
860 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 4, APRIL 2012

Robustness in Experiment Design
Cristian R. Rojas, Juan-Carlos Agüero, Member, IEEE, James S. Welsh, Member, IEEE,

Graham C. Goodwin, Fellow, IEEE, and Arie Feuer, Fellow, IEEE

Abstract—This paper focuses on the problem of robust exper-
iment design, i.e., how to design an input signal which gives rela-
tively good estimation performance over a large number of systems
and model structures. Specifically, we formulate the robust experi-
ment design problem utilizing fundamental limitations on the vari-
ance of estimated parametric models as constraints. Using this for-
mulationwe design an input signal for situations where only diffuse
a priori information is known about the system. Furthermore, we
present a robust version of the unprejudiced optimal input design
problem. To achieve this, we first develop a closed form solution
for the input spectrum which minimizes the maximum weighted
integral of the variance of the frequency response estimate over all
model structures.

Index Terms—Optimal input design, robust input design, system
identification.

I. INTRODUCTION

A DVANCED control design is based on the availability of
models for the system under study [1]. The success of

these techniques depends on the quality of the models utilized to
design the control strategy. This has, inter-alia, inspired interest
in the area of system identification over the last three decades
(e.g., see [2]–[6]).
A general requirement in system identification is to learn as

much about a system as possible from a given observation pe-
riod. This has motivated substantial interest in the area of op-
timal experiment design. Optimal experiment design has been
studied both in the statistics literature [7]–[9] and in the engi-
neering literature [3], [10]–[14], primarily focusing on the goals
of system identification.
Most of the existing literature is based on designing the ex-

periment to optimize a given scalar function of the Fisher In-
formation Matrix [3]. This presents a fundamental difficulty,
namely, when the system response depends nonlinearly on the
parameters, the Information Matrix depends on the true system
parameters. Moreover, models for dynamical systems (even if
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linear) typically have the characteristic that their response de-
pends nonlinearly on the parameters. Hence, the information
matrix for models of dynamical systems generally depends upon
the true system parameters. Therefore experiment designs based
on the Fisher InformationMatrix will, in principle, depend upon
knowledge of the true system parameters. This is paradoxical
since the “optimal experiment” then depends on the very thing
that the experiment is aimed at estimating [13].
The above reasoning has motivated the study of “robust” ex-

periment design with respect to uncertain a priori information.
Work in this area has been growing in recent years [15]–[22].
In particular, in [15] and [22] experiments are designed for the
purpose of robust control and the term least-costly identification
experiment was coined. Based on geometric properties of the
information matrix, a modification of the least-costly identifica-
tion experiment approach is analyzed in [19] and [20]. Finally,
in [21] the experiments are designed in a game-theory frame-
work where the “true” system parameters belong to a compact
set. Here, we propose an alternative approach motivated by the
analysis presented in [23], and the recent results in [24].
In general, the choice of the “best” experiment to identify

a process depends on the prior knowledge we have about the
process. In this paper we analyze, and solve, the following
problem: Say we are just beginning to experiment on a system
and thus have very little (i.e., diffuse) prior knowledge about it.
What would be a “good” initial experiment in order to estimate
the parameters of the system?
To this end, we build on works such as [12] and [23], which

assume that both the true system and the noise dynamics are
known (at the time of designing the experiment). In this paper,
we do not assume knowledge of the true system, but (for the
results of Section VI) we do assume that the noise spectrum
is known. Basic prior knowledge about the plant can be ob-
tained, for example, by using nonparametric frequency domain
methods based on a simple experiment [4]–[6], [25], [26]; how-
ever, the use of this kind of prior knowledge for robust experi-
ment design is not considered in the present contribution, and it
will be explored in a future publication.
The results derived in this paper are valid for models with

a finite number of parameters, but where the number of sam-
ples is sufficiently large. The possibility of removing this last
condition and keeping at the same time the simplicity of our ex-
pressions, which have a very intuitive interpretation, is beyond
the scope of this paper, since they are much more difficult to
obtain, and most approaches to finite sample analysis are done
using numerical techniques [27]. Moreover, exact variance re-
sults for finite samples also rely on higher order moments of the
underlying distribution of the data, so they are inherently less
robust with respect to the assumptions on the true system than
asymptotic results.
The paper is structured as follows. Section II formulates

the problem and describes the notation used in the paper. In
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Section III, the basic tools used in the sequel are presented.
Section IV deals with the design of an input signal based on
diffuse prior information. In Section V we study the problem of
designing an input spectrum having normalized power which
minimizes a weighted integral of the variance of the frequency
response of a model. Section VI revisits the problem of unprej-
udiced input design. Section VII presents a simple numerical
example. Finally, Section VIII provides conclusions.

