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We present a theoretical and experimental study of passively mode-locked optoelectronic oscillators that generate
a single-cycle pulse train with an autonomous envelope-carrier phase locking. The theoretical study is performed
by developing a numerical simulation. A good agreement is achieved between the theoretical and the experimen-
tal results. We theoretically study the effect of the periodic frequency dependence of the dispersion coefficient on
the generation of a single-cycle pulse train with an autonomous envelope-carrier phase locking. The timing jitter is
experimentally measured by performing a spectral analysis of the pulse train. The spectral analysis suggests a
timing jitter of about 5 ps by using an integration bandwidth of 100 Hz to 1 MHz. The measured jitter is compared
to the result of the numerical simulation and to an analytical expression. © 2012 Optical Society of America

OCIS codes: 230.0250, 230.4910.

1. INTRODUCTION
The generation of ultrashort optical pulses with a duration of
only a few cycles has attracted a significant amount of atten-
tion in the last few years [1–3]. Generating and measuring
such short optical pulses is a challenging task. It is not pos-
sible to directly measure the electrical field of the pulses, and
therefore indirect methods, such as autocorrelation measure-
ments, are used to obtain information on the pulse envelope
[2]. Such measurements give only indirect information on the
pulse waveform. They also require many pulses and are based
on various additional assumptions.

The common technique for generating ultrashort optical
pulses is based on passive mode locking of lasers [4,5]. The
duration of the generated optical pulses in passive mode-
locked lasers that was demonstrated experimentally was lim-
ited to a few cycles of the carrier wave [6–8]. In such short
pulses, where the pulse envelope contains only a few cycles,
the relative phase between the pulse waveform and its en-
velope becomes significant. In general, the pulse envelope
propagates at the group velocity while the carrier wave pro-
pagates at the phase velocity. As a result, the relative phase
between the pulse envelope and the carrier wave may change
from one round trip to another. To obtain repetitiveness
between adjacent pulses, there is a need to lock the relative
envelope-carrier phase [1]. In lasers, such a locking of the
envelope-carrier phase was demonstrated by adding a feed-
back that controls the cavity length [1]. In passive mode-
locked lasers, the generated optical pulse train can have an
extremely low timing jitter that can be close to its quantum-
limit value [9,10].

The passive mode-locking technique requires a low-loss
cavity with a length that is significantly longer than the
wavelength of the generated pulses. Due to the high loss in
electronic transmission lines, the advantages of the pas-
sive mode-locking technique are not utilized in electronic

oscillators. In coupled optoelectronic oscillators (OEOs),
optical pulses propagate in an all-optical path that includes
an electro-optic modulator that is fed by an electrical
continuous-wave (CW) [11]. Such coupled OEOs are based
on active mode locking and not on passive mode locking.
In a previous work [12], we have demonstrated experimen-
tally passive mode locking of an OEO that generates low-jitter
single-cycle RF pulse train with a carrier frequency of about
650 MHz. The generated pulse train has a long-term stability
with an Allan deviation of σy�τg� � 4.5 · 10−8 �����

τg
p for a gate

time of τg � 4 s. We showed that a single-cycle pulse train
in which the phase and the group velocities are autonomously
locked can be directly generated by this passive mode-locked
oscillator.

In this manuscript we present a theoretical and experimen-
tal study of passive mode-locked OEOs. The theoretical study
is important both from the physics aspect as well as from the
engineering aspect. From the physics aspect, the study en-
ables us to investigate phenomena for which the physical me-
chanism behind them is not well understood, such as the
autonomous carrier-envelope phase locking, which was ex-
perimentally demonstrated. From the engineering aspect,
the study helps one to design a passive mode-locked OEO
and to optimize its performance. We present our numerical
simulation for studying the passive mode-locked OEO. We ob-
tained a good agreement between the theoretical and the
experimental pulse waveforms. Our theoretical model shows
that autonomous carrier-envelope phase locking is obtained
due to the periodic frequency dependence of the dispersion
coefficient. In the experimental study we describe our jitter
measurements by performing a spectral analysis of the gener-
ated pulse train. We show that the timing jitter in our system is
about an order of magnitude higher than its theoretical limit.
The discrepancy between the measured timing jitter and its
theoretical limit is attributed to the nonideal RF amplifier used
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in our experiments. Thus, we believe that the timing jitter
in our passive mode-locked OEO can be even further im-
proved toward its theoretical limit by using ultra-low-noise
RF amplifiers.

