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Robust Patterns in Recurrent Sampling
of Multiband Signals
Lihu Berman and Arie Feuer, Fellow, IEEE

Abstract—Periodic nonuniform sampling can be used to achieve
sub-Nyquist sampling of bandlimited multiband signals. In this
paper, we examine the question of selecting the sampling pattern
in such a scheme, so that the reconstruction robustness—measured
by the condition-number of the modulation matrix—is maximized.
Contrary to previous work, where the sampling pattern was chosen
from a discrete set, we let the sampling patterns vary continuously,
but impose a structural constraint. Using this approach, we de-
rive necessary and sufficient conditions on the spectral support of
the signal for which perfect conditioning exist, namely, for which
a sampling pattern can be found so that the resulting modulation
matrix has a condition number equal to 1. A simple test to check
for these conditions is developed and the desired sampling patterns
are found. An algorithm for choosing the sampling pattern when
the aforementioned conditions are not satisfied is also introduced.
Finally, we present some simulation results.

Index Terms—Condition number, multiband signals, nonuni-
form sampling.

I. INTRODUCTION

SAMPLING is a very important aspect of digital signal
processing (DSP), being the means to connect the physical,

analog world to the digital realm. The most common form is the
uniform sampling of bandlimited signals [1], [2], where perfect
reconstruction of a signal is possible from its uniform samples
taken at a rate greater than (where is the signal bandwidth).

Utilizing the generalized sampling formulation, it was shown
in [3] that recurrent nonuniform sampling can be used to lower
the sampling density required for perfect reconstruction of
2-D bandlimited signals below the Nyquist rate. Whereas the
Nyquist rate corresponds to the highest frequencies in the
signal spectral support, the aforementioned sub-Nyquist rate
can asymptotically achieve the Landau rate [4] [also known
as the minimum-rate sampling (MRS)] corresponding to the
Lebesgue measure of the signal spectral support. A similar
approach enables rate reduction in the case of bandlimited
multiband 1D sequences [5], [6] and continuous signals [7].

While in the aforementioned works the actual sampling pat-
terns depend on the exact knowledge of the spectral support,
some other work was related to the concept of universal (spec-
tral blind) sampling. Specifically, only the bandlimit and the
size of the packed spectral support is assumed known and one
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is interested in searching for a sampling pattern that will en-
able reconstruction regardless of the locations of the subinter-
vals. These search algorithms come with a high price tag con-
cerning their complexity. Besides, a universal pattern is obvi-
ously a worst case one, hence suboptimal, when the spectral
support is known precisely. This work has also been general-
ized to 2-D signals [8], [9].

A completely different approach to minimum rate sampling
of multiband signals was taken in [10]. There, a perfect recon-
struction maximally decimated digital filter-bank formulation
was used to show that the class of signals that can be sampled
at the minimum rate is much larger than was previously known,
and that in some cases, the scheme is also far less complicated.
However, the authors of [10] did leave several open questions,
one of which is how to choose the sampling pattern to maximize
reconstruction robustness.

Yet another approach, taken in [11], shows that signals com-
prising two disjoint spectral bands (band-pass real signals) can
be sampled at their minimum rate. This result was later ex-
tended in [12], where signals consisting of a finite number of
spectral bands were considered. In both works, however, the au-
thors limit themselves to investigating which sampling patterns
cannot be used for reconstruction. These “bad” sampling pat-
terns were also investigated in [13]. While limiting themselves
to uniform sampling and to the case of a union of identical subin-
tervals, the authors in [13] investigated the range of sampling
rates between the Nyquist and the Landau rates as to which rates
enable perfect reconstruction and which do not.

In [14], the authors present reconstruction formulas for re-
current sampling and derive bounds on errors due to mismod-
eling and additive noise. In [15], they proceed to utilize these
bounds as criteria in optimization problems designed to find op-
timal synthesis filters (interpolation functions) in situations of
sub-Nyquist sampling, which are not MRS. They also consider
the problem of sampling rate but leave the issue of optimal sam-
pling pattern as an open question.

From a practical viewpoint, sub-Nyquist sampling is very im-
portant in several Fourier imaging applications such as sensor
array imaging, synthetic aperture radar (SAR), and magnetic
resonance imaging (MRI), where the physics of the problem
provides us samples of the unknown sparse, in its Fourier do-
main, object.