II. SYSTEM DESCRIPTION AND NOTATION

Consider a single-input single-output (SISO) linear system
given by

where is a quasi-stationary signal [5], and is a
zero mean Gaussian white noise sequence with variance . We
denote the unit delay operator by and assume to be a
stable minimum phase transfer function with . To
simplify the notation, we denote by .
Given input-output data pairs , a model of

the form

will be estimated. Here the dimension of will specify the order
of the model.
We assume that the estimators for and are asymptoti-

cally efficient (e.g., Maximum Likelihood, or PEM for Gaussian
disturbances). Note that this is not a limitation, since there are
standard estimation methods which satisfy this condition. This
assumption allows us to decouple the problems of experiment
design and estimation (c.f. [3, Sec. 6.2]).
The spectrum of a quasi-stationary signal [5] is de-

fined as

where is the autocovariance of
[5], and where .

Notation: If , then , and denote its com-
plex conjugate, transpose and complex conjugate transpose, re-
spectively. Let and

. The Hardy space of analytic functions on taking
values on such that is
denoted as [28], [29]. Now define as the space
of all functions from to having a continuous
derivative, and as the space of all continuous func-
tions such that for every .
In the sequel, quantities with a hat “ ” correspond to estima-

tors (of their respective “unhatted” quantities), which implicitly
depend on the data length, . Covariance expressions are valid
as [5] (i.e., they are correct up to order1 ).

III. TECHNICAL PRELIMINARIES

The results presented below depend upon a fundamental lim-
itation result developed in [24]. For completeness, we state the

1Loosely speaking, this means that all expressions in the sequel which involve
variances, of the form , should be interpreted as

.

main result of [24]. In this section, we assume there is no un-
dermodelling, i.e., there exists a such that

and . In addition, and
are independently parameterized,2 and the vector of true param-
eters is split into two components, i.e., .
Under these and some additional mild assumptions [5, Sec. 9.4],
the estimate of , , has an asymp-
totic variance satisfying

where .
Theorem 1: If the parameter vector of , , has dimension
, and is parameter identifiable under for the

maximum likelihood method [4],3 then

Proof: See [24].
As explained in detail in [24], Theorem 1 shows that it is not

possible to reduce the variance of uniformly at all frequen-
cies by choosing a suitable model structure, since if we reduce
the variance at some frequencies, it will necessarily increase at
others, thus implying a “water-bed” effect [30]. Additionally,
any over-parameterization of results in an increase in the in-
tegrated variance of its estimate.
The following converse to Theorem 1 will prove useful in the

sequel.
Theorem 2: Let be continuous and

even. Also, let be such that

(1)

where . Then, there exists a function such
that

(2)
for every .

Proof: See Appendix A.
Theorem 2 shows that if a function satisfies

relation (1), which is similar to the fundamental limitation of
Theorem 1, then it is possible to find a model structure for
with parameters for which is the variance of . In this
case, the resulting model structure is characterized by , the
gradient of with respect to . For instance, given from

2Having an independent parameterization for and means that can be
split into two components, and , such that functionally depends
only on , and functionally depends only on .
3The assumption that is parameter identifiable under for the

maximum likelihood (ML) method means the ML estimator of converges
almost surely to , where .
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Theorem 2, a model structure for which
is4 .
From Theorems 1 and 2, we have that (1) provides a complete

characterization of those functions which could correspond to
the variance of .
Note that the parameters involved in the fundamental limita-

tions of Theorems 1 and 2 must be evaluated at their true values.
Also notice that the assumption that and are continuous
and nonzero in Theorem 2 might seem restrictive, since it does
not allow, for example, multisine inputs. However, it is a stan-
dard assumption for the derivation of several variance results,
e.g., see [31].