2. THEORETICAL MODEL
In this section we describe our numerical model used to study
passive mode locking in OEOs. In [12] we presented our mea-
surement results. The numerical simulation described in this
manuscript helps us to study the physics of the device. We
give below a brief description of the experimental setup and
the main physical effects that should be theoretically mod-
eled. We describe the numerical simulation and the para-
meters that were used. Then, we present a comparison
between the theoretical and the experimental waveforms. A
good agreement is obtained between theory and experiments.
In Section 3 we use the theoretical simulation to study the
effect of dispersion on the pulse generation.

A. Description of the Numerical Simulation
Figure 1 shows a schematic description of the system that was
analyzed in this manuscript. The system corresponds to the
experimental setup that is described in [12]. Light from a laser
is fed into an electro-optic modulator, which is used to convert
RF pulses into optical pulses. The optical pulses are sent
through an optical fiber and are then detected by using a
photodetector (PD). The output signal is filtered, amplified
by a nonsaturated RF amplifier (G0) followed by a saturable
amplifier with a slow saturation time (G), and fed back into
the electrical port of an electro-optic modulator to close
the loop. We model in each round trip the effect of the

electro-optic modulator, the fiber delay, the photodiode, the
spectral response of the filter, and the slow gain saturation
of the RF amplifier. In each round trip, an effective white
Gaussian noise is added to the signal at the output of the
PD. This noise represents the effective noise that is added
by the RF amplifiers and the PD. In our model implementa-
tion, we calculated the voltage signal at the output of the
saturable amplifier, vRF�t�, for each round-trip time τ. The
calculation is performed iteratively. For the nth iteration,
the propagated voltage signal, vn�t� � v�t − nτ�, is calculated
from the signal vn−1�t�.

The electro-optic modulator that is modeled in our simula-
tion is a Mach–Zehnder modulator (MZM), as used in our ex-
perimental setup. The optical power at the output of the MZM,
Pmod�t�, is given by [13]

Pmod�t� � �αP0∕2��1 − η sin fπ�vin�t�∕vπ;AC � vB∕vπ;DC�g�; (1)

where vin�t� is the input voltage, α is the insertion loss of the
MZM, P0 is the input optical power, vπ;AC is the modulator half-
wave AC voltage, vπ;DC is the modulator half-wave DC voltage,
vB is the modulator bias voltage, and η is a parameter deter-
mined by the extinction ratio of the modulator �1� η�∕�1 − η�.
To generate stable pulses, the bias voltage of the modulator
should be chosen in order that its transmission will be small
for a small input voltage, v ≪ vπ;AC, and will increase as the
input voltage increases until a saturation of the transfer curve
is obtained.

The bandwidth of the experimental setup is mainly deter-
mined by the bandwidth of the saturable amplifier since the
bandwidth of the other RF components is considerably wider
(about 5 GHz). In our model we used the frequency response
of the saturable RF amplifier that was measured by using a
network analyzer. The power gain spectrum, G�f �, normalized
to the maximal power gain, Gmax � 14 dB, is shown in Fig. 2.
The measured phase response of the saturable RF amplifier
between 200 and 1100 MHz equals φ�f � � −2πf τD � ψ�f �,
where τD ≅ 10 ns is an average delay that is added by the
RF amplifier, and jψ�f �j ≪ 2π. The other components in the

Fig. 1. (Color online) Schematic description of the experimental
setup. Optical paths are represented by thick green curves and elec-
trical paths are represented by thin black curves. Light from a contin-
uous-wave (CW) laser is fed into a Mach–Zehnder modulator (MZM),
which is used to convert an RF signal into a modulation of light in-
tensity. The modulated light is coupled through an optical coupler
to tap out 10% of the optical signal for measurements. The remaining
90% of the optical signal is sent through a long fiber, with a length of
approximately 200 m, and is then detected by using a PD. The output
electrical signal of the PD is amplified by a nonsaturated RF amplifier,
G0, which is connected to a saturable amplifier, G, with a maximal
gain of Gmax � 14 dB. The amplified signal is fed back into the RF
port of the MZM through an RF coupler. The coupler that is connected
to a splitter is used to tap out −18.7 dB of the RF signal in order to
measure it by both a real-time oscilloscope and an RF spectrum
analyzer.
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Fig. 2. (Color online) Measured frequency dependence of the power
gain and the dispersion coefficient of the saturable amplifier. The
measured power gain G�f � (red solid curve) is normalized to the max-
imal power gain, Gmax � 14 dB, and the dispersion coefficient is cal-
culated from the measured phase response according to Eq. (2) (blue
dashed-dotted-curve). The measured dispersion curve shows an oscil-
latory structure with a period and an amplitude of about 60 MHz and
0.2 ns∕MHz∕km, respectively. The squared norm of the theoretical
Lorenzian-bandpass filter spectral response that is described in
Section 3, jF�f �j2, is also shown for comparison (black-dashed curve).
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cavity add a delay that is approximately equal to the delay of
the optical fiber, τF ≅ 938 ns. The dispersion is calculated
from the measured phase response:

D � 1
2πL

d2φ

df 2
; (2)

where L � 200 m is the fiber length, and D is the dispersion
coefficient that is shown in Fig. 2. The dispersion coefficient
has a periodic frequency dependence over a frequency octave
of 440–880 MHz with a period of about f D � 60 MHz and an
amplitude of about AD � 0.2 ns∕MHz∕km. We shall see in
Section 3 that this oscillatory structure allows autonomous
locking of the relative phase between the pulse envelope
and the carrier phase that was demonstrated in the experi-
ments. The measured frequency response of the system is
represented in the theoretical model by adding an RF filter
with an amplitude and a phase response that are given by
�G�f �∕Gmax�1∕2 and φ�f �, respectively.

Gain saturation with a slow response time is required to
obtain mode locking [12]. In our theoretical model we have
modeled the saturation curve by

G�t� � Gmax

1� Pavg�t�∕PS

; (3)

where Gmax is the unsaturated gain, Pavg�t� is the low-pass-
filtered RF power at the input of the saturable RF amplifier,
and PS is the saturation power of the saturable RF amplifier. A
comparison between the measured gain saturation curve of
the saturable RF amplifier and the theoretical saturation curve
that is obtained for PS � −22.5 dBm is described in Fig. 3,
where Pavg � hPini, and hPini is the time-averaged RF power
at the input of the RF saturable amplifier.

In our simulation we assume that the response time of the
gain saturation, which is about 10 μs in the experimental set-
up, is much longer than the round-trip time, TS ≫ τ. Thus, the
low-pass-filtered RF power, Pavg�t�, at the nth round trip can
be approximated by Pavg�t� � Pn

avg, where

Pn
avg � λavghPn

iniτ � �1 − λavg�Pn−1
avg ; (4)

λavg � 1 − exp�−τ∕TS� is the smoothing factor, hPn
iniτ is the

time average of the RF power at the input of the saturable

amplifier over the nth round-trip, Pn
in�t� � �vnin�t��2∕R, and

vnin�t� is the calculated voltage signal at the input of the satur-
able amplifier.

The parameters used in our simulation were chosen in ac-
cordance with our experimental setup: the laser input optical
power was set to P0 � 25 mW. The DC and AC half voltages of
the MZM were set to vπ;DC � 6 V and vπ;AC � 5.5 V, respec-
tively, the bias voltage was set to vB � 3.57 V, the insertion
loss was set to α � −6 dB, and the extinction ratio was deter-
mined by setting η � 0.99. The responsivity of the PD was set
to ρ � 0.8 A∕W. The round-trip time was set to τ � 1 μs and
the gain of the unsaturated RF amplifier was set to
G0 � 24 dB. The saturable RF amplifier maximal gain was
set to Gmax � 14 dB, the saturation power was set to
PS � −22.5 dBm, and its response time was set to TS �
10 μs. We note that the bias voltage in the experimental setup
was about 10 V since the transmission curve of the modulator
in the experiment should be modeled by replacing vB in
Eq. (1) by vB − vP , where vP ∼ 8 V [12].

In the numerical simulation we calculated the signal in each
round trip iteratively. The result was converged after about
250 round trips. While the details of the convergence time de-
pend on the initial conditions, the global convergence time is
dominated by the slowest time response in the loop, which in
our case is the slow saturation time of the RF amplifier. The
saturation time of this amplifier is about 10 μs, which equals in
our setup to 10 round-trip times. We simulated the propaga-
tion over a time duration of about 0.5 ms (500 round-trip
times), and we have verified that the simulation results are
not changed even for a longer propagation duration of 10 ms.