This work is closely related to the work presented in
[16]–[18]. It deals with finding the most stable sampling pattern
for a multiband signal. A detailed discussion of the relationship
of our work and that described in the aforementioned papers
will be given in the sequel. However, we wish to point out up
front that our approach leads to novel results, both analytic and
algorithmic with considerable advantages over existing ones.
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Furthermore, while it is not our main goal in this paper, our
formulation enabled us to present conditions on the existence
of “universal” sampling patterns.

II. NOTATION AND PROBLEM DESCRIPTION

A. Notation

Throughout this paper, we use the following notational con-
ventions. Parenthesis are used for continuous time signals [e.g.,

] and brackets for discrete time signals (e.g., ); de-
notes the Fourier transform of ; vectors are denoted by bold
lower case letters and matrices by capital letters; and de-
notes the conjugate transpose of . de-
notes the condition number (CN) of . When the spectral ma-
trix norm is used, one gets , where

and are the maximum and minimum singular
values of . Finally, define the spectral support of as the set

, and define the indicator function of
a set as

if
if

We will also need some concepts and notation from number
theory. For and , we write
if for some and is the largest
integer, which divides both and . A complete residue system

, , is a set of integers , such that for

every there exists a unique for which
. This clearly implies that

for all (1)

B. Sampling Equations

In this paper, we focus on signals, which are bandlim-
ited and multiband, meaning that their spectral supports are a
finite union of disjoint intervals

(2)

where . For the
sake of simplicity of presentation, we assume that the signals
are real—all results can readily be extended to complex signals.
Hence, we have for every also and define
the bandwidth and effective bandwidth as

(3)

is therate, for thesesignals, forwhichperfect reconstructionis
guaranteed from uniform samples (Nyquist rate) and is the
minimum average rate, which allows perfect reconstruction from
nonuniform samples [4]. Any sampling scheme with average
rate in between is referred to as sub-Nyquist sampling. A simple
condition for the achievability of MRS is that all band edges are
rational multiples of some number. It can be shown, however,
[10]–[12] that MRS is achievable under milder conditions.

Fig. 1. Analysis part of a generalized sampling scheme.

Because every real number can be approximated by a rational
number to any desired accuracy, we can cover by bands that
are rational multiples of . Specifically, we can write

(4)

for some , , and the integers
. We note that by increasing (which

increases as well) we can make the right-hand side of (4) as
close as we want to the left-hand side. We assume in the sequel
that a value of has been chosen and is fixed.

As mentioned earlier, it is well known [1] that by choosing
a sampling interval , these signals can be perfectly
reconstructed from their samples, . How-
ever, we will show later (also shown in [7]) that it is also possible
to recover such a signal from its periodic nonuniform samples

, where the average sampling rate
is lower than the Nyquist rate .

Since periodic nonuniform sampling can be formulated as
a special case of generalized sampling [19], we use the gen-
eralized sampling equation (GSE) formalism. The generalized
sampling process is shown in Fig. 1, where
and are the sampled outputs of the filters. Note that for
the sake of simplicity, we define the sampling operation as a
modulation (multiplication) by an impulse train, i.e.

where is the output of the th filter
and is the Dirac delta function. It can readily be seen that
we have the relationship

(5)

or, if we limit ourselves to and use the
fact that for all , we have

for (6)

and in a matrix vector form

(7)

where (8), shown at the bottom of the next page, holds. Clearly,
if is invertible for all , we can cal-
culate from and from it for all .
Namely, we can perfectly reconstruct . Interestingly, as was
shown in [20], this condition is not only sufficient but also neces-
sary for perfect reconstruction of bandlimited to .
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However, we recall now that in fact is bandlimited to
, which satisfies (4). This means that out of the vector

only a subset of entries will be different from zero and we can
reduce accordingly the number of equations also to . Namely,
we receive now

(9)

where (10), shown at the bottom of the page, holds. We refer to
this configuration as the reduced generalized sampling equation
for multiband signals.

Finally, for recurrent sampling ,
by defining the filters

(11)

we have a special case of the GSE. becomes

(12)

where

...
. . .

... (13)

As is always nonsingular, the necessary and
sufficient condition for perfect reconstruction of the multiband
signal from the data is that

the matrix is nonsingular.
Remark 1: For the actual reconstruction formulas (or, equiv-

alently, the synthesis filters), the reader is referred to [21].

