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We propose a novel approach to nonlinear filtering utilizing on-line quantization. We develop
performance bounds for the algorithm. We also present an example which illustrates the
advantages of the method relative to related schemes which utilize off-line quantization.
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1. Introduction

Sequential Baysian filtering arises in many practical problems. The complexity of
this problem depends very much on the underlying mathematical model. When
a linear Gaussian model is assumed, the well known Kalman filter provides the
desired optimal solution. However, in many situations these assumptions do not
hold, even approximately.

We consider here a somewhat simplified version of the general set up. Namely,
we have the following state space model

Xk = F (Xk−1) + Wk,

Yk = G (Xk) + Vk, (1)

where Xk ∈ Rdand Yk ∈ Rm are the system state and measurements respectively,
and Wk ∈ Rd and Vk ∈ Rm are process and measurements noises, typically as-
sumes i.i.d sequences independent of each other, with Gaussian probability density
functions (pdf) pw (w) = N (0, Q) and pv (v) = N (0, R). It is also assumed that
the initial state is a random vector with pdf p0 (x0) = N (0, Q0) and that the
functions F (·) and G (·) are known.

One would like to be able to estimate, at time t > 0, a function f : Rd → R of
the state, f (Xt), given the measurements Yt = {yk : k = 1, ..., t}. This estimate,
which is the filtering operation, is given by

Πy,tf = E {f (Xt) |Yt}

=
∫

f (xt) pt (xt|Yt) dxt. (2)
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Clearly, to be able to calculate this estimate one needs to know the pdf pt (xt|Yt).
To this end one could use iteratively the Chapman-Kolmogorov equation (see e.g.
[1] or [2]): Suppose that at time k− 1 the pdf pk−1 (xk−1|Yk−1) is available. Using
the model equation we can derive the prior pdf

pk (xk|Yk−1) =
∫

pk (xk|xk−1) pk−1 (xk−1|Yk−1) dxk−1, (3)

where (see [3])

pk (xk|xk−1) = pω (xk − F (xk−1)) . (4)

At time step k the new measurement yk becomes available so that it can be used
to update the pdf

pk (xk|Yk) =
pk (yk|xk) pk (xk|Yk−1)

pk (yk|Yk−1)
, (5)

where

pk (yk|xk) = pv (yk −G (xk)) (6)

and

pk (yk|Yk−1) =
∫

pk (yk|xk) pk (xk|Yk−1) dxk. (7)

While the above expressions provide a theoretical framework, only a very limited
number of special cases can be directly solved this way. A prime example is the
linear Gaussian case for which closed form expressions can be derived resulting in
the well known Kalman filter. However, for the general non-linear filtering problem
no exact solutions can be derived hence the need for numerical approximation
methods. There are many such methods in the literature - we refer the reader to
comprehensive surveys and discussion in [1], [2] and the references therein.

Common to all these approximation methods is replacing the integral in (2) with
a finite sum of the form

Πy,tf = E {f (Xt) |Yt}

≈
Nt∑

i=1

Pt,if
(
xi

t

)
. (8)

These methods differ in the way the values
{
xi

t

}Nt

i=1
⊂ Rd and {Pt,i}Nt

i=1 are gen-
erated. One class is based on using a Monte Carlo (random) approach, commonly
referred to as Particle Filtering, while another class uses deterministic considera-
tions.

Let us consider, for a moment, the estimation error

∣∣∣∣∣E {f (Xt) |Yt} −
Nt∑

i=1

Pt,if
(
xi

t

)
∣∣∣∣∣ =

∣∣∣∣∣
∫

f (xt) pt (xt|Yt) dxt −
Nt∑

i=1

Pt,if
(
xi

t

)
∣∣∣∣∣ .

