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a b s t r a c t

In this paper we consider the problem of generating data which is sufficient for super resolution recon-
struction. The method considered here is by inducing motion on the (low resolution) image acquisition
device which then generates a number of low resolution images – this is the data we use for the super
resolution reconstruction. Our main concern is in investigating a number of motion types and providing
the conditions which will guarantee the feasibility of the super resolution reconstruction from data
available.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

All digital acquisition devices have sensor arrays of finite spatial
resolutions. As a result, the spatial details which can be captured
using these devices are limited. While current resolutions get clo-
ser and closer to the resolutions of the traditional analog devices
(which use film) in many instances, users would like to be able
to capture details beyond the resolution constraints of their partic-
ular devices. A way to accomplish that, which attracted the interest
of many researchers, is the ‘‘multi-frame Super Resolution”. The
term ‘‘muti-frame” is used to distinguish this method from various
attempts to generate the high resolution frame from a single data
frame. The latter are, typically, not considered ‘‘true” super resolu-
tion methods. Hence, in the sequel, when we refer to Super-Reso-
lution (SR) it is the ‘‘multi-frame” we have in mind.

The basic idea in super-resolution is to use the device to gen-
erate a set of frames of, possibly, unsatisfactory resolution each,
containing the same scene. Then, attempt to combine the infor-
mation from this set of frames to generate a high resolution
frame with all the desired spatial details – a SR frame. A large
number of results describing different methods of generating
the super-resolution frame have been published in the literature
–11], just to name a few. More references can be found in survey
papers such as [12]. Clearly, in order for these methods to work
one need to guarantee that the set of data frames does indeed
contain the information required in order to be able to generate
ll rights reserved.
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the super-resolution frame. While many of the above SR recon-
struction methods depend on some type of prior information of
the SR image (such as smoothness, etc.) we make no such
assumptions here.

The set up we consider here is a low resolution digital image
acquisition device which is being moved while registering a se-
quence of (low resolution) images. The emphasis in this work
is not on the actual SR reconstruction algorithm but rather, on
the conditions which guarantee its feasibility from the available
data set. We assume in the sequel that the data sampling pattern
(as set by the device sensor array) and the desired resolution of
the SR image are given. Hence, the design degrees of freedom
are: type of device motion, its parameters (velocity or accelera-
tion) and the temporal sampling interval. We develop the condi-
tions on these parameters which will make the SR reconstruction
possible.
2. Mathematical preliminaries and problem description

In the sequel we rely heavily on basic concepts from number
theory and refer the reader unfamiliar with some of the basic nota-
tion to [19] or similar book. We will further need the following
definitions:

Definition 1. If Q 2 N, then a residue system modulo Q is the set of
all integers that are congruent to a fixed integer m modulo Q,
denoted �m.

Definition 2. For a; b; x 2 Z and Q 2 N the relationship ax �
bðmodQÞ is called linear congruence.
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Fig. 1. The generalized sampling expansion (GSE) configuration.
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In the sequel we denote vectors by bold lower case and by f̂ , as
is the standard in the literature, the Fourier transform of f.

Let IoðxÞ;x 2 R2 be the image projected by the device optics on
the sensor array and let LATðSÞ ¼ fSk : k 2 Z2g denote the sen-
sor array sampling pattern (lattice) corresponding to the matrix
S 2 R2�2. While results for general lattices can be derived, for the
sake of simplicity we restrict ourselves to the rectangular one
where

S ¼
Dx1 0

0 Dx2

� �
ð1Þ

We assume ideal sampling hence, the data generated by the sensor
array is given by fIoðSkÞ : k 2 Z2g. The device is now moved relative
to the scene in a plane parallel to the scene. The resulting projected
scene is then given by

Iðx; tÞ ¼ Ioðx� fðtÞÞ ð2Þ

where the vector fðtÞ 2 R2 represents the relative motion between
the scene and the sensors. At this point we only assume,w.l.o.g., that
fð0Þ ¼ 0. This time varying scene, Iðx; tÞ, is now sampled both tem-
porally (with sampling interval Dt) and spatially on the lattice
LATðSÞ. This way we get a sequence of sampled data frames
fIoðSk� fðnDtÞÞ : k 2 Z2; n 2 Zg. We wish to find conditions under
which IoðxÞ can be reconstructed from this data set. Obviously, once
IoðxÞ is reconstructed it can be re-sampled to any desired spatial
(super) resolution.