C. Problem Statement

As discussed previously, the reconstruction of the signal
depends on our ability to solve a set of linear equations. Hence,
it is hardly surprising that the stability (or robustness) of the
reconstruction process depends, as was shown in [22], on the
condition number of the matrix . Indeed, we readily observe
that for the set of linear equations , the relative error of
the solution satisfies . Hence,
it would be desirable to make this condition number as small
as possible. With this observation, we can formally state our
problem.

Problem 1: Given , where
and as defined

in (13), find that minimizes
.

Unfortunately, a solution (either a closed-form solution or
a polynomial time optimization algorithm) for this problem
proved elusive. As a result, in [18], where a related problem
was addressed, the authors limit themselves to ,

. In that case, the problem can be stated
as a combinatorial problem, testing all the possible combina-
tions of integers out of and choosing the
best combination. However, for increasing values of and ,
this approach also becomes quickly unfeasible.

We choose a different route. By constraining to be of the
form

(14)

...
...

. . .
...

(8)

...
...

. . .
...

(10)
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where is a free parameter to be chosen, becomes a
function of

...
...

. . .
...

(15)
We are now ready to restate our problem.

Problem 2: Given , where
and as defined in

(15), find that minimizes .
Remark 2: While we have defined , because of (13), we

observe that for every resulting in (14), we get
the same matrix if we take .

III. ROBUST RECURRENT SAMPLING PATTERNS

When comparing Problem 1, Problem 2, and the results in
[18], we note that while the goals in all three are the same, the
search for the optimal sampling pattern is done in different re-
gions. In Problem 1, the search is in ;
in [18], it is in

; and in Problem 2, the search is in
(see Remark 2). Clearly,

and , hence Problem 1 is the most gen-
eral. Since the choice , , results in
and , we conclude that . On the other
hand, one can readily find patterns in , which are not con-
tained in the and vice versa, hence, neither region contains
the other. This discussion leads to the conclusion that compar-
isons between the results of these two approaches have limited
significance. We wish to point out though, that extensive ex-
periments were conducted and, in the sequel, we do present
some experiment results. On the other hand, it is known that

. An immediate benefit from our choice
of search region is that it results in an analytically tractable
problem. Specifically, we present necessary and sufficient con-
ditions on , for which (perfect conditioning)
can be achieved and achieves it.

A. Perfect Conditioning

To state our analytical results, we need the following prelim-
inary results and definitions.

Lemma 1: Let be as in (15). Then, the following holds.
1) Perfect conditioning (i.e., ) is achieved if

and only if is a .

2) is a if and only if
are uniformly spread on the unit

circle.
Proof: See Appendix I.

Lemma 2: Let and . Then

(16)

where.
Proof: See [23, Th. 2.1.2].

Theorem 1: Let be as in (15) and let
. Then, there exists a that

achieves perfect conditioning if and only if

is a .
Proof: See Appendix II.

Remark 3: Note that Theorem 1 suggests a simple test for the
following question: Given , is perfect conditioning possible?
Calculate and the set

. Then, perfect conditioning
is possible if (and only if) the set is a permutation of
the set and it can be achieved with
(which is not a unique choice).

While our goal is not to investigate universal sampling pat-
terns, we can completely characterize the universal sampling
patterns in the family we chose.

Lemma 3: A sampling pattern of the form (14) is universal if
and only if

for all (17)

Proof: See Appendix III.

B. Optimal Conditioning

Suppose now that the given is such that perfect conditioning
is not possible with the chosen sample patterns. We are still in-
terested in finding the most stable sampling pattern, namely, in
solving Problem 2. To do that, we first note some of the prop-
erties of the dependence of on . From (15), we have

and, by the definition
of , we have . Hence, we
can limit our search for optimal to the region .

Remark 4: In fact, we could further restrict the search re-
gion by defining and noting that

. Then, the search region for optimal can
be reduced to . However, as and increase, the
resulting sets would generally have . Hence,
in the sequel, we prefer to be somewhat more conservative and
choose as our search region.