Since, for every choice {Pt,i}Nt

i=1, there exist a tiling {At,i}Nt

i=1 such that Pt,i =
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∫
At,i

pt (xt|Yt) dxt (by tiling we mean that At,i ∩ At,j = ∅ for every i 6= j and

∪Nt

i=1At,i = Rd), we can write

∣∣∣∣∣E {f (Xt) |Yt} −
Nt∑

i=1

Pt,if
(
xi

t

)
∣∣∣∣∣ =

∣∣∣∣∣
Nt∑

i=1

∫

At,i

(
f (xt)− f

(
xi

t

))
pt (xt|Yt) dxt

∣∣∣∣∣

≤
Nt∑

i=1

∫

At,i

∣∣f (xt)− f
(
xi

t

)∣∣ pt (xt|Yt) dxt,

and assuming f to be Lipshitz, namely,
∣∣f (xt)− f

(
xi

t

)∣∣ ≤ [f ]Lip

∥∥xt − xi
t

∥∥, we
obtain the bound

∣∣∣∣∣E {f (Xt) |Yt} −
Nt∑

i=1

Pt,if
(
xi

t

)
∣∣∣∣∣ ≤ [f ]Lip

Nt∑

i=1

∫

At,i

∥∥xt − xi
t

∥∥ pt (xt|Yt) dxt. (9)

The bound derived above for the estimation error is readily recognized as the distor-
tion in a quantization problem for the random variable Xt with the pdf pt (xt|Yt),
encoder {At,i}Nt

i=1 and decoder (or code book)
{
xi

t

}Nt

i=1
. This clearly provides a mo-

tivation of applying (optimal) quantization as a means of obtaining the desired
approximation (8).

In light of the above it hardly is surprising that an approach in the deterministic
class, using vector quantization, has been suggested in [4]. We will describe this
approach in some detail in the next section, quote some of the results and point to
a potential weakness. This provides the basis for the novel method we propose here
which is also based on vector quantization but, as we argue later, does not suffer
from the same potential weakness. In [5] a comparison of the quantization methods
described in [4] is presented and compared to particle filtering. The comparison
indicates an advantage of the quantization approach over particle filtering with the
same size grids especially for small grid size. Given this comparison, we focus our
attention on quantization methods and demonstrate the advantage of our approach
over the ones presented in [4]. In the sequel we assume that the reader has some
familiarity with (optimal) vector quantization and suggest [7] as a reference on the
subject.

2. Quantization in nonlinear filtering

Before we describe the quantization approaches it will be helpful to use (3) - (7)
to rewrite (2) as follows:

Πy,tf =
πy,tf

πy,t1

=
E {f (Xt) L (Xt,Yt)}

E {L (Xt,Yt)} , (10)

where we recall that Yt = {yk : k = 1, ..., t} while Xt = {Xk : k = 1, ..., t} is the set
of random states, and

L (Xt,Yt) =
t∏

k=0

pk (yk|Xk) . (11)
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We further denote

πy,t1 = E {L (Xt,Yt)}
= φt (Yt) . (12)

Note that πy,tf is commonly referred to as the unnormalized filter.

2.1. Marginal quantization

Here we briefly describe the Marginal Quantization filtering algorithm of [4].
Using (1) the sequence of pdfs, pk (xk) for the Markov chain {Xk}t

k=0 can
be calculated off-line and (optimally) quantized, resulting in the set of grids
{Γk = {xk,1, ...,xk,N}}N

k=0 and the corresponding Voronoi cells {Vk,1, ...Vk,N}N
k=0

(see [7]). One could choose different grid sizes for different times. However, for sim-
plicity, we choose the same size for all times. These grids are now used to define
the sequence

X̂k = projΓk
(Xk) for k = 0, ..., t, (13)

where we note that pk (x̂k|Yk) has the form
∑N

j=1 Pk,jδ (x̂k − xk,j). Let us define
the matrix

H ij
k = pk

(
yk|X̂k = xk,j

)
Prob

[
X̂k = xk,j |X̂k−1 = xk−1,i

]

= pk

(
yk|X̂k = xk,j

)∫

Vk,j

pk

(
x|xk−1,i

)
dx

= pk

(
yk|X̂k = xk,j

)∫

Vk,j

pω (x− F (xk−1,i)) dx, (14)

and denote Pk = [Pk,1, ..., Pk,N ] and f
(
X̂k

)
= [f (xk,1) , ..., f (xk,N )]T . Then, using

Bayes rule we obtain as the estimate of the unnormalized filter

π̂y,tf = Pt−1Htf
(
X̂t

)

