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V. CONCLUSION 

The introduction of [I] claims that the "generalized" error, i.e., the 
y -3 of this note,  which is defined in [I ,  eq.  (2.5)], converges to zero 
despite any initial parameter or state error regardless of input sequence 
or the  magnitude of the constant adaptation gains. The counterexample 
of the preceding section dqroves this claim. Furthermore, the PRBS 
used  in the simulated  failure to force the plant and  identifier  should 
provide  the  necessary  richness  requirements  evoked in [I]  for consistent 
parameter estimate  convergence,  thereby also belying that claim. 

Presently  the s t a l l  failure  discussed in this note of the parallel MRAS 
with adaptive error filtering of [I]  appears to be infrequent, but unpre- 
dictable. The only apparent conclusion  is that a plant with  poles  near  the 
unit circle in combinatiop with an erratically converging  identifier is 
most likely  to  generate A ( z ,  k] root migration  outside  the unit circle, 
possibly  leading to matching C(z ,  k )  roots and identifier stall. Clearly, 
further study is required to firmly delineate the applicability of output 
error identifiers  such as in [I], [4], and [5]  since, unfortunately, a  claim of 
desirable  behavior, i.e., j+y ,  apparently does  not  proceed  solely  from 
the proof of "processed  generalized" error decay to zero, i.e., s(k)-+O as 
k-too. 
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Instability of Optimal-Aim Control 

B. ROSS BARMISH AND ARIE FEUER 

I. INTRODUCIION 

In [11, a rather novel approach is described  which  is intended for 
regulation of a  class  of nonlinear  systems.  At  each instant of  time, an 
admissible control is chosen  which minimizes the state-space  angle 
between the state derivative and the direction of the equilibrium state. 
On the surface,  such an approach appears to be an attractive alternative 
to the usual difficulties  which one would  encounter  when  applying 
classical techniques.' Delving  a little below the surface,  however, we find 
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a number of fundamental difficulties associated with the stability  proper- 
ties of these sc-called optimal-aim  controls. It was demonstrated in [2] 
that instability  might occur when  using control strategies  (see [3D which 
are similar in  spirit to the optimal-aim strategy of [I]. Strictly speaking, 
however,  the  instability  theorem of [2] does nor apply to the controllers 
of [ 112 (see  [4]  and [5D. Nevertheless, we shall see in the  sequel that the 
optimal-aim control strategy  might indeed induce instability in the  case 
of [ I ]  as well. 

We shall  present  two  counterexamples  to the conjectured  stability. In 
our first  counterexample, an asymptotically stable h e a r  time-invariant 
system is rendered  unstable  via application of optimal-aim control. In 
our second  counterexample, we examine an unstable h e a r  time-invariant 
system  which  is stabilizable  via h e a r  feedback [6].  When optimal-aim 
control is applied in lieu of linear  feedback, the system  becomes  unsta- 
ble. 

11. BRIEF REVIEW OF OPTIhfAL AIMING 

This control procedure (see [l] for full  details) is developed for 
nonlinear  regulation  systems  having additive hear control structures, 
i.e.,  we consider  a  system of state equations of the  form 

withf(u,)=O and B'B=diag{q), q > 0 . 3  It is implicitly  assumed that 
f(-) is "sufficiently  regular" to guarantee the  existence and uniqueness of 
solutions. 

Following  the notation in [l], we define the set A ( x ( t ) )  { 6 E R " :  6= 
f ( x ( r ) ) + l o :  ~ E U )  of a c h i d l e  deriuutiw at the state x ( r )  and the 
reference wcror p(x ( r ) )  uc - x ( t ) .  (a, is the desired  equilibrium.) The 
angle  between 6 E A  and P E R "  is then given  by 

(0  for6=0 and p z 0  

where 11.11 is the usual Euclidean norm. 

termed on optimal aimpair if, at each instant of t ime I ,  we have4 
Within this framework,  a control u ( . )  and trajectory mate x ( * )  are 

and either 

or 

8 ( 6 . - ) = 8 ( . i . ~ )  

Finally,  the  control u ( - )  giving  rise to the minimum of @(x, p) is  called 
an optimal-aim control. 

satisfy the  preconditions of the  theorem in 121. 

maaix above to be consistent with the notation in [I]. 

precise, i ( r )  should  be  interpreted as a right-hand derivative (%e [ I D .  