We introduce next some additional notation. Let

gðnÞ, S�1fðnDtÞ
l m

� S�1fðnDtÞ ð3Þ

where dfe ¼ df1es df2eð ÞT and df e ¼min
l2Z
fl P fg,

ng ¼ fm 2 Z : gðmÞ ¼ gðnÞg ð4Þ

Ng ¼
(
fnmgM

m¼1 : ðnm1 Þg \ ðnm2 Þg ¼£ for m1–m2

and
[M

m¼1

ðnmÞg ¼ Z

)
ð5Þ

and

xi ¼ SgðniÞ such that ni 2Ng ð6Þ

We note that the set Ng is not unique, however, all such sets
have the same number of members in them, say M. Hence, without
loss of generality we choose n1 ¼ 0 2Ng and then x1 ¼ 0.

With the above notation, we can rewrite the data set as

IoðSk� fðnDtÞÞ : k 2 Z2; n 2 Z
� �
¼ IoðSkþ SgðnÞÞ : k 2 Z2; n 2 Z
� �

¼ IoðSkþ SgðniÞÞ : k 2 Z2;ni 2Ng
� �

¼ fIoðSkþ xiÞ : k 2 Z2; i ¼ 1; . . . ;Mg ð7Þ

This is readily recognized as recurrent sampling of the image IoðxÞ
(see e.g. [13]).

In the sequel we make extensive use of the multi-dimensional
version of the generalized sampling expansion (GSE) results (see
e.g.[14,15]). For the benefit of the reader we formally restate a gen-
eral form of this result below:

Theorem 3. Let IoðxÞ, x 2 R2 be a bandlimited signal which is passed
through a bank of M LTI filters fĥiðxÞgM

i¼1 as in Fig. 1, to generate the
signals IiðxÞ. Namely, bIiðxÞ ¼ ĥiðxÞbIoðxÞ. Then, a necessary and
sufficient condition that IoðxÞ can be reconstructed from
fIiðSkÞ : k 2 Z2gM

i¼1 is that the matrix
HðxÞ ¼

ĥ1ðxþ c1Þ ĥ2ðxþ c1Þ � � � ĥMðxþ c1Þ
ĥ1ðxþ c2Þ ĥ2ðxþ c2Þ � � � ĥMðxþ c2Þ

..

. ..
. . .

. ..
.

ĥ1ðxþ cNÞ ĥ2ðxþ cNÞ � � � ĥMðxþ cNÞ

2666664

3777775 2 CN�M ð8Þ

is full row rank for all x 2 UCð2pS�TÞ (by UCð2pS�TÞ we denote a unit
cell in the lattice LATð2pS�TÞ), where fclgN

l¼1 �LATð2pS�TÞ are
such that

suppðbIoðxÞÞ#
[N
l¼1

UCð2pS�TÞ þ cl

n o
ð9Þ

Under these conditions, the reconstruction formula is given by

IoðxÞ ¼
XM

i¼1

X
k2Z2

IiðSkÞuiðx� SkÞ ð10Þ

where

uiðxÞ ¼
jdetðSÞj
ð2pÞ2

Z
UCð2pS�T Þ

Uiðx; xÞejxT x dx ð11Þ

and Unðx;xÞ are the solutions of the equation

HðxÞ

U1ðx; xÞ
U2ðx; xÞ

..

.

UMðx; xÞ

2666664

3777775 ¼
ejcT

1x

ejcT
2x

..

.

ejcT
N x

2666664

3777775 ð12Þ

if they exist.