IV. EXPERIMENT DESIGN WITH DIFFUSE PRIOR INFORMATION

The problem of designing a good input signal with diffuse
prior information was examined in [21], where results based on
Ljung’s asymptotic (in the number of data points, and also in the
number of parameters in the model) variance expression were
obtained. In this section the results of [21] are shown to be valid,
even for finite model orders, if we consider the worst case over
all model structures of a given order. Again, note that we assume
no undermodelling.
Our aim is to design an experiment which is “good” for a very

broad class of systems. This means that we need a measure of
“goodness” of an experiment which is system independent.
As argued in [16], [32]–[34], absolute variances are not par-

ticularly useful when one wants to design an experiment that
applies to a broad class of systems. Specifically, an error stan-
dard deviation of in a variable of nominal size 1 would
be considered to be insignificant, whereas the same error stan-
dard deviation of in a variable of nominal size would
be considered catastrophic. Hence, it seems highly desirable to
work with relative errors (see also [35]–[37]).
Rather than look at a single frequency , we will look at an

“average” measure over a range of frequencies. This leads to a
general measure of the “goodness” of an experiment, given by

(3)

where and

The functions and will be specified later.
Essentially is a weighting function that allows one to

specify at which frequencies it would be preferable to obtain a
good model (depending on the ultimate use of the model, but
not necessarily on the true system characteristics).
In [21] it is argued that and should satisfy the following

criteria.

4 is not the only model structure for which
. However, any model structure with such vari-

ance must satisfy locally around , for
some satisfying (2), by definition of the model gradient and the smoothness
of .

A.1) The optimal experiment, , which minimizes
in (3), should be independent of the system

and the noise dynamics .
A.2) The integrand in (3) should increase if the variance

increases at any frequency. This implies
that should be a monotonically increasing function.

B) The weighting function should satisfy the following:

for every and every

s.t. we have

Criteria A.1 and A.2 are based on the desire to design an
input signal which is independent of the system and the noise
dynamics. Criterion B, on the other hand, is based on the ob-
servation that many properties of linear systems depend on the
ratio of poles and zeros rather than on their absolute locations
in the frequency domain [1], [30], [38]. This implies that if we
scale the frequency by a constant, the optimal input must keep
the same shape and simply relocate on the frequency axis, since
the poles and zeros of the new system will have the same ratios
as before.
Note that it is not possible in our framework to consider the

full interval , since, as we will see later, the optimal signal
which satisfies these criteria in the range is noise,
which has infinite power over this range; hence it is unrealizable
in practice. However, the assumption that in
(3) seems reasonable, since for control design, it is well known
that knowledge of the plant at low frequencies is unimportant, as
the controllers typically include an integrator which takes care
of the steady state behavior of the closed loop. Similarly, it is
not necessary to estimate the high frequency region of , since
plants are typically low-pass. What is actually required from the
control designer in order to use the proposed input signal is a
frequency range where the relevant dynamics of the plant
are believed to be.
Note that Criterion A.1 is not the same as in [21], since we

are considering the worst case of over all possible systems
and model structures (of order ).
The purpose of obtaining a robust input with respect to all

model structures comes from the fact that the optimal input typ-
ically depends on the gradient of the model with respect to the
parameter vector , evaluated at its true value . Therefore, for
a nonlinearly parameterized model, even though the user knows
the model structure (since it is a design variable), the gradient
typically depends on the true system, hence it will be unknown
prior to the experiment. Of course, the gradient cannot take any
possible value in for some particular model structures (e.g.,
linearly parameterized models, for which it is actually indepen-
dent of ). However, in the sense of a fundamental limitation,
the results derived in this paper establish a lower bound (and an
input spectrum which achieves it) on the performance of the pa-
rameter estimation of the system, even before the selection of a
model structure.
The following lemma, from [21], describes how must be

chosen to satisfy Criterion B.
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Lemma 1: For , let . If
satisfies

(4)

for every and every such that
, then there exists a such that for

every .
Proof: Since is continuous, we have from (4) that

for . Thus

or, by defining and

By the continuity of , we also have that . This
proves the lemma.
Criteria A.1 and A.2 constrain to have a very particular

form, as shown in the following lemma.
Lemma 2: Consider the experiment design problem

(5)

where , ,
, is continuously differentiable on , and

for . Let be a stationary point. If does not
depend on , then there exist constants such that

and

,

otherwise.