To evaluate the power spectral density of the noise in our
system, we operated our system as an OEO that generates a
CW signal by eliminating the slow saturation of the RF ampli-
fier. Therefore, in this case we measured the phase noise
when the gain of the RF amplifier is maximal. Figure 4 shows
the measured phase noise of the CW signal with a carrier fre-
quency of 625 MHz and an oscillation power of POSC �
12 dBm at the output of the RF amplifiers. According to [14],
the phase noise of an OEO is approximately given by

Sϕ� f � �
δ

�2πf τ�2 ; (5)
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Fig. 3. (Color online) Measured gain dependence of the RF saturable
amplifier as a function of the average RF input power, hPini (red cir-
cles), that is compared to the gain dependence function that was used
in our numerical simulation, described in Section 2.A (black-dashed
curve).
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Fig. 4. (Color online) Phase-noise spectrum of our system after elim-
inating the saturation of the RF amplifier in order to generate a CW
signal (blue solid curve). The generated signal has a frequency of
625 MHz and an oscillation power of POSC � 12 dBm. The theoretical
phase noise calculated by using Eq. (5) is also given for comparison,
using τ � 1 μs and δ � 2 · 10−131∕Hz (gray-dashed curve).
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where δ � GtotρN∕POSC is the noise-to-signal ratio and Gtot �
33 dB is the total gain of the RF amplifiers. We used the rela-
tion between the phase noise and the noise-to-signal ratio, δ,
given in Eq. (5), and the measured phase noise shown in Fig. 4
to extract δ � 2 · 10−131∕Hz. Therefore, the power spectral
density of the noise in our numerical simulation was set to
ρN � 1.6 · 10−18 W∕Hz. We note that the f −2 dependence of
the phase noise on the offset frequency for f > 100 Hz, which
is shown in Fig. 4, suggests the noise spectral density in
our experimental setup is dominated by a white noise in this
frequency region.

B. Comparison Between Theory and Experiment
We used the numerical simulation to design our experimental
setup. We obtained theoretically and experimentally a single-
cycle pulse-train generation. The waveform of the generated
pulses was repeated after each round trip and therefore an
autonomous envelope-carrier phase was obtained in our simu-
lation, as was obtained experimentally [12]. Figure 5 shows a
comparison between the measured and the theoretically cal-
culated single-cycle pulse waveform. A good agreement is
obtained between theory and experiment. A small difference
that is obtained between the theoretical and the experimental
pulse tails can be attributed to a weak frequency dependence
of the RF components that is not included in our model.

Single-cycle pulses were obtained in our numerical simula-
tion when the bias voltage was in the regime 3.57 ≤ vB ≤ 3.9 V,
such that πvB∕vπ;DC was between 1.87 and 2.04. At lower bias
voltages, vB < 3.57 V, no stable pulses were obtained, and at
higher bias voltages, vB > 3.9 V, the obtained pulses con-
tained a few cycles. When the bias voltage was increased from
vB � 3.57 V to vB � 3.9 V, the pulse duration increased by
about 140% and the timing jitter increased by about 150%.
The bias voltage in our simulation was set to vB � 3.57 V, such
that πvB∕vπ;DC � 1.87. In this case, we obtained the minimal
pulse duration as well as the minimal timing jitter.

3. DEPENDENCE OF THE AUTONOMOUS
ENVELOPE-CARRIER PHASE LOCKING ON
THE DISPERSION
In a previously published paper [12], we indicated that the per-
iodic frequency dependence of the group velocity in the fre-
quency region of 440–880 MHz allows the locking of the
relative phase between the pulse envelope and the carrier
phase in our experimental setup. This oscillation in the group

velocity is caused by the periodic frequency dependence of
the dispersion coefficient that is shown in Fig. 2. To study
the effect of the oscillatory frequency dependence of the dis-
persion on the generation of a single-cycle pulse train with
autonomous envelope-carrier phase locking, we studied the-
oretically the generation of a repetitive single-cycle pulse train
for different values of the amplitude and the period of the os-
cillatory dispersion structure. The RF filter was modeled as a
Lorenzian filter multiplied by a bandpass filter

jF�f �j � jΘ�f � �Θ�−f �j · jL�f � � L��−f �j; (6)

where

L�f � � iΓ∕2
f 0 − f � iΓ∕2 (7)

is the Lorenzian lineshape transmission, such that f 0 and Γ are
the central frequency and the full width at half maximum of
the Lorenzian lineshape, respectively, and