To see the connection to our problem, let the filters above be
chosen as shifts, namely

ĥiðxÞ ¼ ejxT xi ð13Þ

where xi is as in (6). Then, we readily observe that
fIoðSkþ xiÞ : k 2 Z2; i ¼ 1; . . . ;Mg ¼ fIiðSkÞ : k 2 Z2; i ¼ 1; . . . ;Mg,
hence Theorem 3 can be directly applied to our reconstruction
problem. Specifically, our ability to reconstruct the desired signal
depends on whether the matrix HðxÞ 2 CN�M is indeed full row rank
so that Eq. (12) has a solution. We note that by assuming that IoðxÞ
is bandlimited the existence of the set fclgN

l¼1 �LATð2pS�TÞ such
that (9) is satisfied, is guaranteed. This is true for any bandlimited
image and any unit cell of the reciprocal lattice. However, to further
simplify our discussion we choose the unit cell

UCð2pS�TÞ ¼ x : �pNj

Dxj
6 xj <

pð2� NjÞ
Dxj

; j ¼ 1;2
� �

ð14Þ



Fig. 2. Signal spectral support and its covering.
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Then, for appropriate Nj we have

supp ðbIoðxÞÞ# x : �pNj

Dxj
6 xj <

pNj

Dxj
; j ¼ 1;2

� �
ð15Þ

which means that

cl ¼ 2pS�T ml ð16Þ

and ml;j 2 f0;1; . . . ;Nj � 1g. This is demonstrated in Fig. 2. Note that
the number of shifted unit cells required is N = N1N2.

Using (13) we have

ĥiðxþ clÞ ¼ ejðxþclÞT xi ¼ ejxT xi ejcT
l

xi

hence, the matrix H(x) can be rewritten as

HðxÞ ¼H

ejxT x1 0 � � � 0
0 ejxT x2 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � ejxT xM

266664
377775

where

H ¼

ejcT
1x1 ejcT

1x2 � � � ejcT
1xM

ejcT
2x1 ejcT

2x2 � � � ejcT
2xM

..

. ..
. . .

. ..
.

ejcT
N x1 ejcT

N x2 � � � ejcT
N xM

266664
377775 ð17Þ

Clearly then, H(x) is full row rank if and only if H is. Hence, from
now on we will concentrate on the conditions which make the ma-
trix H full row rank. The first and immediate necessary condition is
N 6M but, for simplicity we will assume.

N ¼ M ð18Þ

Remark 4. The functions defined in (11), uiðxÞ, can be viewed as
impulse responses of filters so that the reconstruction formula
(10), can be implemented as a filter bank. While, as stated above,
we assume (18) in the sequel, reconstruction is possible for N < M
as long as H is full rank. In this case the functions (filters) are not
unique and one can incorporate robustness criteria in the process
of calculating uiðxÞ resulting in a more robust reconstruction. A
more detailed discussion on this issue is beyond the scope of this
paper, however, in our simulations we did implement a robust
reconstruction whenever we had N < M.
3. General motion along a straight line

While for 1D signals (18) is a sufficient condition as well
(see e.g. [16]), going into two or higher dimensional signals
makes the problem considerably more complex. We restrict
ourselves here, to the 2D case only and to motion along a
straight line.

In that case we have

fðtÞ ¼ f ðtÞao ð19Þ

where the constant vector ao is the direction of the motion and
f(t) is the type of motion in that direction. Substituting (19) in
(3) we get

gðniÞ ¼ S�1fðniDtÞ
l m

� S�1fðniDtÞ

¼ fniDtÞS�1
ao

l m
� f ðniDtÞS�1

ao ð20Þ

In the sequel we will assume that ao 2LATðSÞ which means that
S�1

ao ¼ a ¼ a1 a2ð ÞT 2 Z2 with a1 and a2 coprime. We note that
this assumption is not very restrictive as every slope can be approx-
imated to any desired degree by a rational slope (modulo practical
constraints) constrained by. We further assume that f ðnDtÞ, for
every n 2 Z, is a rational number of the form

f ðnDtÞ ¼ bðnÞ
Q

ð21Þ

where Q ; bðnÞ 2 Z. Then we can prove the following helpful result:

Lemma 5. For every n 2 Z there exists a unique ni 2Ng such that
bðnÞ � bðniÞðmodQÞ.