Let us define the set of angles

(18)

We readily observe that and, with being
Vandermonde, if and only if is such that

with . There is a finite number of such
in the interval and they form the set

(19)

Let denote the number of distinct members of that set
so that and let

denote the intervals between them. We can
then rewrite Problem 2 as

(20)
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and denote the optimal as . However, finding
directly is still too difficult. Recalling that

if and only if the angles are uniformly
spaced, we replace the criterion with a measure
indicating how close to uniformly spaced these angles are.
To do that formally, we observe that by the definitions of
the set and the intervals , is con-
stant for all , hence the order of the angles
for around the circle does not change. Hence, for
each interval , there is a permutation matrix such that

, so we can
write

(21)

where is a vector of ones and
(independent of ). The

angles are uniformly spaced if for some

(22)

where

...
(23)

Hence, we replace the problem

with

(24)

Extensive experiments that we conducted, a sample of which
you can see in Fig. 2, indicated that for , we get

, hence that is the norm we chose (note, however, that it
is not analytically confirmed). For this choice, (24) becomes a
standard least squares problem and we can derive the closed-
form solution

(25)

For a given , we propose the following algorithm to find the
most stable sampling pattern.

1) Using (19), calculate the set and the corresponding
intervals .

2) Calculate a set of interval representing values as

Fig. 2. Example of the correlation between the condition number and the
norm-2 measure of uniformity.

3) Calculate
and, using (21), calculate .

4) Using , determine the permutation matrix .

5) Using (25), calculate and find , which gives

(26)

6) The stable (recurrent) sampling pattern is then given by

(27)

1) Computational Issues: Scanning the proposed algorithm,
we note that the only step of the algorithm that involves signifi-
cant computations is Step 5), which requires times the calcu-
lation of the condition number of a -dimensional matrix. An
efficient algorithm to calculate the condition number requires

(see [24]) operations. Hence, we can estimate the com-
putation load required by the algorithm to be of the order of

. The number depends heavily on the vector , so
we next present an upper bound on its value.

Lemma 4: Let be the number of elements in the set
as defined in (19) for a given . Then

for odd

for even
(28)

Proof: It follows directly from (19), when we consider all
possible differences and ignore possible repetitions of
the values .

As pointed out earlier, while related work in the literature
conducts its search in a different family of sampling patterns,
we would like to make some comparisons as far as computa-
tional complexity. As the approach is combinatorial—choosing



BERMAN AND FEUER: ROBUST PATTERNS IN RECURRENT SAMPLING OF MULTIBAND SIGNALS 2331

Fig. 3. Condition number effect on the quality of reconstructed signal.

Fig. 4. Tightness on computation upper bound.

the best out of rows—it will require calculating the condi-
tion number times. This is clearly, significantly larger than
any value we get for the bound on . For instance, if
and , we get for any choice of , , while

. We should point out though, that the literature con-
tains a number of search algorithms that circumvent the brute
force approach and ease the computational load but provide only
“almost” optimal sampling patterns.

IV. SIMULATION RESULTS

We have carried out extensive experiments on the computer to
test and verify the claims we make here. A sample of the results
is presented in the sequel.

We start by demonstrating the effect of the condition number
when reconstructing a signal contaminated by noise, from its
sampled values. We remind the reader that the condition number
is determined by the choice of the sampling pattern. In Fig. 3,

Fig. 5. Performance comparison between the SBS and ILS.

where and are the signal and its reconstructed ver-
sion, respectively, we clearly see the deterioration of the recon-
structed signal quality as the condition number grows. We wish
to point out that this experiment has been done with ; in
experiments with a larger , this phenomenon dramatically in-
crease. To see how tight is the upper bound we gave in (28), we
chose to generate the relationship between and
by averaging over 25 runs per with randomly chosen . The
results are shown in Fig. 4. As we stated earlier, there are not
many results that deal with the question of sampling pattern se-
lection and most are concerned with finding universal patterns.
The few that discuss finding a sampling pattern for a specific
spectral support as we did here, use sequential selection algo-
rithms where they choose rows out of as described earlier.
One of these is described in [16] and referred to as sequential
backward selection (SBS). Recall that the SBS searches within

as defined earlier. In Fig. 5, we compare the results of using
the SBS to our algorithm [referred to as iterative least squares
(ILS)] where the condition numbers were averaged over 100
random per . We note that for small values of (and )
the two algorithms result in sampling patterns with similar con-
dition numbers. As the value of increases, the SBS algorithm
results in more robust patterns. However, this comes at a heavy
computational cost as demonstrated in Fig. 6. Finally, as both
the ILS (our algorithm) and the SBS are suboptimal, in order
to see how close the results are of either to their respective op-
timal values or to the original problem solution, we chose two
simple cases. We considered two examples, ,
and , . In each example, we considered all pos-
sible vectors . As is sufficiently small, we managed, for each

, to find the optimal sampling patterns in , , and . In
addition, for each , we have applied the ILS and the SBS. For
each and resulting sampling patterns, we calculated the cor-
responding condition numbers. In Fig. 7, we denote by ,

, and the condition numbers that corresponds to the
search in (the solution of Problem 1), (the solution of
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Fig. 6. Computational complexity comparison between the SBS and ILS.