= P0H1 · · ·Htf
(
X̂t

)
, (15)

where P0 = [P0,1, ..., P0,N ]T and P0,i =
∫
V0,i

p0 (x0) dx0. The estimate of the filter
then is given by

Π̂y,tf = E
{

f
(
X̂t

)
|Yt

}

=
π̂y,tf

π̂y,t1
, (16)

where

π̂y,t1 = 1T
t∏

k=1

HkP0

= φ̂t (Yt) . (17)
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Markovian quantization [4]:
An alternative approach described in [4] is achieved by defining the Markovian

process, with X̃0 = X0

X̂k = ProjΓk

(
X̃k

)
, (18)

X̃k = F
(
X̂k−1

)
+ Wk,

Ŷk = G
(
X̂k

)
+ Vk. (19)

The grids Γk here are generated by (optimal) quantization of the pdfs pk

(
X̃k

)

which are again, calculated off-line. With this setup we can imitate (10) and define

L̂
(
X̂t,Yt

)
=

t∏

k=0

pk

(
yk|X̂k

)
(20)

π̂y,tf = E
{

f
(
X̂t

)
L̂

(
X̂t,Yt

)}
(21)

and

Π̂y,tf = E
{

f
(
X̂t

)
|Yt

}

=
π̂y,tf

π̂y,t1
(22)

with

π̂y,t1 = E
{

L̂
(
X̂t,Yt

)}

= φ̂t (Yt) . (23)

2.2. On-line quantization

We start with the observation that if our goal is to use (optimal) quantization
to provide an estimate of the form

∑N
j=1 Pt,jδ (xt − xt,j) of the pdf pt (xt|Yt) (or

equivalently, an estimate of the filter (8)), this is the pdf we need to quantize.
Namely, both the grid and the respective weights should be data dependent and not
calculated off-line. This, we feel, is the potential weakness inherent to both methods
described above. On the other hand, any such attempt needs to be computationally
feasible. The method we propose we believe yields an appropriate compromise for
certain cases of practical importance.
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We consider the Markovian process, X̃0 = X0 and

X̃k = F
(
X̂k−1

)
+ Ŵk, (24)

Ỹk = G
(
X̃k

)
+ Vk,

X̂k = ProjΓk

(
X̃k|Yk

)
, (25)

where Ŵk =ProjΓw
(Wk) which is done off-line and is an (optimal) quantization

of pw (w) resulting in a grid of size Nw. Hence,

pŵ (w) =
Nw∑

s=1

Pw,sδ (w −ws) . (26)

At each time k ≥ 1 we have pk−1

(
X̂k−1|Yk−1

)
=

∑N
i=1 Pk−1,iδ (x̂k−1 − xk−1,i),

then

pk

(
X̃k|Yk−1

)
=

N∑

i=1

Nw∑

s=1

Pk−1,iPw,sδ (x̃k − F (xk−1.i)−ws)

=
N×Nw∑

r=1

P̃k,rδ (x̃k − x̃k,r) , (27)

and

pk

(
X̃k|Yk

)
=

∑N×Nw

r=1 pk

(
yk|X̃k = x̃k,r

)
P̃k,rδ (x̃k − x̃k,r)

∑N×Nw

r=1 pk

(
yk|X̃k = xk,r

)
P̃k,r

=
N×Nw∑

r=1

Pk,rδ (x̃k − x̃k,r) . (28)

Then, the approximate filter is

Π̃y,tf = E
{

f
(
X̃t

)
|Yt

}

=
N×Nw∑

r=1

Pk,rf (x̃k,r) . (29)

We note that pk

(
X̃k|Yk

)
which is defined on an N ×Nw grid, can be calculated

on-line at each time k ≥ 1, (optimally) quantized to provide us with the grid Γk

to be used to generate X̂k. The intuitive benefit in the proposed approximation is
clear. We will in the sequel, attempt to support this intuition with analysis.

Remark 1: The (optimal) quantization of X̃k, which is a discrete valued random
vector, is in fact a clustering problem for which one could apply one of many
available fast algorithms (see e.g. [6]).
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3. Error analysis

For our analysis we make the following assumption.

Assumption 1: The functions F : Rd → Rd, G : Rd → Rd are Lipschitz with
ratios [F ]Lip , [G]Lip respectively, and the function f : Rd → R is both bounded and
Lipshitz with bound ‖f‖∞ and ratio [f ]Lip.

