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1 Introduction

Discrete multi-dimensional signal processing inherently relies on sampling a continuous
multi-variable signal. In this way, a multi-dimensional discrete representation of the
signal is obtained. By a multi-dimensional signal we mean a signal which depends on
more than one variable. (Examples include 2D images and 3D video). The most common
form of sampling is on a lattice which is the multi-dimensional equivalent of uniform
sampling in the one dimensional case. (A brief overview of lattices will be provided
in the next section.) In many applications, however, the data inherently has a more
complex structure. For example, it might be generated by non-uniform sampling or by
sampling multi-channel versions of the original signals.

Two specific applications which have motivated the author’s interest in the questions
addressed in the current paper are (i) resolution enhancement of fiberoptic endoscopes
and (ii) resolution enhancement and video compression in digital video cameras. In the
first of these applications, the fiberoptic size and the endoscope diameter put a constraint
on possible image resolution as each fiber transfers a single pixel of the image. In this
project we generate multiple images with temporal changes and use them to generate
a single image of improved resolution. In the second application, one uses multiple
video cameras to capture different aspects of the same scene. Some may emphasize
spatial resolution whilst others may emphasize temporal resolution, i.e., frame rate. The
problem is then to use the multiple clips to gain a single video clip with enhanced
resolution, both spatial and temporal. The problem is made more difficult because each
camera will have a different sampling pattern. Some details of these applications are
commercially sensitive at this stage but the basic technical issues involved are addressed
in the two specific patterns analyzed in Sections 4 and 5 of this paper.

Reconstruction of signals from uniform sampling (i.e. on a lattice) is a straightforward
generalization of the one dimensional case using lowpass filters, (see e.g. [9], [2], [14]).
However, existing methods for reconstruction from other types of data, such as those
mentioned above, typically use continuous filters (see e.g.[1] and [3]) and are thus un-
suitable for digital implementation.

In [4] the authors address the above issues for the one dimensional case. Specifically,
they introduce a result coined the ‘Interpolation Identity’. This identity is shown to
lead to efficient reconstruction methods from generalized samples as well as efficient
interpolation to uniformly spaced samples.

In the current paper we generalize the results presented in [4] to multi-dimensional
signals. Potential applications of the results described here would include:

• Taking digital photographs of the same scene using identical or different digital
cameras

• Analyzing video images of the same scene taken by different cameras.

The resultant identity is, in fact, a statement of equivalence between two configurations
to process sampled data signals having a continuous signal as output. In one of the



configurations, the processing is done in the continuous domain using continuous filters.
In the alternative configuration, the processing is done in the discrete domain. A key
property of the second configuration is that it leads to a discrete representation having
“uniform” samples (i.e. sampled on a lattice). If required, the continuous signal can be
recovered form these “uniform samples” via a multivariable lowpass filtering operation
[2]. However, in other cases, the conversion to uniform samples (on a lattice) could be a
desirable end-point in its own right.

The layout of the remainder of the paper is as follows. In Section 2 we provide a brief
overview of multi-dimensional sampling and introduce the notation to be used in the
sequel. In Section 3, we state and prove the key result of this paper, namely, a multi-
dimensional version of the ’Interpolation identity’ introduced in [4] for the 1D case. This
involves several novel aspects which are not present in the one dimensional case. Section
4 and Section 5 consider two cases of multi-dimensional recurrent sampling based on the
Generalized Sampling Expansion (GSE) (see e.g. [1] and [6]). For these cases, the multi-
dimensioanl Interpolation Identity is applied to generate an efficient implementation
algorithm.