Proof: See Appendix B.
In the following lemma we establish that, for the choice of
given in Lemma 2, actually corresponds to the global

optimum of the experiment design problem (5).

Lemma 3: Consider the experiment design problem

where , , is continu-
ously differentiable on , and

for . The solution to this problem is given by

,

otherwise.
(6)

Proof: See Appendix C.
Lemma 3 shows that, under Criteria A.1 and A.2, the optimal

input has to be proportional to the weighting function . This
means that the input should excite precisely those frequencies
where higher model quality is required. This agrees with intu-
ition. Notice also that the optimal input does not depend on the
noise spectrum (according to Criterion A.1).
By combining Lemmas 1 and 2, Criteria A.1, A.2, and B

imply that, when only diffuse prior knowledge is available about
the system and the noise, then a reasonable experiment design
problem can be stated as

Moreover, by Lemma 3, the corresponding optimal input spec-
trum is given by

which is bandlimited “ ” noise [16]. This extends the results
of [21] to finite model orders.
The result presented in this section can be explained in the

following way [36]: Practitioners who perform experiments
often say that step type test signals are good, but typically do
not excite high frequencies terms well enough. On the other
hand random signals such as PRBS are also considered good,
but typically have too much energy in the high-frequency re-
gion. Step type inputs have power spectral density that decays
as whereas random signals have constant
power spectral density. This implies that a signal having power
spectral density that lies somewhere between and a con-
stant might be a good open-loop test signal. This suggests
noise (over a limited bandwidth) as a possible good choice.



864 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 4, APRIL 2012

Examples which show the good performance of bandlimited
“ ” noise as a first experiment when compared with other
typical input signals, such as bandlimited white noise or an op-
timally designed input (based on perfect knowledge of the plant
and noise properties), have been presented by the coauthors in
several publications, e.g., [16], [21], [33], [36], [39], and [40].
Remark 1: It is important to notice that the results of this

section obviously do not imply that bandlimited “ ” noise
is the optimal input signal under every possible circumstance.
The optimality of this signal has been established for the case
when there is a lack of prior knowledge. If, for instance, the
frequency response of the system were known to contain peaks
in some frequency regions, then it is reasonable to incorporate
this prior knowledge into the optimization problem of Lemma
2. This has already been discussed in [21], where it is noted
that the results of this section resemble the development of the
Principle of Maximum Entropy as given in [41] and [42], where
the same issue regarding the incorporation of prior knowledge
arises.
Remark 2: Since we are considering the case where there is

very little information about the plant, we cannot expect the op-
timal input, i.e., bandlimited “ ” noise, to have spectacular
performance compared to a carefully designed input based on
full knowledge of the plant. The input signal we have proposed
is designed to be used as the first experiment on the plant, in
order to determine its main features. As performance require-
ments on the closed loop are increased, more experiments can
be performed on the plant, from which we can obtain a better
model, based on which one can design a better experiment and
so on.

V. MIN-MAX ROBUST EXPERIMENT DESIGN

Here we utilize the results of Section III to analyse the
problem of designing an input signal which is robust, in an
integrated variance sense, against all possible model structures
(and also the true values of the system parameters). This anal-
ysis will then be used in the next section to design input signals
which are optimally robust, in terms of both bias and variance
errors, for a particular application.
Theorem 3: Consider the experiment design problem:5

where and

5Note that the input power has been normalized to be less than or equal to 1.
When the input power is constrained to be below some other value, it suffices,
for the problems considered in this paper, to scale the optimal solution to satisfy
that constraint. For other kinds of experiment design problems, the reader is
referred to [22] which provides methods to renormalize the optimal input.

for . The solution of this problem is given by

(7)

and the optimal cost is

Proof: See Appendix D.
Theorem 3 gives the solution to a robust experiment design

problem. The nonrobust version of that optimization problem
(i.e., without the maximization with respect to ) is a very stan-
dard problem in experiment design. It was probably first studied
by Ljung in [31], where several choices for were considered,
depending on the specific application of the model to be esti-
mated. For example, if the purpose of the model is simulation,
then could be chosen as

where is the spectrum of the input to be used during the
simulation; if the model is to be used for (one step ahead)
prediction, then the choice should be

where is the spectrum of the input to be used during the
prediction stage, and can be taken as an initial estimate of the
noise spectrum. The interested reader is referred to [12], [31],
and [5, Sec. 12.2], where these choices are studied in detail.
The original nonrobust version of the problem, studied in