Θ�f � � tanh��f − fmin�∕f rise;1� − tanh��f − fmax�∕f rise;2� (8)

is a bandpass filter transmission, where fmin and fmax are the
lower and higher cutoff frequencies, respectively. To obtain
an agreement between the measured and the theoretical
Lorenzian-bandpass filter we used the parameters Γ �
550 MHz and f 0 � 550 MHz for the Lorenzian lineshape,
and fmin � 150 MHz, fmax � 1250 MHz, f rise;1 � 50 MHz, and
f rise;2 � 100 MHz for the bandpass filter. A comparison be-
tween the measured and the theoretical frequency response
of the filter that was used in our simulation is given in Fig. 2.
A good agreement between the squared norm of the theore-
tical and the measured transmission spectra is achieved. A
linear phase that corresponds to a constant delay of 10 ns was
added to the phase of the RF filter to obtain a casual filter
response in our study. To study the effect of RF dispersion
and its oscillatory behavior on the autonomous envelope-
carrier phase locking, different oscillatory perturbations were
added to the phase response of the RF filter:

φ�f � � −2πf τD;fil � 2πLAD�2π∕f D�−2 cos�2π�f − f c�∕f D�; (9)

where τD;fil � 10 ns is a constant time delay added by the RF
filter, and f c � 593.5 MHz is the frequency where the trans-
mission of the filter is maximal. We note that according to
Eq. (2) the dispersion coefficient of this phase response is
given by

D � AD cos�2π�f − f c�∕f D�: (10)

Thus, the dispersion coefficient has a periodic frequency de-
pendence with an amplitude of AD and a period of f D. We shall
refer to AD and f D as the amplitude and the period of the
oscillatory dispersion structure, respectively.

The theoretical results indicate that the maximal amplitude
of the oscillatory dispersion structure that may enable a repe-
titive single-cycle pulse-train generation increases as the per-
iod of the oscillatory dispersion structure decreases. For
example, for f D � 500 MHz a repetitive single-cycle pulse
train can be obtained as long as AD ≤ 0.0164 ns∕MHz∕km, and
for f D � 60 MHz, a repetitive single-cycle pulse train can be

t (ns)
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)
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4

Fig. 5. (Color online) Comparison between the measured single-
cycle pulse waveform (red solid curve) and the waveform that was
calculated by using the numerical simulation (black-dashed curve).
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obtained as long as AD ≤ 0.969 ns∕MHz∕km. In our experi-
mental setup the oscillatory structure has a period of about
60 MHz and an amplitude of about 0.2 ns∕MHz∕km. For f D �
60 MHz and AD > 0.969 ns∕MHz∕km, no mode locking was
obtained in the simulations. We attribute this result to an ad-
ditional effective loss that is added when the envelope-carrier
locking breaks. In this case the loss in the modulator changes
from pulse to pulse and it prevents the generation of a stable
mode locking.

Figure 6 shows the theoretical dependence of the maximal
amplitude of the dispersion coefficient, AD, that enables the
generation of a single-cycle pulse as a function of the period
of the oscillatory dispersion structure, f D. The frequency
where the transmission of the filter is maximal, f c, remained
constant. The results were calculated by using the same para-
meters as in Fig. 5 unless otherwise specified. The condition
under which a repetitive single-cycle pulse-train generation
can be obtained can be fitted to the numerical results:

AD <
2παconst
Lf 2D

; �11�

where αconst � 0.12 is an empirical constant that may depend
on other simulation parameters.

We note that the relation in Eq. (11) sets an upper bound for
the value of the amplitude of the dispersion coefficient in
which a single-cycle pulse generation can be obtained. A
single-cycle pulse generation can be obtained for any lower
value of the dispersion coefficient amplitude, AD.

In case that the dispersion is small enough, a repetitive
single-cycle pulse can be obtained, although there is a notice-
able change in the pulse waveform at the output of the filter.
This indicates that the modulator compensates the dispersion
effect caused by the filter.

4. JITTER MEASUREMENTS
The timing jitter of the generated pulse train is determined by
the noise that is added in each round trip. By using a sampling
oscilloscope (Agilent Infiniium DCA-J 86100C), the measured
timing jitter of the pulse train was less than 5 ps, which is
approximately 5 ppm of the pulse repetition period of

948.5 ns [12]. This jitter measurement is close to the oscillo-
scope accuracy limit. In this section we describe the measure-
ment of the timing jitter by using a spectral analysis of the
pulse train. The experimental result is compared to theory.