Remark 2: For example, we note that the Gaussian pdf N (0, Q) in Rd is Lip-
schitz with ratio (eλmin (Q))−

1
2 1

(2π)
d
2 |Q| 12

for ‖·‖2. Hence, since ‖x‖2 ≤ ‖x‖1 and

pk (yk|Xk = x) = N (G (x) , R), by Assumption 1 we have

|pk (yk|Xk = x)− pk (yk|Xk = x̂)| ≤ (eλmin (R))−
1
2

1

(2π)
m

2 |R| 12
‖G (x)−G (x̂)‖2

≤ (eλmin (R))−
1
2

[G]Lip

(2π)
m

2 |R| 12
‖x−x̂‖2

≤ [p (·|·)]Lip ‖x−x̂‖1 . (30)

Furthermore, we also note that

‖pk (yk|Xk = x)‖∞ =
1

(2π)
m

2 |R| 12
= K. (31)

We can now write the approximate filter (29) as

Π̃y,tf =
π̃y,tf

π̃y,t1

E
{

f
(
X̃t

)
L̃

(
X̃t,Yt

)}

E
{

L̃
(
X̃t,Yt

)} , (32)

where X̃t =
{
X̃k : k = 1, ..., t

}
,

L̃
(
X̃t,Yt

)
=

t∏

k=0

pk

(
yk|X̃k

)
, (33)

and

π̃y,t1 = E
{

L̃
(
X̃t,Yt

)
|Yt

}

= φ̃t (Yt) . (34)

Our derivation closely imitates the one presented in [4]. We quote first the fol-
lowing Lemma 3.1 from [4] :

Lemma 3.1: Let (µy) and (νy) be two families of finite positive measures on a
measurable space (E, E). Assume that there exist two symmetric functions R and
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S defined on µy and νy such that for every bounded Lipschitz function f ,

∣∣∣∣
∫

fdµy −
∫

fdνy

∣∣∣∣ ≤ ‖f‖∞R (µy, νy) + [f ]Lip S (µy, νy) , (35)

then
∣∣∣∣
∫

fdµy

µy (E)
−

∫
fdνy

νy (E)

∣∣∣∣ ≤
1

max (µy (E) , νy (E))

(
2 ‖f‖∞R (µy, νy) + [f ]Lip S (µy, νy)

)
.

(36)

We are ready now to state our result on the error bound.

Theorem 3.2 : Let Assumption 1 hold, then, for every bounded Lipschitz con-
tinuous function f : Rd → R with ratio [f ]Lip and sequence of measured data
Yt = {y1, ...,yt} generated by eqn. (1), the error of the estimator (29) satisfies

∣∣∣Πy,tf − Π̃y,tf
∣∣∣ ≤ Kt

max
(
φt (Yt) , φ̃t (Yt)

)
(

DtE {‖∆w‖1}+
t−1∑

k=0

Ct
k (f,Yt)E {‖∆k‖1}

)
,

(37)
where

Ct
k (f,Yt) = [f ]Lip [F ]t−k

Lip + 2
‖f‖∞

K
[p (·|·)]Lip [F ]Lip

[F ]t−k
Lip − 1

[F ]Lip − 1
, (38)

Dt = [f ]Lip [F ]Lip

[F ]tLip − 1
[F ]Lip − 1

+ 2
‖f‖∞

K
[p (·|·)]Lip

t∑

k=1

k [F ]t−k
Lip , (39)

and

∆w = W − Ŵ

= W − ProjΓw
(W ) ,

∆k = X̃k − ProjΓk

(
X̃k|Yk

)

= X̃k − X̂k. (40)

(Note that E {‖∆w‖1} ,E {‖∆k‖1} are the respective quantization distortions).

Proof : We begin by applying (10) and (32) to

|πy,tf − π̃y,tf | =
∣∣∣E {f (Xt) L (Xt,Yt)} − E

{
f

(
X̃t

)
L̃

(
X̃t,Yt

)}∣∣∣

=
∣∣∣E

{
f (Xt)

(
L (Xt,Yt)− L̃

(
X̃t,Yt

))}

+E
{(

f (Xt)− f
(
X̃t

))
L̃

(
X̃t,Yt

)}∣∣∣

≤ ‖f‖∞ E
{∣∣∣L (Xt,Yt)− L̃

(
X̃t,Yt

)∣∣∣
}

+ [f ]Lip KtE
{∥∥∥Xt − X̃t

∥∥∥
1

}
, (41)
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where we have used Remark 2 and (33) to conclude that
∣∣∣L̃