2 Background to multi-dimensional sampling

2.1 Sampling Lattices and Noncommutative Rings

The generalization of the concept of uniform sampling in the one dimensional case to
multivariable sampling leads to the notion of a ‘sampling lattice’ (see e.g. [2]). By a
sampling lattice we refer to a set:

LAT (T ) =
©
Tn : n ∈ ZD

ª
⊂ RD (1)

for a given nonsingular matrix T ∈ RD×D. Here we have used Z, R to denote the integers
and reals respectively. The generalization of a ‘sampling interval’ in the 1D case to the
multi-dimensional case leads to the concept of a unit cell. A unit cell UC (T ) ⊂ RD

associated with the sampling lattice LAT (T ), is a set with the following two prop-
erties: {UC (T ) + Tn1} ∩ {UC (T ) + Tn2} = ∅ for any n1, n2 ∈ ZD, n1 6= n2 and
∪

n∈ZD
{UC (T ) + n} = RD. A given lattice gives rise to many unit cells. However, all

possible unit cells of the same lattice have an identical volume given by |det (T )|. A set
of representatives of a given lattice over the integers, LAT (K), where K is an integer
matrix, is defined to be the set

SR (K) = UC (K) ∩ LAT (I) (2)

where I is the identity matrix (hence LAT (I) = ZD). Clearly, since the unit cell is
not unique, neither is SR (K). However, it can be shown (see [8]) that the number of
elements in every SR (K) is the same and is equal to |det (K)|.

Important insights into sampling lattices are also provided from their equivalent fre-
quency domain representations. In this context one can either use normalized frequen-
cies (as is often done in the signal processing literature) or un-normalized frequencies (as



discussed in detail in [7]). Both are equivalent and thus it is a matter of taste as to which
one decides to use for a given problem. In this paper, we will use un-normalized fre-
quencies since by doing so we maintain the same scale of the frequency domain operator
which allows easier comparison of the effect of different sampling patterns.

Using these ideas, then for every sampling lattice LAT (T ), there exists a polar (or
reciprocal) lattice defined by LAT

¡
2πT−T

¢
with the property that ωTx is an integer

multiple of 2π for every ω ∈ LAT
¡
2πT−T

¢
, x ∈ LAT (T ). The reciprocal lattice plays

a key role for signals sampled on LAT (T ). In particular, it represents the frequency
domain effect of sampling on LAT (T ). This is analogous to the relationship between
{n∆t} and

©
k 2π
∆t

ª
in the one dimensional case.

The above points highlight the core difference between the one dimensional and multi-
dimensional cases. Specifically, in the one dimensional case we need to deal with integers
(i.e., a commutative ring), whilst, in the multi-dimensional case, we will need to deal
with square matrices of integers (i.e., a non-commutative ring). This key difference leads
to major difficulties in the multi-dimensional case, both in terms of the formulation and
derivation of results. One aspect of this difficulty is highlighted in [15] where it is pointed
out that the lack of commutativity prevents decimators and expanders to be commuted in
the multidimensional case (see also [10] or [5]). This particular issue was later resolved in
[8]. This reference also introduces various tools which we will make use of and generalize
in the sequel.

For completeness, we summarize below some facts regarding non-commutative rings
which we will utilize. We refer the reader to [11], [12], [15] and, in particular [8] for
further details.

Given three matrices M,Mo, S ∈ ZD×D which satisfy M = SMo, we call S a left devisor
of M . M is called a left multiple of Mo. A greatest common left (right) divisor, g.c.l.d
(g.c.r.d) S ∈ ZD×D of two matrices M,R ∈ ZD×D is a common left (right) divisor which
is a right (left) multiple of every common left (right) devisor of M and R. S ∈ ZD×D
is said to be unimodular if |det (S)| = 1. M and R are left (right) coprime if their
g.c.l.d (g.c.r.d) is unimodular. It is known that (see e.g. [8]) , for every left coprime
nonsingular Mo and Ro, there exists right coprime pairs fMo, eRo ∈ ZD×D such that
M−1

o Ro = eRo
fM−1

o with |det (Mo)| =
¯̄̄
det

³fMo

´¯̄̄
. Hence, one can readily observe that for

any nonsingular integral M , R there exist a pair fM , eR for which

M−1R = eRfM−1

|det (M)| =
¯̄̄
det

³fM´¯̄̄ (3)

We illustrate the last point by the following simple example (This example will be utilized
in the sequel to further illustrate multi-dimensional sampling ideas and concepts):

Example 1 Let

M =

·
2 1
0 2

¸
;R =

·
1 0
1 3

¸
(4)



Then we can choose

fM =

·
4 −3
0 −1

¸
; eR = · 1 0

2 −3

¸
(5)

and properties (3) can readily be verified.