Proof. Suppose gðnÞ ¼ gðniÞ for n;ni 2 Z. Then

bðnÞ
Q

a1

a2

� �� 	
� bðnÞ

Q
a1

a2

� �
¼ bðniÞ

Q
a1

a2

� �� 	
� bðniÞ

Q
a1

a2

� �
so that

bðniÞ � bðnÞ
Q

a1

a2

� �
2 Z2

and as a1 and a2 are coprime, we must have bðnÞ � bðniÞðmodQÞ.
Suppose now bðnÞ � bðniÞðmodQÞ for n;ni 2 Z. Namely,
bðnÞ ¼ bðniÞ þ qQ for some q 2 Z. Then

gðnÞ ¼ bðnÞ
Q

a1

a2

� �� 	
� bðnÞ

Q
a1

a2

� �
¼ bðniÞ þ qQ

Q
a1

a2

� �� 	
� bðniÞ þ qQ

Q
a1

a2

� �
¼ bðniÞ

Q
a1

a2

� �� 	
� bðniÞ

Q
a1

a2

� �
¼ gðniÞ

We have shown that gðnÞ ¼ gðniÞ if and only if bðnÞ � bðniÞðmodQÞ.
As, by the definition of Ng, for every n 2 Z there exists a unique
ni 2Ng such that gðnÞ ¼ gðniÞ the proof is completed. h

An important consequence of Lemma 5 is the following
inequality:

M 6 Q ð22Þ

Let us now view the (l, i)th entry of the matrix H. By (17), (20)
and (21) we have

Hl;i ¼ ejcT
l

xi ¼ ej2pmT
l

gðniÞ ¼ e�j2p
Q a1ml;1þa2ml;2ÞbðniÞ ¼ e ~ml bðniÞ ð23Þ

where e ¼ e�j2p
Q and ~ml ¼ a1ml;1 þ a2ml;2.



Fig. 3. Sawtooth motion (T = 20).
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A matrix with entries as in (23) is commonly referred to as ‘gen-
eralized Vandermonde’ matrix. General conditions for its nonsin-
gularity, to the best of our knowledge, do not exist in the
literature. For the case where Q is a prime number we have the fol-
lowing result (see [17]).

Theorem 6. Let e be a Qth root of 1 over the complex field C. The
square matrix, the (l,i)th entry of which is e ~mlbðniÞ, is nonsingular for a
prime Q if and only if the integers f ~mlgN

l¼1 are pairwise incongruent
modulo Q and so are the integers fbðniÞgM

i¼1.

Remark 7. The result in [17] states and proves only sufficiency.
However, necessity is readily observed since if any two integers
~ml1 ; ~ml2 are congruent modulo Q, the two corresponding two rows
(columns) in the matrix are identical and singularity of the matrix
follows.

As by Lemma 5 the integers fbðniÞgM
i¼1 are pairwise incongruent

modulo Q we will concentrate on the conditions which will make
the set f ~mlgN

l¼1 pairwise incongruent modulo Q. For given integers
N1, N2 and Q this set of integers depends on the choice of motion
direction. Namely, on the choice of the integers a1;a2. So, let us
denote

Mða1;a2Þ ¼ f ~m ¼ a1m1 þ a2m2 : 0 6 m1 6 N1 � 1;0 6 m2

6 N2 � 1g ð24Þ

and we establish the following result:

Lemma 8. For the given N1;N2 2 N and Q a prime number consider
the set X of all the (unique mod Q) solutions of the linear congruences
m1x � m2ðmodQÞ where ðm1;m2Þ–ð0;0Þ, jm1j 6 N1 � 1 and jm2j 6
N2 � 1. Then, there exist a1;a2 such that all integers in Mða1;a2Þ are
pairwise incongruent modulo Q if and only if

jXj < Q ð25Þ

(by jXj we denote the cardinality of the set X).