(
X̃t,Yt

)∣∣∣ ≤ Kt. Ap-
plying Lemma 3.1 we obtain

∣∣∣Πy,tf − Π̃y,tf
∣∣∣ ≤ 1

max
(
φt (Yt) , φ̃t (Yt)

)
(
2 ‖f‖∞ E

{∣∣∣L (Xt,Yt)− L̃
(
X̃t,Yt

)∣∣∣
}

+ [f ]Lip KtE
{∥∥∥Xt − X̃t

∥∥∥
1

})
. (42)

Using (11) and (33) we obtain

L (Xk,Yk)− L̃
(
X̃k,Yk

)

= pk (yk|Xk) L (Xk−1,Yk−1)− pk

(
yk|X̃k

)
L̃

(
X̃k−1,Yk−1

)

=
(
pk (yk|Xk)− pk

(
yk|X̃k

))
L (Xk−1,Yk−1)

+pk

(
yk|X̃k

) (
L (Xk−1,Yk−1)− L̃

(
X̃k−1,Yk−1

))
,

so that

∣∣∣L (Xk,Yk)− L̃
(
X̃k,Yk

)∣∣∣ ≤ Kk−1 [p (·|·)]Lip

∥∥∥Xk − X̃k

∥∥∥
1

+K
∣∣∣L (Xk−1,Yk−1)− L̃

(
X̃k−1,Yk−1

)∣∣∣ .

Since L (X0,Y0) = L
(
X̃0,Y0

)
= 1 we obtain from the above that

∣∣∣L (Xk,Yk)− L̃
(
X̃k,Yk

)∣∣∣ ≤ Kk−1 [p (·|·)]Lip

k∑

j=1

∥∥∥Xj − X̃j

∥∥∥
1
. (43)

From (1), (24), (25) and (40) we have

∥∥∥Xk − X̃k

∥∥∥
1

=
∥∥∥F (Xk−1)− F

(
X̂k−1

)
+ Wk − Ŵk

∥∥∥
1

≤ [F ]Lip

∥∥∥Xk−1 − X̂k−1

∥∥∥
1
+ ‖∆w

k ‖1

≤ [F ]Lip

(∥∥∥Xk−1 − X̃k−1

∥∥∥
1
+ ‖∆k−1‖1

)
+ ‖∆w

k ‖1 .

Noting that X0 = X̃0, we conclude that

∥∥∥Xk − X̃k

∥∥∥
1
≤

k∑

j=1

[F ]k−j
Lip

(
[F ]Lip ‖∆j−1‖1 +

∥∥∆w
j

∥∥
1

)
. (44)
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Substituting (44) into (43) we obtain

∣∣∣L (Xk,Yk)− L̃
(
X̃k,Yk

)∣∣∣ ≤ Kk−1 [p (·|·)]Lip

k∑

j=1

j∑

r=1

[F ]j−r
Lip

(
[F ]Lip ‖∆r−1‖1 + ‖∆w

r ‖1

)
(45)

and substituting both (44) and (45) in (41a), using the fact that E {‖∆w
r ‖1} =

E {‖∆w‖1} does not depend on time, concludes the proof of the theorem. ¤

3.1. Discussion

We recall that the purpose in all approaches aimed at the current problem is
to generate an approximation of the form pt (xt|Yt) ≈

∑N
i=1 Pt,iδ (xt − xt,i). As

argued in (9), the optimal quantization of pt (xt|Yt) would guarantee a minimal
estimation error bound. Clearly, when the grid is chosen off-line the best one can
hope for is to have the weights as close as possible to

∫
Vi

pt (xt|Yt) dxt as for a fixed
grid this will give the optimal weights (see [7]). The result may however be quite
far from a good approximation. On the other hand, since the on-line approach uses
the on-line data, it will result in a choice of grid which is closer to the optimal
for pt (xt|Yt). Hence it is likely to result in a better approximation. On the other
hand, since it involves more computation at each time step it is bound to be more
computationally demanding. Indeed, all grid type optimizations become more and
more difficult in high dimensions since they rely, amongst other things, on nearest
neighbour searches - see, for example [8]. The only caveat we would place on this is
when one uses fast sampling since then the optimal quantizer for one sample acts
as a good initial condition for the next sample - see [9] for further discussion.