2The possible  nondifferentiable  character of the control law does not enable us to 

3The analysis to follow will also be valid if B is a  full  rank  matrix. We use  the  diagonal 

4To simplify  notation,  the  dependence on r and x ( r )  has been suppressed. To be 
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111. COUNTEREXAMPLES TO CONTECTURED STABILITY 

For our first  example, we consider  a linear time-invariant  system 
described by 

.;l(t)=xl(t)-5x2(t) 
i 2 ( t ) = 2 x l ( r ) - 2 x 2 ( t ) + u ( t ) ;  t>o 

with control restraint (u(t)l G M(M>O) ( 5  is a constant parameter). 
To begin our analysis, we first note that this system  (with u(t)=O) has 

a characteristic polynomialp(A)=A2 +A+(2&-2). Hence, this system is 
stable (also controllable) for al l  [> 1. Now, we  have the  following  result. 

Theorem:  Consiakr  the system (S,) with control restraint (u( t ) (  < M and 
parameter 5> 1 fixed. Then thb system is unstable when  subjected to an 
optimal-aim control strategy. 

PrmJ Our proof will be accomplished  by constructing a  number 
r>O and a  set 0, having  the  following  properties: 

1) [0 Or E& (note that here u, =[0 01') and 
2) for every  initial state x ( O ) ~ a ~ , ,  x(O)#[O Or, there  exists a time 

T>O such that in the resulting  "optimal-aim  trajectory," x ( t )  satisfies 

Ilx(T)II=.. 

To accomplish 1 )  and 2), we first  choose r > 0 so that 

Next we define 

where e is fixed so that 

o<c< 1. (3) 

Clearly, Q, as defined in (2) has property l), namely, [0 OI'EQ,. To 
prove property 2), let us define two angle mappings e+(., -) and 8- (-,e) 

on the set 0, by 

In the sequel, the following facts and observation will be useful. 
1) All angles  above, by convention, take values in [O, r]. 
2) BY (1) and (21, if [ X I  x ~ I ' E Q ,  

M 
x2 <- 

3(5+c) e 

3) BY (1) and ( 3 ,  if [x1 x ~ I ' E Q ,  

2(xI -x2)<2x1<2r<-M<M. 2 
3 (6) 

4) If the current state is x( t )=[x l  x 2 r € Q , ,  then O+(x1,x2) is the 
state-space  angle  between the reference  vector and i ( t )  which results 
upon application of full positive control u(t)= +M. Similarly, 8-(xl, x2) 
summarizes the effect of full negative control u(f)= -M.  

5)  If x ( r ) = [ x l   x , r ~ O , ,  then the optimal-aim  control  strategy dic- 
tates that either u(t )=  + M o r  u(t)= - M ,  i.e., any intermediate control 
value m E[ -M, MI will result in a state-space angle which  exceeds 
either @+(xl,  x 2 )  or B-(xl,  x2). 

This is apparent from (4) with M replaced  by m and (9. (See also  Fig. 
1 4 

Z , , = O  

Fig. 1. The set Q,. 

Facts 4) and 5)  clearly  imply that being  in a state x ( t ) = [ x ,  x2Y Ea,, 
the control will be 

+ M  ~ ~ + ( X ~ , X ~ ) - ~ - ( X , , X , ) < O  
- M  i f 8 + ( x l , ~ 2 ) - e ~ ( x l , ~ , ) ~ o . s  

u= [ (7) 

Next we are going to show that whenever on the boundaries x1 =(5+ 

On the boundary xI =(t+c)xZ,  we have 
€)x2 or x2 =O of a,, the optimal aim trajectory is directed into 0,. 

e + ( ~ , , ~ ~ ) - e - ( ~ , , ~ ~ ) = 2 t a n - ~ - - + + t a n - ~  1 M-2x2(6+r-1) 
5+c ( X 2  

-tan-' M+2xa(5+'- ex2  1) 

Using (3) and (5), we observe that 

1 1 - 
5+€ >E+1 

and 

2x2([+c- I ) < - M .  2 
3 

Using  these  two  inequalities and the fact that tan-'(-) is a  monotoni- 
caUy increasing function of its argument, we get 

e+(x,,x2)-e-(~l,~2)>2tan-1-+tan-1-- --tan-'- 1 ' M  5M 
5+ 1 3ex2 3€X2 

(using standard trigonometrical identities) 

Again we use the monotonicity of tan-' (.) and note that for c > 1 

Hence, we conclude that 

e + ( ~ , , ~ 2 ) - e - ( ~ l . x 2 ) > o  

for xI =([+€)x2. Hence, by (7), u= -M. Now,  by (6), i2( t )=2(x1 - 
x,)-M<O, which means that the trajectory is directed  back into Q, 
from the boundary x 1  =(&+<)x2 (note that i l ( t )=x , -~x2>0) .  

On the other boundary x2 =0, we have 

n/Z. Hence, this choice of u will achieve the required minimum as defmed by the 
5Equalityimpliesu=--M.Thiscanbeseenbynotingthatfor[x, x,y€?,,O(i,p)> 

"optimal-aim control" 
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Fig. 2.  Sample trajectories for Example 1 (M= 1 and E-2). 