Fig. 7. Comparison of condition numbers for the exampleM = 25,K = 3.

Problem 2), and , respectively. and correspond
to the results of using the ILS and the SBS, respectively. We
observe first that is less than or equal to all others as ex-
pected. Furthermore, whenever perfect conditioning is possible
(i.e., ), it is possible to achieve it with a pattern of the
form in (14) ( ) and the ILS finds it ( ). This
is not true for the patterns is ( ). Because of space
constraints, we did not show here all the results for this example
or any of the other example we tried, but all the results maintain
the same relationships as previously mentioned.

V. CONCLUSION

In this paper, we look at multiband, bandlimited signals
and search for robust sub-Nyquist sampling patterns. While
previous work was based on a combinatorial, computationally
costly search, we introduce a new approach. Instead of a finite
set , consisting of subsets of points out of a possible ,
the sampling patterns considered here are continuously labeled
and structurally constrained, the set , so that the resulting
problem possesses a Vandermonde structure. This approach
leads to analytical results—conditions on the spectral support
for achievability of perfect conditioning as well as conditions
for the existence of universal sampling patterns. For the case
when perfect conditioning is not possible, a new algorithm was
presented to search for the most robust sampling pattern.

APPENDIX I
PROOF OF LEMMA 1

First, we note that

for some (29)

which implies that

for all (30)

As from (15), we have that

if

otherwise

when combined with (30) we get for all

Hence

is a (31)

which establishes 1).
Then, 2) follows directly from the definitions of a complete

residue system and the angles.

APPENDIX II
PROOF OF THEOREM 1

From Lemma 1, we have that ; there exists

a such that is a , so all we need to

show is that there exists a such that is

a is a .

For sufficiency, let be a . Let us
choose . Then, and we are
done.

For necessity, assume that there exists such that

is a . Then, we have

(32)

Hence, is a . Using Lemma 2 [
, , , and ],
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we have if
and only if where

. However, as a contains exactly
distinct integers, if , the set
must contain at least two integers such
that . By the above,
this implies that

, which contradicts the fact that is a

. Hence, necessarily, so that
is a , which completes the proof.

APPENDIX III
PROOF OF LEMMA 3

Since the matrix is Vandermonde with the generating
row given by , it will be singular if and only
if

for some . Namely, if and only if

(33)

and as, by definition, for , (33) is
equivalent to

The proof is complete.

REFERENCES

[1] C. E. Shannon, “Communications in the presence of noise,” Proc. IRE,
vol. 37, pp. 10–21, Oct. 1949.

[2] A. J. Jerri, “The Shannon sampling theorem—Its various extensions
and applications: A tutorial review,” Proc. IEEE, vol. 65, no. 11, pp.
1565–1596, Nov. 1977.

[3] K. F. Cheung and M. I. R. J, “Imaging sampling below the Nyquist
density without aliasing,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 7,
pp. 92–105, Jan. 1990.

[4] H. J. Landau, “Necessary density conditions for sampling and inter-
polation of certain entire functions,” ACTA Mathematica, vol. 117, pp.
37–52, 1967.

[5] P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase net-
works, and applications: A tutorial,” Proc. IEEE, vol. 78, no. 1, pp.
56–93, Jan. 1990.

[6] B. Foster and C. Herley, “Exact reconstruction from periodic nonuni-
form samples,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 1995, vol. 2, pp. 1452–1455.

[7] P. Feng and Y. Bresler, “Spectrum-blind minimum-rate sampling and
reconstruction of multiband signals,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 1996, vol. 3, pp. 1688–1691.

[8] Y. Bresler and P. Feng, “Spectrum-blind minimum rate sampling and
reconstruction of 2-d multiband signals,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 1996, pp. 701–704.

[9] R. Venkataramani and Y. Bresler, “Further results om spectrum blind
sampling of 2-d signals,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 1998, pp. 752–756.

[10] C. Herley and P. W. Wong, “Minimum rate sampling and reconstruc-
tion of signals with arbitrary frequency support,” IEEE Trans. Inf.
Theory, vol. 45, no. 5, pp. 1555–1564, Jul. 1999.