¥

2.2 Preliminary Results

We assume that the continuous signals, which we denote fc (x) , x ∈ RD, are bandlimited
in the sense that there exists a sampling lattice LAT (TQ) with the property that

support
³ bfc (ω)´ ⊆ UC ¡2πT−TQ

¢
(6)

Here, and elsewhere, we use γ̂(ω) to denote the multi-dimensional Fourier Transform of
the signal γ(x).

The lattice LAT (TQ) can be viewed as the multivariable generalization of the “Nyquist
rate” in the one dimensional case. For this reason, we call it a “Nyquist lattice”.

Clearly, the signal fc (x) could be reconstructed from its sampled values on LAT (TQ)
by passing fd (x) =

P
n∈ZD fc (TQn) δ (x− TQn) through the ideal lowpass filter

bhLP (ω) = ½ |det (TQ)| for ω ∈ UC
¡
2πT−TQ

¢
0 otherwise

(7)

However, our interest here is in generalized sampling. Thus, we assume that the actual
sampling lattice we employ is LAT (T ). We impose the following constraint on the
relationship between LAT (T ) and LAT (TQ):

Assumption 1 : T and TQ are related via

T = TQM
−1R

= TQ eRfM−1 (8)

where R,M, eR,fM ∈ ZD×D are non singular matrices satisfying (3).
¥

Note that Assumption 1 is not very restrictive. Indeed, in the scalar case, it simply
reduces to the fact that the ratio T

TQ
is rational. In the multivariable case, a sufficient

condition is that the entries in T and TQ are rational.

Assumption 1 (equation (8)), guarantees that LAT (TQ) (the Nyquist lattice) can be
generated from LAT (T ) through expansion of LAT (T ) by a factor of R and then



Figure 1: The latticesLAT
¡
MT

¢
and LAT

³fMT
´
and their respective unit cells for the

example.

decimation by a factor of M . These operations, for the multi-dimensional case, are
discussed and demonstrated in Section 2.3 (see also [15]).

Let M,fM ∈ ZD×D be as in (3). We next consider the lattices LAT ¡MT
¢
, LAT

³fMT
´
,

together with any of their respective unit cells UC
¡
MT

¢
, UC

³fMT
´
and their sets of

representatives SR
¡
MT

¢
and SR

³fMT
´
. Clearly, since

¯̄
det

¡
MT

¢¯̄
=
¯̄̄
det

³fMT
´¯̄̄
,

the two sets of representatives contain the same number of distinct vectors, N . These
observations are illustrated below:

Example 1 (continued). The above concepts are illustrated in Figure 1 for the ex-
ample matrices given in (4) and (5). For the unit cells in Figure 1 we have

N =
¯̄
det

¡
MT

¢¯̄
= 4. In particular, SR

¡
MT

¢
=

½·
0
0

¸
,

·
0
1

¸
,

·
1
1

¸
,

·
1
2

¸¾
and SR

³fMT
´
=

½·
0
0

¸
,

·
1
−1

¸
,

·
2
−2

¸
,

·
3
−3

¸¾
.

¥

Note that by definition, for every m ∈ ZD there exist unique n, en ∈ ZD and k ∈
SR

¡
MT

¢
,ek ∈ SR³fMT

´
such that m =MTn+ k = fMTen+ ek (see [15]). We can then

write m ≡ kmod
¡
MT

¢
and m ≡ ekmod³fMT

´
. We thus have the following result which

gives an explicit enumeration of SR
¡
MT

¢
and SR

³fMT
´
.



Lemma 1 The mapping ρ : SR
¡
MT

¢
→ SR

³fMT
´
defined by

ρ (k) ≡
³ eRTk

´
mod

³fMT
´

= eRTk − fMTn (9)

is one to one and onto.

Proof. (See Appendix A).