The above intuitive discussion of relative performance can be made somewhat
more rigorous when viewing the bounds derived in [4] for the two off-line algorithms.
Both have the form

∣∣∣Πy,tf − Π̂y,tf
∣∣∣ ≤ Kt

max
(
φt (Yt) , φ̂t (Yt)

)
t∑

k=0

At
kE {‖∆k‖1}

and differ in the expressions for the coefficients At
k and in the quantization errors

‖∆k‖1. However, when applying the bound, since φt (Yt) can not be calculated,
the denominator will be in fact φ̂t (Yt). This value, by its definition (see (14)-(17)
and (20)-(23)), depends on products of the terms pk

(
yk|X̂k = xk,j

)
. Clearly, as

the grid points xk,j are chosen off-line, the conditional pdf, pk (yk|xk), evaluated
at these points may be very small resulting in a very small value for φ̂t (Yt) and a
large value for the performance bound. As our experiments indicate this actually
results, not only in a poor performance bound, but actually provides poor per-
formance in practice. When compared to the on-line method, as the quantization
depends upon the data, the grid points will necessarily results in larger values of
pk

(
yk|X̂k = xk,j

)
(see comment following eqn. (29)) and a smaller bound.
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Figure 1. The true conditional distribution and its two approximations at time t = 1

4. Numerical example

We present here a very simple numerical example for which we could calculate
(to a high accuracy via the use of very fine griding) the true pdfs and use it to
demonstrate the points we made earlier regarding the relative accuracy of off-line
and on-line approaches.

Consider the process defined by

Xk = 0.9Xk−1 + Wk,

Yk = |Xt|+ Vk. (46)

We chose N = 11, Nw = 25 and calculated the true pdf pt (xt|Yt), the marginal
approximation pt (x̂t|Yt) and our on-line approximation. Note that, in our method,
at each time, we have the pdf pt (x̃t|Yt) on a N ×Nw size grid and after its on-line
quantization we have pt (x̂t|Yt) on a N size grid.

In Figures 1-3 we present a comparison of the resulting pdfs at different times,
the real pt (xt|Yt) and the two estimated ones - one using the marginal off-line quan-
tization and the other the on-line quantization. In fact, in the figures we present
the respective distributions as they are easier to compare. We clearly observe how
very close the on-line approximation is to the real one while the off-line provides a
very poor approximation.

Next, to demonstrate the filtering properties, we have chosen the function
f (x) = e−|x| and calculated the errors

∣∣∣E {f (Xt) |Yy} − E
{

f
(
X̂t

)
|Yy

}∣∣∣ - the off-

line (marginal) quantization estimates and
∣∣∣E {f (Xt) |Yy} − E

{
f

(
X̃t

)
|Yy

}∣∣∣ - the
on-line quantization estimates. The results are presented in Figure 4. We observe
that the errors for the off-line are consistently larger by an order of magnitude.
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5. Conclusion

The idea of using quantization as a deterministic alternative to particle filtering for
nonlinear systems has been discussed here. As we have pointed out, previous liter-
ature on this topic use off-line quantization. This approach suffers from a potential
problem since the quantization grids, a crucial part of the approximation, are de-
termined off-line with no consideration of the measured data. The approach we
present here, which we believe to be novel, is based on carrying out the quantiza-
tion on-line based on discrete versions of the posterior pdfs. This makes the on-line
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Figure 4. Filtering errors for the function f (x) = e−|x| using the online and offline approximations.

quantization, while more on-line computation intensive, still feasible for modest size
problems. We wish to point out that our main goal here is the comparison with
off-line quantization methods. An extensive comparison of these off-line methods
has been presented in [5] with clear advantages to the quantization approach at
relatively small grid sizes. Hence, claiming potential advantage over the off-line
quantization methods clearly implies advantage over particle filtering approaches
in particular, with small grid sizes.

For the new approach presented in the paper, we have derived a performance
bound by appropriately adapting the methods previously described in [4]. We have
also pointed to the potential advantages of our proposal when compared with the
earlier off-line approach.

Finally, we use a simple example to demonstrate the validity of our claims re-
garding the advantages of the on-line approach when compared to the off-line one.
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