[31], has a nice explicit closed-form solution for the case when
both the number of samples and the model order are very large.
Solutions for models having a finite number of parameters can
be obtained, in general, only numerically, by using convex op-
timization techniques [43].
Theorem 3 shows that it is possible to obtain analytic expres-

sions for the robust version of the experiment design problem,
which are valid even for models with a finite number of pa-
rameters (but which are still asymptotic in sample size). The
optimal solution in this case, (7), also has a very nice interpre-
tation: it is such that the frequency-wise signal-to-noise ratio,

, is proportional to the weighting function . Hence, it
puts more power at those frequencies where the noise power is
high and where a better model is required. Also notice that (7)
does not explicitly depend on the number of parameters of the
model structures considered. Hence it is optimal for every fixed
. Finally, note that, due to the robustification of the experiment
design problem (by considering the maximum over all model
structures having parameters), the optimal spectrum does not
depend (explicitly) on the true system.6

6The optimal spectrum (7) might still depend on the true system through .
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VI. UNPREJUDICED INPUT DESIGN FOR FINITE MODEL ORDER

Finally we consider the unprejudiced optimal input design
problem. It is known, [23], that prejudice is introduced into the
parameter estimation problem due to the assumption that the
system of interest belongs to a limited set of models. This has
been addressed in [23], where Yuan and Ljung develop a frame-
work for reducing the effect of this prejudice for experiment de-
sign. This is accomplished in two ways: a) by including a bias
effect explicitly in the cost and b) by using an asymptotic vari-
ance expression in the cost.
Utilizing fundamental limitations on the variance [24], we

revisit the approach in [23] and develop an unprejudiced optimal
input for finite-order models.
The result of the min max robust experiment design problem

in the previous section is used to obtain an improved unprej-
udiced open-loop input design, in the sense of Yuan and Ljung
[23]. First we recall the concept of an unprejudiced input design.
The experiment design problem considered in [23] is of the

form

where , and undermodelling, i.e., bias in can
exist. To solve this problem, the mean square error in the esti-
mation of can be decomposed into bias and variance terms

where almost surely. This de-
composition holds asymptotically in , in the sense that for fi-
nite , the bias term should consider instead of the
limit estimate . This approximation, however, allows
further simplifications in the calculation of the optimal experi-
ment. Minimization of the bias term leads to the following so-
lution [5], [23]:

(8)

where almost surely, and
is a normalization constant. Notice that this solution is indepen-
dent of both and .
With respect to the variance term, an asymptotic (in model

order) variance expression is used in [23], which is minimized
by the following input spectrum:

where is a normalization constant. Note that the asymp-
totic (in model order) variance expression [31] used to develop
this equation for the input spectrum does not consider the effect
of bias.

In order to reconcile both expressions for , is con-
sidered as a prefilter (designed by the user), such that

where . This solution is dimensionally inconsistent, since
it constrains the noise prefilter to be proportional to the square
root of the true noise spectrum, creating a paradox.
This paradox arises due to the use of an asymptotic (in model

order) variance expression, which only holds approximately for
model sets with a shift structure [5, Sec. 9.4].
To solve this dilemma, we consider the following experiment

design problem:

where is the set of all stable model structures with param-
eters, i.e., is differentiable
in the connected open set for all and

for all .
In this problem formulation we consider the worst case of

the (weighted) mean square error over all model structures of
a given order. Again, the cost function can be decomposed into
both bias and variance terms. The bias term is minimized by (8),
since the solution is independent of and . This implies that
taking the supremum over all model structures in does not
affect the previous solution. The argument is formalized in the
following theorem.
Theorem 4 (Optimality of Dominant Strategies): Let

be an arbitrary function, where and are arbitrary
sets. Assume that there exists an such that

Then

Therefore is an optimal solution of the min-max problem7

.
Proof: By definition of the infimum of a function, we have

that

(9)

On the other hand, by the definition of the supremum,

7In game-theoretical terms [44], Theorem 4 establishes that a dominating
strategy is an equilibrium strategy.
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Fig. 1. (Left) Magnitude Bode plot of , from Section VII. (Right) Normalized variance of , as a function of the parameter , obtained from an experiment
based on a sinusoid of unit power and frequency (red solid), and from an experiment based on bandlimited “ ” noise of unit power localized between
the frequencies 0:01 and 1 (blue dotted).

