 2q1,nDz. Thus the coupling coefficient q1,n of
each layer can be extracted from the local forward reflec-
tion of the original system:

q1,n 5 2
1

MDz (
m51

M

rn
f ~km!. (24)

When the conjugate system is stable, the derivation of
Eq. (24) can be repeated for the conjugate system. The
coupling coefficient q2,n of each layer is extracted from the
local forward reflection of the conjugate system:

q2,n 5 2
1

MDz (
m51

M

r̃n
f ~km!. (25)

When the conjugate system is unstable, or when the
duration of the impulse response function of the conjugate
system is significantly broader than the minimal duration
of the impulse response, 2L, the method for calculating
the forward impulse response of the conjugate system de-
scribed in Section 3 can be used. The use of the new
method will permit the reduction of the bandwidth that is
needed to sample the reflection spectrum. The first step
in calculating the impulse-response function is to calcu-
late the reflection over a contour in the complex plane,
r̃ f(k 1 im), as described in Section 3. The forward re-
flection function of the conjugate system is then propa-
gated by using

r̃n11
f ~k 1 im! 5 exp~22i~k 1 im!Dz !

r̃n
f ~k 1 im! 1 q2,n

1 1 r̃n
f ~k 1 im!q1,n

(26)
instead of Eq. (22). The extraction of the coupling coeffi-
cient q2(z) is performed by using

q2,n 5 2
1

MDz (
m51

M

r̃f~km 1 im! (27)

instead of Eq. (24).
The layer-peeling algorithm may now be summarized:

1. Obtain r0
f (k) and calculate the reflection of the con-

jugate system r̃0
f (k) or r̃0

f (k 1 im) from the input data.
2. Use Eqs. (24) and (25) or Eqs. (24) and (27) to find

the coupling coefficients of the current layer.
3. Use Eqs. (22) and (23) or Eqs. (22) and (26) to

propagate the reflections to the next layer.
4. Repeat steps 2 and 3 until the entire grating struc-

ture is reconstructed.

5. NUMERICAL RESULTS
We demonstrate in this section the implementation of our
layer-peeling algorithm for reconstructing the profiles of
three lossy gratings. The gratings that were recon-
structed had either a stable or an unstable conjugate sys-
tem. Accurate reconstruction was obtained for all three
examples given in this section. The transmission and
the reflection from both sides of the grating were calcu-
lated numerically by dividing the gratings into 201 small
sections and multiplying the transfer matrices of all the
sections.22,23

In the first example, we studied a grating with a
chirped Gaussian profile, written in the region @0, L
5 1 cm#. The coupling coefficient of the grating is given
by q(z) 5 600 exp@2105(z 2 L/2)2(2.5 1 20i)# m21.
The loss coefficient is sinusoidal and is equal to a(z)
5 70@1 2 cos(10pz/L)# m21. The maximum reflectivity
and transmissivity of the grating are equal to 0.11 and
0.246, respectively. The reflection from both sides of the
grating and the transmission functions were sampled
over a bandwidth of 10 nm with a spectral resolution of
0.02 nm. Figure 1 shows the profile of the reconstructed
amplitude uq(z)u, the phase of the coupling coefficient
arg@q(z)#, and the profile of the loss coefficient a(z). The
figure compares the reconstructed grating parameters
(solid curves) and the original parameters (dashed
curves). The figure demonstrates that all three grating
parameters were accurately reconstructed.

In the second example, we reconstructed a grating writ-
ten in the region @0, L 5 20 mm#, with a uniform coupling
coefficient q(z) and a Gaussian loss profile. The ampli-
tude of the coupling coefficient of the grating is equal to
uqu 5 30 m21. The phase derivative of the coupling coef-
ficient is given by d/dz@arg(q)# 5 120 exp@2(z 2 L/2)2/1.6
3 1025# m21. The phase derivative of the coupling coef-

Fig. 1. Reconstruction of a grating with a chirped Gaussian cou-
pling coefficient, q(z) 5 600 exp@2105(z 2 L/2)2(2.5
1 20i)# m21 and with a sinusoidal loss profile a 5 70@1
2 cos(10pz/L)# m21 written in the region @0, L 5 1 cm#. The
reconstructed parameters (solid curves) are compared with the
original parameters (dashed curves). The reflection spectra, ob-
tained from both sides of the grating, and the transmission spec-
trum were sampled over a bandwidth of 10 nm with a spectral
resolution of 0.02 nm.
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ficient is proportional to the change in the average refrac-
tive index of the grating [Eq. (8)]. In a fiber Bragg sen-
sor, the change in the average refractive index is
connected to variations in the environmental conditions
such as temperature or strain.12 The loss coefficient is
equal to a(z) 5 100 exp@2(z 2 L/2)2/1.6 3 1025# m21,
and the maximum reflectivity and transitivity of the grat-
ing are 0.11 and 0.242, respectively. The reflection from
both sides of the grating and the transmission were
sampled over a bandwidth of 10 nm with a spectral reso-
lution of 0.005 nm. To reduce the ripples in the impulse-
response function, we used a Hanning window to calcu-
late the impulse response from its Fourier transform.
The ripples are caused by the abrupt change at the
boundaries of the grating. We note that although the
Hanning window may add a small error in the reconstruc-
tion of the index profile of the grating,18 it reduces signifi-
cantly the error in extracting the loss coefficient a(z).
The loss coefficient is calculated from the coupling coeffi-
cients q1(z) and q2(z) by using a derivative operation
[Eqs. (7)]. Therefore the extraction of the loss coefficient
a(z) may become sensitive to ripples in the extracted cou-
pling coefficients. The amplitude and the phase deriva-
tive of the coupling coefficient q(z) and the loss coefficient
a(z) are shown in Fig. 2. A comparison between the re-
constructed grating parameters (solid curves) and the
original parameters (dashed curves) shows that an excel-
lent reconstruction was obtained.