Proof. The proof is given in Appendix A. h

We can now state our result for general motion along a straight
line:

Theorem 9. Suppose a digital image acquisition device with a spatial
sampling of the form LATðSÞ ¼ fSk : k 2 Z2g, S as in (1), is moving
relative to a scene in a motion given in (19). A sequence of data frames
is being generated at intervals Dt so that (21) holds for some prime Q.
Assuming the scene is a bandlimited image satisfying (14) the image of
the scene can be reconstructed to any desired resolution (modulo
practical constraints) from the available data if (18) and (25) are
satisfied.

Proof. The proof follows directly from Theorems 3 and 6 and Lem-
mas 5 and 8. h

Remark 10. We note that for every x 2 X, Q � x 2 X. Hence, to
generate the set X one can find the solutions of the linear congru-
ences m1x � m2ðmodQÞ for 1 6 m1 6 N1 � 1 and 1 6 m2 6 N2 � 1
only and for each, add also Q � x to the set. To demonstrate these
calculations, let us consider two cases: ðN1;N2;QÞ ¼ ð3;5;11Þ and
ðN1;N2;QÞ ¼ ð3;5;17Þ. For the first we get X ¼ f1;2; . . . ;11g while
for the second case X ¼ f1;2;4;5;6;8;9;11;12;13;15;16;17g (it
does not contain the integers {3,7,10,14}).

Remark 11. An immediate consequence of Theorem 6 is that in
some cases there are no directions along which the motion could
generate the necessary data for reconstruction while in other cases,
such directions exist and can be calculated. For the two cases men-
tioned in Remark 10 we have that for ðN1;N2;QÞ ¼ ð3;5;11Þ recon-
struction is impossible for any motion in any direction while for
ðN1;N2;QÞ ¼ ð3;5;17Þ reconstruction will be possible for motion
along the family of directions ðya2 þ 17k;a2 þ 17lÞ where
k; l 2 Z and y 2 f3;7;10;14g.

4. Specific motions along a straight line

In this section we consider a number of specific motions along a
straight line. Theorem 9 establishes the general framework of the
types of motions we consider. For each motion we establish the
relationship between the temporal sampling interval, motion
parameters and the values of M, bðnÞ, and Q in (18) and (21). Armed
with this, one can readily modify the motion so that (18) and (25)
are satisfied. Once these conditions are satisfied, as stated in The-
orem 9, the data generated is sufficient for the SR reconstruction.

4.1. Constant velocity

We start with the simplest type of motion, constant velocity.
This type of motion has been investigated before (see e.g. [18]
and [8]). In this case we have f ðtÞ ¼ Vt. Choose VDt ¼ R1

Q1
,

R1;Q 1 2 N such that gcd ðR1;Q1Þ ¼ 1 and Q 1 is prime. Then we

have M ¼ Q1 (see [16]) and bðnÞ
Q ¼

nR1
Q 1

.

Remark 12. While the approach in [8] is quite different from the
one used here, it can be shown that the results for the constant
speed case are similar. Furthermore, the best direction as stated in
[8] translates here to the direction for which the reconstruction
process is the most robust. Namely, the choice for which the
condition number of the resulting matrix H is the smallest.
4.2. Periodic motion

Periodic motions are, in our opinion, the most interesting from a
practical point of view. An immediate observation for a general
periodic motion of period T and temporal sampling rate Dt, is that
if Dt

T ¼
R1
Q1

is a rational number then

f ðnDtÞ ¼ f ðnDt þ R1TÞ ¼ f ðnDt þ Q 1DtÞ ¼ f ððnþ Q 1ÞDtÞ

which means that that

M 6 Q 1 ð26Þ
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We consider now two types of periodic motions: Sawtooth and
triangular.