Thus, by taking the infimum over , we obtain

(10)

Since (10) holds for every , we can take the supremum
over this quantity, which gives [45, Lemma 36.1]

(11)

Combining (9) and (11) and replacing inf by min (since the in-
fimum is attained with ) concludes the proof.
For the variance term, we consider the true asymptotic (in

sample size) variance expression

(12)

which is asymptotic only in . Notice, however, that we are still
not considering the effect of bias on the variance of .
The variance term, based on expression (12), corresponds ex-

actly to the min-max robust optimal experiment design problem
considered in the previous section; hence the solution (from
Theorem 3) is

(13)

where is a normalization constant.
Remark 3: Notice that (13) and(8) can be naturally combined

by letting !
Just as in the robust experiment design problem considered

in Theorem 3, the optimal input obtained here has a nice inter-
pretation, namely it is chosen such that the signal-to-noise ratio
is proportional, at each frequency, to the weighting function .

VII. NUMERICAL EXAMPLE

Consider the following discrete-time linear time-invariant
system of second order:

Notice that , and for , is highly reso-
nant, with a peak at . The magnitude Bode plot of
is shown in Fig. 1.
In order to verify the results of Section IV, let us consider a

model of the form

where is known, andwe need to estimate (whose true value is
). The output measurements of system are contam-

inated with white noise of variance . The information matrix
for is

The maximum of is achieved by choosing
, where

and is chosen to satisfy an input power constraint. If
, then , whichmeans that the optimal input should

be a sinusoid of frequency approximately equal to the resonance
frequency of . Furthermore, as , the shape of
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Fig. 2. (Left) Magnitude Bode plot of (red solid), and the spectrum (blue dotted). (Right) Magnitude Bode plots of 50 models estimated from experiments
based on a white noise input (red dotted), a “ ” noise input (blue dashed), and the unprejudiced optimal input (green solid); for comparison, the Bode plot of

has also been included (yellow solid).

becomes sharper; hence missing the value of (which depends
on the true value of ) may cause a huge performance degra-
dation for . For example, let ,
and . The variance of obtained from an experiment
based on a sinusoid of frequency (instead of ) of
unit power, as a function of the true value of , is shown
in Fig. 1. In the same figure the normalized (i.e., multiplied by
) variance obtained using “ ” noise (in the frequency range

[0.01, 1]) of unit power, is presented. As it can be seen, the signal
proposed in Section IV has superior robustness properties com-
pared to the nominal optimal input, since its resulting variance is
less sensitive to the knowledge of than with the latter signal.
In fact, the maximum variance obtained with the sinusoid input
is , while the maximum variance obtained with
“ ” noise is just .
The advantages of “ ” noise become apparent in situations

where there is lack of enough prior knowledge to design an
“optimal” experiment and it is required to obtain a good “gen-
eral-purpose” model for control. However, when there is a more
precise specification of the final application for the model, the
results of Section VI become relevant.
Say that a model of is required for simulating the output

of the system when the input has a spectrum given by

To study the properties of the inputs used during the identifica-
tion in the presence of undermodelling, the following first-order
model structure is considered:

where . According to the result of Section VI,
the unprejudiced optimal input to use has a spectrum pro-
portional to . The results of 50 Monte Carlo simulations
(with ) are presented in Fig. 2, where the input
signals considered are white noise, “ ” noise (with the same
characteristics as before) and the unprejudiced optimal input,
normalized to unit power. As it can be seen from the figure,

TABLE I
MEAN PERFORMANCE OF THE SIMULATION EXPERIMENT

FOR DIFFERENT INPUT SIGNALS

none of the identified models can appropriately capture the
shape of . However, the models estimated using the unprej-
udiced optimal input give a slightly better fit in the relevant
frequency range of . This reasoning is corroborated by
Table I, which shows the mean performance of the experiments,

, obtained by
Monte Carlo averages. This table reveals the benefits of using
the unprejudiced optimal input obtained in Section VI.8