In the third example we reconstruct a grating with an
unstable conjugate system. The coupling coefficient of
the grating is equal to q(z) 5 250@1
1 0.9 cos(2pz/L)# m21, and the loss coefficient is given by

Fig. 2. Reconstruction of a grating with a coupling coefficient,
uqu 5 30 m21, a Gaussian phase derivative, d/dz@arg(q)#
5 120 exp@2(z 2 L/2)2/1.6 3 1025# m21, and a Gaussian loss co-
efficient a(z) 5 100 exp@2(z 2 L/2)2/1.6 3 1025# m21, written in
the region @0, L 5 2 cm#. The reconstructed parameters (solid
curves) are compared with the original parameters (dashed
curves). The reflection spectra, obtained from both sides of the
grating, and the transmission spectrum were sampled over a
bandwidth of 10 nm with a spectral resolution of 0.005 nm.
a(z) 5 250@1 2 cos(2pz/L)# m21. The length of the grat-
ing is equal to L 5 4 mm. The maximum reflectivity
and transmissivity of the grating are 0.23 and 0.135, re-
spectively. The reflection from both sides of the grating
and the transmission functions were sampled over a
bandwidth of 20 nm with a spectral resolution of 0.01 nm.
A Hanning window was used to reduce the ripples in the
impulse-response functions that were due to the sharp
jump at the grating boundaries. Figure 3(a) shows the
Fourier transform of the forward reflection function of the
conjugate system. The figure clearly shows that the cal-
culated Fourier transform is a noncausal function and
therefore does not equal the impulse-response function of
the grating which should be a causal function. The im-
pulse response, shown in Fig. 3(b), was calculated with
the method described in Section 3. The calculation of the
impulse response was performed by using Eq. (15) on a
contour k 5 k 1 im, where m 5 100 m21. The integra-
tion contour was chosen above all the singularity points of
the reflection function. The location of the dominant pole
in the reflection spectrum was estimated from the non-
causal function calculated by performing the Fourier
transform on the forward reflection spectrum of the con-
jugate system. The Fourier transform of the forward re-
flection spectrum of the conjugate system, r̃ f(k), is given
by26

f~t! 5
1

2p
E

2`

`

r̃ f~k !exp~2ikt!dk

5 (
j51

N

cj exp~2ik jt! for t , 0, (28)

where $k j% are the poles of the forward reflection spec-
trum. We used an exponential fit to estimate the growth
rate of the noncausal function f(t) at a negative time, t
, 0. We chose the contour constant m to be larger than
the estimated growth rate.

Fig. 3. (a) Fourier transform of the forward reflection function
of an unstable conjugate system and (b) the forward impulse re-
sponse, calculated with the method described in Section 3. The
coupling-coefficient profile of the grating was equal to q(z)
5 250@1 1 0.9 cos(2pz/L)# m21, and the loss profile was given by
a(z) 5 250@1 2 cos(2pz/L)# m21. The grating was written in
the region @0, L 5 4 mm#. The Fourier transform of the grating
reflection spectrum gives a wrong result since it corresponds to a
noncausal function.
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The reconstructed grating parameters are shown in
Fig. 4. The figure shows that the reconstructed param-
eters (solid curves) are in excellent agreement with the
original parameters (dashed curves). The small error in
the extracted loss coefficient at the boundaries of the grat-
ing is due to the sharp change in the coupling coefficient
at the grating boundaries.

6. CONCLUSIONS
We have demonstrated an inverse scattering algorithm
for reconstructing lossy fiber Bragg gratings. The algo-
rithm permits extraction of the profiles of the refractive
index and the loss coefficient along the grating from the
grating transmission spectrum and the reflection spectra,
measured from both sides of the grating. A new method
to overcome instability problems that may occur in recon-
structing fiber Bragg gratings was demonstrated. The
method may also permit reduction of the spectral resolu-
tion needed to reconstruct highly reflecting fiber Bragg
gratings without loss. The algorithm for reconstructing
the structure of a lossy grating was demonstrated nu-
merically, and it gave excellent results for both stable and
unstable conjugate systems. The algorithm demon-
strated in this paper may be used to develop new types of
evanescent-field fiber Bragg sensors that make it possible
to detect the spatial distribution of both the absorption
and the refractive index along the grating. The algo-
rithm can also be used to analyze fiber Bragg gratings
written in fiber amplifiers and in fiber lasers.
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Fig. 4. Reconstruction of a grating with an unstable conjugate
system, analyzed in Fig. 3. The grating was written in the re-
gion @0, L 5 4 mm# and had a coupling-coefficient profile of
q(z) 5 250@1 1 0.9 cos(2pz/L)# m21 and a loss profile a(z)
5 250@1 2 cos(2pz/L)# m21. Since the conjugate system is un-
stable, the impulse-response function was calculated with the
method described in Section 3. The reconstructed parameters
(solid curves) are compared with the original parameters (dashed
curves).
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