A. Spectral Analysis of the RF Pulse Train Measured by
Using an Integration Bandwidth of 100 Hz to 1 MHz
The timing jitter, στ, can be evaluated by measuring the phase
noise of the electrical pulse train [15,16]. Let ξn be the nth har-
monic normalized noise coefficient given by

ξn � 2
Z

fmax

fmin

Ln�f �df ; (12)

where Ln�f � is the spectral density of the phase noise around a
carrier frequency f n, and fmin and fmax are the lower and
higher bounds of the integration bandwidth. According to [15],
the normalized timing jitter, J � στ∕τ, and the normalized am-
plitude noise, A, are related to the normalized nth harmonic
noise coefficient, ξn, by

ξn � A2 � �2πn�2J2: (13)

Figure 7 shows the measured phase noise around a carrier
frequency of f n � 625 MHz, which corresponds to n � 593.
Since n ≫ 1, the amplitude noise contribution to the value
of ξn can be neglected, and the relative jitter, J, can be calcu-
lated according to Eq. (13). The resulting timing jitter by using
an integration bandwidth of 100 Hz (300 Hz) to 1 MHz equals
στ � 5 ps (4 ps). Similar timing jitter was measured by the
sampling scope Agilent Infiniium DCA-J 86100C [12] that
performs a jitter spectral analysis over the region of 300 Hz
to 20 MHz [17].

B. Comparison Between Measured and Calculated Jitter
In a previous work we calculated the pulse-to-pulse jitter in
our system due to additive white Gaussian noise [12]. The cal-
culation is based on a direct contribution of white noise to the
change in the central pulse time in each round trip. This cal-
culation neglects other physical effects, such as dispersion,
modulator effect, and filter bandwidth.

The numerical simulation gives a pulse-to-pulse timing-
jitter with a standard deviation of στ � 5 ps for the parameters
of the experimental setup. The analytic expression for the the
pulse-to-pulse jitter is [12]

f
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Fig. 6. (Color online) Theoretical dependence of the maximal ampli-
tude, AD, of the oscillatory dispersion coefficient defined in Eq. (8),
which gives a single-cycle pulse generation on the period of the
dispersion oscillation (green circles). The theoretical results are
obtained when all of the simulation parameters are the same as in
Fig. 5, except for the dispersion coefficient. The dependence was
fitted to be AD � 2παconst∕�Lf 2D�, where αconst � 0.12� 0.01 (black-
dashed curve).
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Fig. 7. (Color online) Phase noise of the generated electrical
pulse train measured around a carrier frequency of 625 MHz, which
corresponds to n � 593 harmonic order.
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στ �
2
E0

��������������������������������������������������������
�GtotρNR∕2�

Z
τ∕2

−τ∕2
t2f 2�t�dt

s
; (14)

where ρN is the power spectral density of the noise, f �t� is the
unperturbed voltage waveform of the pulse at the output of
the amplifier, Gtot is the total gain of the RF amplifiers, R
is the load impedance, and E0 is the energy of the pulse
waveform

E0 �
Z

∞

−∞

f 2�t0�dt0: (15)

In [12] we have shown that the minimum theoretical jitter is
about 0.6 ps. Here, we use in Eq. (14) the actual power spec-
tral density of the noise that was measured in our oscillator
by operating the device as a CW OEO, as described in
Section 2—ρN � 1.6 · 10−18 W∕Hz. Substituting this result in
Eq. (14) gives στ � 3 ps. We have verified in the numerical
simulation that the timing jitter is decreased by about 1 ps
when the dispersion is eliminated, and therefore part of the
difference between the analytical and the numerical results
is due to the dispersion effect, which is not included in the
analytical model.

5. CONCLUSION
A theoretical and experimental study of passively mode-
locked OEOs was presented. We describe a numerical simula-
tion that was used to develop our experimental setup and to
understand the measured results. A good agreement is ob-
tained between theory and experiments. We studied theoreti-
cally the effect of the periodic frequency dependence of the
dispersion coefficient on the generation of a single-cycle pulse
train with an autonomous envelope-carrier phase locking. We
showed that the high-frequency oscillation of the dispersion
coefficient over the pulse bandwidth allows a single-cycle
pulse generation with an autonomous locking of the relative
phase between the pulse envelope and the carrier wave, as it
is obtained in our experiments. We measured the timing jitter
by performing a spectral analysis of the pulse train. The mea-
sured timing jitter was about 5 ps for an integration bandwidth
of 100 Hz to 1 MHz. The measured jitter was in agreement with
the result of the numerical simulation and with an analytical
expression.
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