VIII. CONCLUSIONS

In this paper we have introduced a variational approach to ro-
bust experiment design. Based on a fundamental limitation on
the variance of parametric estimated models, a closed form ex-
pression is developed for several experiment design problems
where the variance of the frequency response model is maxi-
mized over all model structures of a given finite order. In partic-
ular, we have revisited the problem of experiment design with
diffuse prior information, i.e., where an input spectrum is de-
signed which is independent of the true system and the noise dy-
namics. We have also studied the problem of unprejudiced input
design, following Yuan and Ljung’s formulation. Both problems
have been investigated in the literature, however the approach
of the current paper leads to results which are valid, not only for
high order models, but also for models of finite order.

8From Table I it might seem that “ ” noise is not a good input signal in
this case. However, the derivation of such an input was based on the assumption
that we need a good “general-purpose” model in a given frequency range. In the
simulation example, we ask for a model which is better at high frequencies than
at low ones (because of ). “ ” noise has less power at high frequencies
than white noise or the unprejudiced optimal input; hence it is expected to give
worse performance in this example.
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APPENDIX A
PROOF OF THEOREM 2

To prove Theorem 2, we first establish the following lemma.
Lemma 4 (Uniform Approximation of the Variance): Let

be continuous and even. Also, let
be such that

where . Then, for every there exists a vector-
valued polynomial in , , such that

Proof: The idea is to approximate by a piecewise con-
stant vector , then by a piecewise linear (continuous) vector
, and finally by a trigonometric polynomial vector (using

Theorem 5 of Appendix E).
In order to simplify the problem, we define the following:

It can be readily seen that Lemma 4 would follow from estab-
lishing the existence of a function such that

(14)

Let such that whenever
(for ). According to Lemma

5 of Appendix E, there are orthonormal vectors such
that9

(15)

where10

9The condition that in Lemma 5 is satisfied if we choose large
enough, since the right side of (15) converges uniformly (in ) to 0 as .
10The term in (15) is due to the requirement that

.

Thus, if we define the function by
for and

, then it holds that

where is the Kronecker Delta function, and hence

Now, for every ,

Thus

(16)

since

Let be a continuous function such that
for all , and

(17)
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Here we replace , for a given , by a piecewise linear
function such that

and for every , the
later being possible since whenever

. Thus, we can choose small enough to
ensure that (17) holds.
Finally, since is contin-

uous with respect to the uniform norm on in a neigh-
borhood of , by Theorem 5 of Appendix E, there exists a
(vector-valued) trigonometric polynomial

with for , such that

(18)

for every . Therefore, the function given by
satisfies (14), as can be seen by combining

(16)–(18).
Proof of Theorem 2: We first outline the steps in the proof,

and then elaborate on each step:
1) Construct a sequence of functions in , , using
Lemma 4.

2) Show that this sequence is a normal family, from which it
follows that it has a subsequence converging to, say, .

3) Establish that the function

is continuous in a neighborhood of , hence proving that
satisfies the conditions of the theorem.

The details of each step are as follows:
Step 1) Construction of a sequence

To proceed, we use Lemma 4 to construct a sequence
of functions in , , such that

Since the ’s are polynomials in , they are an-
alytic in the set , and,

in particular, are bounded in this set. This, together
with the fact that

is invariant under scaling of its argument, implies
that we can assume

(19)

Furthermore, by applying a suitable constant unitary
linear transformation to each , we can further as-
sume that

(20)

where for every .
Step 2) A converging subsequence in

From Theorem 6 of Appendix E, it follows that
is uniformly bounded (by 1) on .

Therefore, by Theorem 7 of Appendix E we have
that is a normal family in , i.e., there
exists a subsequence which converges
uniformly on compact subsets of . Let
be the limit of this subsequence. Note that is
analytic in by Theorem 8 of Appendix E, and
belongs to due to .
Since is compact, uniformly
in .

Step 3) Continuity of the variance expression
The function

is continuous in a neighborhood of if

Therefore, we have

Thus, in order to show that satisfies the con-
dition of the Theorem, we need to show that
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(where has been defined in
(20)). This can be seen from the expression

for and , where uniformly in
as . Therefore, by maximizing over and

letting , we obtain

This implies

Otherwise (19) would not hold. This completes the
proof.