[11] A. Kohlenberg, “Exact interpolation of band-limited functions,” J.
Appl. Phys., vol. 24, no. 12, pp. 1432–1436, Dec. 1953.

[12] Y. P. Lin and P. P. Vaidyanathan, “Periodically nonuniform sampling
of band-path signals,” IEEE Trans. Circuits Systems. II, Analog Digit.
Signal Process., vol. 45, no. 3, pp. 340–351, Mar. 1998.

[13] M. G. Beaty and M. M. Dodson, “The distribution of sampling rates
for signals with equally wide, equally spaced spectral bands,” SIAM J.
Appl. Math., vol. 53, no. 3, pp. 893–906, June 1993.

[14] R. Venkataramani and Y. Bresler, “Perfect reconstruction formulas and
bounds on aliasing error in sub-Nyquist nonuniform sampling of multi-
band signals,” IEEE Trans. Inf. Theory, vol. 46, no. 6, pp. 2173–2183,
Sep. 2000.

[15] R. Venkataramani and Y. Bresler, “Optimal sub-Nyquist nonuniform
sampling and reconstruction for multiband signals,” IEEE Trans.
Signal Process., vol. 49, no. 10, pp. 2301–2313, Oct. 2001.

[16] S. J. Reeves and L. P. Heck, “Selection of observations in signal recon-
struction,” IEEE Trans. Signal Process., vol. 43, no. 3, pp. 788–791,
Mar. 1995.

[17] Y. Gao and S. J. Reeves, “Optimal k-space sampling in MRSI for im-
ages with a limited region of support,” IEEE Trans. Med. Imag., vol.
19, no. 12, pp. 1168–1178, Dec. 2000.

[18] N. D. Blakeley, P. J. Bones, R. P. Millane, and P. Renaud, “Efficient
frequency-domain sample selection for recovering limited-support im-
ages,” J. Opt. Soc. Amer. A., Opt. Image Sci., vol. 20, pp. 67–77, Jan.
2003.

[19] A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuits
Syst., vol. CS-24, no. 11, pp. 652–654, Nov. 1977.

[20] A. Feuer, “On the necessity of Papoulis result for multidimensional
generalized sampling expansion (GSE),” IEEE Signal Process. Lett.,
vol. 11, no. 4, pp. 420–422, Apr. 2004.

[21] A. Feuer and G. C. Goodwin, “Reconstruction of multidimensional
bandlimited signals from nonuniform and generalized samples,” IEEE
Trans. Signal Process., vol. 53, no. 11, pp. 4273–4282, Nov. 2005.

[22] M. Unser and J. Zerubia, “Generalized sampling: Stability and per-
formance analysis,” IEEE Trans. Signal Process., vol. 45, no. 12, pp.
2914–2950, Dec. 1997.

[23] R. A. Mollin, Fundamental Number Theory With Applications, ser.
Discrete Mathematics and Its Applications, K. H. Rosen, Ed. Boca
Raton, FL: CRC Press, 1998.

[24] M. Gu, J. W. Demmel, and I. Dhillon, “Efficient computation of the
singular value decomposition with applications to least squares prob-
lems,” Knoxville, TN, Tech. Rep. CS-94-257, 1994.

Lihu Berman received the B.Sc. and M.Sc. degrees
from the Department of Electrical Engineering, The
Technion—Israel Institute of Technology, Haifa,
Israel, in 2003 and 2006, respectively, where he is
currently working towards the Ph.D. degree. While
doing research for the M.Sc. degree, he worked
closely with Prof. A. Feuer.

From 1997 to 2000, he served in the Israeli Mili-
tary Intelligence.

Mr. Berman is a graduate of the Technion’s excel-
lence program and a recipient of the Gutwirth fellow-

ship.

Arie Feuer (S’74–M’76–SM’93–F’04) received the
B.Sc. and M.Sc. in mechanical engineering from the
Technion—Israel Institute of Technology, Haifa, Is-
rael, in 1967 and 1973, respectively, and the Ph.D. de-
gree from Yale University, New Haven, CT, in 1978.

From 1967 to 1970, he was with Technomatics Inc.
working on the design of automatic machines. From
1978 to 1983, he worked for Bell Labs in network
performance evaluation. In 1983, he joined the Fac-
ulty of Electrical Engineering at the Technion were he
is currently a Professor and Head of the Control and

Robotics Laboratory. His current research interests include resolution enhance-
ment of digital images and videos; sampling and combined representations of
signals and images; and adaptive systems in signal processing and control.