Then by (3, u = M  and i 2 ( r ) = 2 ( x I - x 2 ) + M > O .  Once  again,  the 
trajectory  is  directed  from  the boundary x2  = 0 back into 9,. 

Up to this point, we have shown that the  only way an “optimal-aim 
trajectory” can escape  from 0, is through its boundary 11 x 11 =r .  Next,  we 
are going to show that every  such trajectory does,  in  fact, cross this 
boundary in finite  time. 

We have From (SI) 

. ; l ( t ) = x l ( t ) - 5 X 2 ( t ) -  

Hence, if x( t )EQ, ,  then by  (2), it follows that x I ( r ) > ( S + c ) x 2 ( t )  or, 
equivalently, 

Then 

or 

which  means that Ilx(T)II=r for some O<T<(5+a /c ) ln ( r /x l (0 ) ) .  So 
we see that For any initial condition, even if arbitrarily close to the 
origin, we  Cannot avoid  future states having norm r=  M/3 or  larger. 
This enables us to conclude that the system is unstable  and the theorem 
is proved. i i  

Remurk: It is of interest to note that, contrary to ow expectation, one 
is mr able to do better  with  more available control effort.  With  larger M, 
we do, in fact, worse. The relation between r and M (from  (1) it follows 
that we may  choose r = M / 3 )  and the proof of the  theorem  reveals  the 
following.  The  larger M, the further away  from  the  origin certain 
trajectories will be forced to go by the optimal aim control. 

In Fig. 2, sample  trajectories are indicated corresponding  to M =  1 and 
5=2.  Clearly,  these  trajectories are approaching a point and the distance 
of this point  from  the  origin  grows with M. 

For our second  counterexample, we consider  a h e a r  time-invariant 
system  described by 

with  control restraint -M<u(r)<2M(M>O). 
To begin, we note that this system can easily be stabilized using linear 

feedback6 Using optimal-aim control instead, we encounter difficulties. 
Using the angles @ + ( x l ,   x 2 )  and & ( x l ,  x 2 )  as in the proof of Theo- 

r e m  1, the following fact is readily  established. Any optimal-aim  trajec- 
tory x ( - )  which  begins in the set 

- M < u(r) < 2 M. we simply use a %-called sarurm’on linear feedhck.  
6 1 ~  is controllable; its poles can be assigned arbitrarily. To accommodate the bound 

9,: ( ( x 1 , x 2 ) E R 2 :   x 1 > 0 , x 2 > 0 )  

remains foreuer within this set.  Consequently, if x(0)  €9 + , it follows that 
i l ( t ) > x l ( t )  (since x 2 ( t ) > 0 ) .  Hence, x l ( t )   > e r x l ( 0 )  and we see this 
system  is  unstable.  Hence, for this system,  the  optimal-aim control would 
not be desirable. 

Iv. CONCLUSION 

Given the Fact that comprehensive  global  stability criteria do not exist 
for arbitrary complex  nonlinear  systems, it is unreasonable (unfair) to 
judge the efficacy of a  given control law  in  terms of its ability to provide 
an u priori guarantee of stability.  Nevertheless, it is Felt that any sound 
control strategy for nonlinear stabilization should satisfy the following 
necessary condition.  Namely,  when the strategy is specialized to a 
controllable h e a r  time-invariant  system,  asymptotic  stability  should be 
assured.  The  optimal-aim  control does not satisfy this neceSSary condi- 
tion. 
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Further  Comments  on  “On  the  Numerical Solution of the 
Discrete T i e  Algebraic  Riccati Equation” 

ALAN J. LAUB 

The  purpose of this note  is to make a few  brief comments on [l] 
which, in turn, comments on [2]. It is unfortunate that the authors OF [l] 
were  unaware of the  existence of [2], which  is based on the Bachelor’s 
degree  thesis of Pappas [3]. Moreover, to set  the  historical  record 
straight, the basic  idea of the generalized  eigenvalue  problem  formula- 
tion  upon which [2] and [3]  were  based appeared as Appendix 1 of  [4] 
@p. 47-48), a report which achieved wide (although apparently not wide 
enough)  circulation. 

The authors of [ I ]  claim that [2] does not address the issue OF 
degeneracy. That claim  is, of course, false as the proof (actually, it is 
almost  a  parenthetical  remark) appears very  clearly in the first paragraph 
of the proof  of Theorem 4 in [2]. 

Several interesthg points are raised in  [l], particularly the formulation 
of the  problem  which  avoids GC1. This can be potentially  a very 
important reformulation if G2 is badly conditioned with  respect to 
inversion.  A  thorough  discussion of this and related  questions appears in 
a  fine  paper of  Van Dooren [5] .  
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