APPENDIX B
PROOF OF LEMMA 2

By Theorems 1 and 2, the experiment design problem is
equivalent to

(21)

The idea here is that every gives rise to a variance
which satisfies the integral constraint estab-

lished in Theorem 1, and conversely, every
which satisfies the integral constraint can be related, by The-
orem 2, to at least11 one . Therefore, the maximization
with respect to can be replaced by a maximization with
respect to (imposing the integral constraint of
Theorem 1).
Let and be fixed, and assume that exists. This

problem can now be solved using standard tools from calculus
of variations [46].

11The possibility of havingmore than one associated with the same variance
is not an issue here, since the cost function of the experiment design problem

depends on only through .

The Lagrangian of problem (21) is

where and are Lagrange multipliers. By [46, Sec. 7.7,
Theorem 2], there exist constants for which

, the solution of (21), is a stationary point of
.

Thus, for every we have that
, where

is the Fréchet differential of at with increment
. This means [46, Sec. 7.5] that

Thus, by [46, Sec. 7.5, Lemma 1]

(22)

From (22) we have that . Thus,
substituting this into the first equation of (22), and letting

, we have

(23)

The left side of (23) depends on (through ), but the right side
does not (due to the assumption of the independence of to
). Thus, both sides are equal to a constant, say , which

implies that

(24)

Now, integrating both sides with respect to between
and , we obtain

(25)

for a constant .
On the other hand, we have that

(26)
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Hence is proportional to in , and can bemade equal
to 0 outside this interval. This concludes the proof.

APPENDIX C
PROOF OF LEMMA 3

To simplify the development, we extend to a periodic
function of period in by making it equal to 0 in

. Then, as in the proof of Lemma 2, the experiment design
problem is equivalent to

Let be fixed. The cost function can then be written as

where is a constant, independent of , given by

Note that, due to the constraint on , should satisfy

(27)

Let , where is chosen to satisfy (27), and let
be any function in which satisfies (27). Since

for all , with equality if and only if ,
we have

(28)

with equality if and only if . This implies that, for a
given , we have that

where the supremum is taken over all satisfying the integral
constraint on the experiment design problem, and is given
by

Now, take as in (6). Then, following a similar derivation
to that in (28), we have

with equality if and only if . This proves that is
the optimal solution of the experiment design problem.

APPENDIX D
PROOF OF THEOREM 3

As in the proof of Lemma 2, by Theorems 1 and 2, the exper-
iment design problem is equivalent to

(29)
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Note that we have changed the sign in the input power con-
straint to an equality, since it is an active constraint.
We now fix and define

Then, problem (29) for becomes

This is a mass distribution problem (e.g., see of [16, eq. (17)]);
hence the optimal cost is

Now, if it were not true that for almost every
, as defined in (7), then for some

. Otherwise, in a set of positive
measure, which implies that

thus contradicting the constraint on . Therefore

and the cost is minimized with .

APPENDIX E
ADDITIONAL RESULTS

Lemma 5 (Lieb’s Lemma): Let be a monotonically
nonincreasing sequence in [0, 1] such that
. Then there exist orthonormal elements of ,

, such that for all
.

Proof: See lemma from [47, p. 458].

Theorem 5 (Weierstrass’ Second Theorem): If
then, for every there is a (vector-valued) trigonometric
polynomial

with , such that for
every .

Proof: This is a simple extension of [48, Ch. I, Th. 21] to
vector-valued functions on .
Theorem 6 (Maximum Modulus Theorem): Let be an an-

alytic function in a region , which contains a closed disk of
radius and center . Then

(30)

Moreover, equality in (30) occurs if and only if is constant
in .

Proof: See [49, Th. 10.24].
Theorem 7 (Montel’s Theorem): Let be a set of analytic

functions in a region . Then is uniformly bounded on each
compact subset of (or, equivalently, locally bounded), if and
only if is a normal family, i.e., every sequence of functions in
contains a subsequence which converges uniformly on com-

pact subsets of .
Proof: See [50, Th. 2.9].

Theorem 8 (Uniform Convergence of Analytic Functions):
Let be a sequence of analytic functions in a region ,
which converges to a function uniformly on compact subsets
of . Then is also analytic in , and converges to
uniformly on compact subsets of .
Proof: See [49, Th. 10.28].
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