4.2.1. Sawtooth motion
Consider the motion f(t) given by

f ðtÞ ¼ V
t
T

� 	
� t

T


 �
ð27Þ

(see Fig. 3). The results we have for this motion are summarized in
the following claim:

Claim 13. Let f(t) be as in (27) We assume Dt
T ¼

R1
Q1

and V ¼ R2
Q2

where
Ri;Qi 2 N, Q2 is prime, gcdðR1;Q1Þ ¼ 1 and Dt is the temporal
sampling interval. Then, if R2 ¼ R3Q1 (21) is satisfied with Q ¼ Q2

bðnÞ ¼ R3 Q1
nR1

Q1

� 	
� nR1


 �
ð28Þ

and

M ¼minðQ 1;Q 2Þ ð29Þ

Proof. Substituting t = nDt in (27) leads to

f ðnDtÞ ¼ Q 1R3

Q 2

nR1

Q 1

� 	
� nR1

Q 1


 �
and using (28) we get

f ðnDtÞ ¼ bðnÞ
Q 2

which has the form of (21) with Q ¼ Q2. To prove (29) we first recall
from the proof of Lemma 5 that gðnÞ ¼ gðniÞ () bðnÞ �
bðniÞðmodQ2Þ. As gcdðR1;Q1Þ ¼ 1 it follows that

bðnÞ ¼ bðniÞ ()
nR1

Q 1

� 	
Q 1 � nR1


 �
¼ niR1

Q 1

� 	
Q 1 � niR1


 �
() n

� ni ðmodQ 1Þ

so that fbðnÞgQ1�1
n¼0 is a set of distinct integers. However, as we know

that at most Q2 integers can be distinct ðmodQ2Þ, (29) follows. h
4.2.2. Triangular wave motion
Consider the motion f(t) given by

f ðtÞ ¼ V
t
T
� 1

2

� 	
� t

T

���� ���� ð30Þ
Fig. 4. Triangular wave motion (T = 20).
(see Fig. 4). The results we have for this motion are summarized in
the following claim:

Claim 14. Let f(t) be as in (30) We assume Dt
T ¼

R1
Q1

and V ¼ R2
Q2

where
Ri;Qi 2 N, Q2 is prime, gcdðR1;Q1Þ ¼ 1 and Dt is the temporal
sampling interval. Then, if R2 ¼ R3Q1 (21) is satisfied with Q ¼ Q2

bðnÞ ¼ R2 Q1
nR1

Q1
� 1

2

� 	
� nR1

���� ���� ð31Þ

and

M ¼min
Q1

2


 �
þ 1;Q 2


 �
ð32Þ

Proof. By substitution we readily get the format of (21) with
Q ¼ Q 2 and (31). Since gcdðR1;Q1Þ ¼ 1

bðnÞ ¼ bðniÞ ()
nR1

Q 1
� 1

2

� 	
Q 1 � nR1

���� ����
¼ niR1

Q 1
� 1

2

� 	
Q 1 � niR1

���� ����() n � niðmodQ 1Þ

or n � � niðmodQ 1Þ ð33Þ

therefore fbðnÞg
Q1
2

� �
n¼0 is a set of distinct integers. Again, as we know

that at most Q2 integers can be pair wise incongruent ðmodQ2Þ, (32)
follows. h
4.3. Constant acceleration

This motion has been discussed in [6] so, while not very practical,
we do present the results for this motion as well. Let f(t) be given
by

f ðtÞ ¼ at2 ð34Þ

Then we can state the following result:

Claim 15. Let f(t) be as in (34). We assume aðDtÞ2 ¼ R1
Q1

where Q1 is
prime and gcdðR1;Q1Þ ¼ 1. Then (21) is satisfied with Q ¼ Q1

bðnÞ ¼ R1n2 ð35Þ

and

M ¼ Q1

2


 �
þ 1 ð36Þ

Proof. By substitution we readily get the format of (21) with
Q ¼ Q 1 and (35). Furthermore, since gcdðR1;Q 1Þ ¼ 1 we have

bðnÞ � bðniÞðmodQ1Þ () n2 � n2
i ðmodQ 1Þ () n � niðmodQ 1Þ

or n � � niðmodQ1Þ ð37Þ

therefore fbðnÞg
Q1
2

� �
n¼0 is a set of pair wise incongruent integers

ðmodQ1Þ and (36) follows. h
5. Simulation results

To demonstrate the validity of our results we have carried out
extensive simulations, some of which we will present here. In
our experiments we assume we do have the true super resolution
image and we compare it, in each case, to the reconstructed one. As
an objective criteria for the quality of the reconstructed image we
use peak signal to noise ratio (PSNR) – a commonly used measure
(see e.g. [20]) defined by

PSNR ¼ 10log10
2552

1
KxKy

PKx�1
k¼0

PKy�1
l¼0 ðIoðÞ � IrecðÞÞ2

0@ 1A ð38Þ



Table 2
Robustness Testing Results

Experiment No. Motion type Motion parameters Noise PSNR (dB)

1 Triangular V ¼ 132
31 ; T ¼ 33; a ¼ 2

7

� �
No 38

2 Sawtooth V ¼ 68
31 ; T ¼ 33; a ¼ 3

7

� �
Yes 30.2
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where Io and Irec are the true and reconstructed super resolution
images respectively, each of Kx � Ky pixels. We present two sets
of experiments. One on artificial images and the other on real
images.

5.1. Artificial images

The image we created here is defined by

IoðxÞ ¼
255

2
1þ sin xT

1x
� �

þ sin xT
2x

� �� �
where xT

1 ¼ 2p½0:39; 0:42� and xT
2 ¼ 2p½0:29;0:39�. Choosing Dx1 ¼

Dx2 ¼ 2 we get N1 = N2 = 2. We considered a finite section of the
image ½0;128Dx1� � ½0;128Dx2� and used as temporal sampling
Dt = 2 generating, in each case, 40 frames. Table 1 summarizes
the results of our experiments. We wish to point out that in all
the experiments, the calculated M was identical to the result in
the experiment. In the first three experiments we have M = N =
N1N2 = 4. Hence, the ‘does not apply’ in the column ‘N < M’ for these
experiments. For the other two experiments, where indeed the
resulting M is greater than N = 4, we did the reconstruction in two
ways represented in the two distinct columns. In one we just use
N sample points resulting in a non-singular reconstruction matrix,
while in the other, we used all the M distinct data points resulting
in a full row rank matrix and in a least square solution to the recon-
struction functions. Clearly, the latter results in a much improved
performance in both experiments (4) and (5). Also note that in
experiment (1), the direction of motion is such that Mð3;4Þ ¼
f0;3;4;7g and Q ¼ 7, so that 7 � 0ðmod7Þ and by Theorem 6 the
resulting matrix should be singular – the simulation confirmed this
result as stated in Table 1.
Table 1
Simulation Experiment Results

Experiment No. Experiment description Motion parame

1 Constant acceleration a ¼ 1
7 ; a ¼ 3

4

� �
2 Constant acceleration a ¼ 1

7 ; a ¼ 3
5

� �
3 Constant acceleration a ¼ 3

7 ; a ¼ 1
2

� �
4 Sawtooth V ¼ 132

31 ; T ¼ 33

5 Triangular V ¼ 132
31 ; T ¼ 33

Fig. 5. Origina
5.2. Real images

For our experiments on real data we have used the images of
Lena and Barbara (see Fig. 5 for the original image – 512 � 512 pix-
els). Motion was applied to these image, they were down sampled
to Dx1 ¼ Dx2 ¼ 4 and the reconstruction was to the original images,
namely, N1 = N2 = 4. We used Dt = 1 to generate 40 frames of low
resolution data. Just for perspective, the ability to increase resolu-
tion by a factor of 16 as we did here, could take a sequence of 2
mega pixels frames (typical in inexpensive digital cameras today)
and get an image of 32 mega pixels with all the details. Or, another
attractive use could be to enable a �4 true digital zoom.

In these experiments we have also tested the robustness to
noise and to errors in motion parameters and their effects on the
reconstruction. A small sample of the results is presented in Table
2 The reconstructed images are presented in Fig. 6. Note that we
used different types of motion for each image and that in one case
no noise was added while in the other we did add noise. The added
noise was normalized so that for each low resolution data frame
the resulting PSNR was 40 dB. Also observe the high frequency de-
tails in the Barbara image and how well did the reconstruction
handle them.
ters PSNR (dB) for N = M PSNR (dB) for N < M

Singular matrix Does not apply

29.2 Does not apply

30.4 Does not apply

; a ¼ 3
7

� �
23.8 35.7

; a ¼ 3
7

� �
27 35

l images.



Fig. 6. Reconstructed images.
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6. Conclusion

The problem we consider in this paper is that of generating suf-
ficient data for super-resolution reconstruction (without the need
for priors and regularizations). We have assumed that motion is
induced on the data acquisition (low resolution) device and a
sequence of (low resolution) frames is generated with a predeter-
mined time interval (temporal sampling interval) between them.
Our main concern in this paper has been choosing the motion
and the temporal sampling so that a true super resolution recon-
struction is feasible, without resorting to a variety of regulariza-
tions commonly used in the literature. We have concentrated
here on deriving sufficient (and necessary) conditions on a variety
of motions considered so that the resulting data are indeed suffi-
cient for the reconstruction. Extensive experiments were carried
out to test the validity of our analysis and a sample of the results
is presented here. For the reconstruction itself we have used a filter
bank structure resulting from the GSE ideas. There is no doubt that
the reconstruction itself can be further improved by using more
elaborate filter design methodologies.

Appendix A. Proof of Lemma 8

Proof. Suppose (25) holds. Namely, there exists an integer
1 6 x1 6 Q � 1 such that

m1x1 � m2 ðmodQÞ ðA:1Þ

for all ðm1;m2Þ–ð0;0Þ, jm1j 6 N1 � 1 and jm2j 6 N2 � 1. Then, we
claim that Mða2x1;a2Þ has the desired property for any 0–a2 2 Z.
Else, if ~mi– ~mj 2Mða2x1;a2Þ are congruent modQ, we have, using
(24),

a2ðx1mi;1 þmi;2Þ � a2ðx1mj;1 þmj;2ÞðmodQÞ

or

ðmi;1 �mj;1Þx1 � ðmj;2 �mi;2ÞðmodQÞ

which, as ðmi;1 �mj;1;mj;2 �mi;2Þ–ð0;0Þ, jmi;1 �mj;1j 6 N1 � 1 and
jmj;2 �mi;2j 6 N2 � 1, contradicts (A.1).

Suppose now that Mða1;a2Þ has the desired property for some
a1;a2 2 Z. Namely,

a1mi;1 þ a2mi;2 � ða1mj;1 þ a2mj;2Þ ðmodQÞ

or
a1ðmi;1 �mj;1Þ � a2ðmj;2 �mi;2Þ ðmodQÞ ðA:2Þ

for all 0 6 mi;1;mj;1 6 N1 � 1 and 0 6 mi;2;mj;2 6 N2 � 1 such that
ðmi;1;mi;2Þ–ðmj;1;mj;2Þ. Let x1 be the unique solution of the linear
congruence a2x � a1ðmodQÞ such that 1 6 x1 6 Q . Then, by substi-
tuting into (A.2) we have

x1ðmi;1 �mj;1Þ � ðmj;2 �mi;2Þ ðmodQÞ

for all ðmi;1 �mj;1;mj;2 �mi;2Þ–ð0; 0Þ, jmi;1 �mj;1j 6 N1 � 1 and
jmj;2 �mi;2j 6 N2 � 1. This means that x1 R X and (3) follows, which
completes the proof. h
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