We illustrate by continuing the example:

Example 1 (continued).

For the matrices in the example, we apply ρ as introduced in Lemma 1 and obtain:

ρ

½·
0
0

¸
,

·
0
1

¸
,

·
1
1

¸
,

·
1
2

¸¾
=

½·
0
0

¸
,

·
2
−2

¸ ·
3
−3

¸
,

·
1
−1

¸
,

¾
.

¥

An immediate consequence of Lemma 1 is that we can enumerate the vectors k1, ..., kN
in SR

¡
MT

¢
and ek1, ...,ekN inSR³fMT

´
such that

ekc = ρ (kc) for c = 1, 2, ..., N (10)

In the analysis presented below, in order to simplify notation, we describe discrete signals
as weighted sums of Dirac Delta functions. This enables us to view them as continuous
signals and eliminates the need to distinguish between continuous and discrete (normal-
ized) frequencies. Hence, we only use continuous frequencies ω ∈ RD. The same holds
for the filters we use - i.e. a discrete filter will have an impulse response which is a
weighted sum of Dirac Delta functions and a frequency response which is periodic over
the corresponding reciprocal lattice.

2.3 Multivariable Upsampling and Downsampling

In our development presented later, we will utilize expanding by a matrix factor R
(multivariable upsampling) and decimating by a matrix factor M (multivariable down-
sampling) - both R and M are matrices of integers. In essence, these operations are
similar to those used in the scalar case, however, the technical details can be signifi-
cantly more intricate. Say, the initial sampling lattice is LAT (T ). When expanded by
R we get the lattice LAT (TR−1) ⊇ LAT (T ) and when decimated by M we get the
lattice LAT (TR−1M) = LAT (TQ) ⊆ LAT (TR−1). As a demonstration we refer the
reader to Figure 2 where we chose

T =

·
1
4
−3
4

1
2

3
2

¸



Figure 2: The input lattice LAT (T ), expanded byR to give LAT (TR−1) and decimated
by M to give LAT (TR−1M).

We also choose TQ as the 2× 2 - identity matrix and R,M as in the example - one can
readily verify that Assumption 1 holds for these choices. The initial lattice LAT (T ), is
presented in Figure 2 by solid circles, the empty circles are LAT (TR−1) and ’×’ denotes
LAT (TR−1M). We see from the figure the relationships LAT (T ) ⊆ LAT (TR−1) and
LAT (TR−1M) ⊆ LAT (TR−1). For a more detailed exposition on this subject the
reader is referred to [15].

3 The Key Technical Result

In this section we state and prove our key result which is a multivariable interpolation
identity. This establishes an equivalence between a continuous multivariable filter bank
and a discrete filtering scheme involving upsampling and downsampling. The result
extends a published result ([4]) for the 1D case to the multi-dimensional case. The
two configurations are illustrated in Figures 3 and 4 respectively. These figures have
been introduced so that the reader can better visualize the result. Both configurations
are driven by the multivariable sampled data of fc (x) , x ∈ RD sampled on LAT (T ).
However, the processing in Figure 3 is all in the continuous domain while in Figure 4
most of the processing is done in the discrete domain. Only the last step in Figure 4, a
standard low pass filter (as given in (7)) which allows reconstruction from data sampled
on a lattice, is continuous. The set up described in Figure 3 is motivated by the most
general reconstruction problem we treat, namely the P th order nonuniform sampling.
We present this problem and illustrate the utility of our result in Section 5.

We further wish to point out that the filters {hc (x)}Nc=1 in Figure (3) are bandlim-
ited to UC

¡
2πT−TQ

¢
(which is also the bandwidth of the signal fc (x)). The signals

f (x) , fe (x) , ye (x) and yd (x) in Figure 4 are all discrete signals (i.e., sequences). The



Figure 3: Continuous filter bank configuration.

Figure 4: Equivalent discrete configuration.



same is true for the filter eh (x) which is denoted by its frequency response beh (ω) in Figure
4. Note that beh (ω) is periodic, since it represents discrete processing (hence, its impulse
response is a weighted sum of Dirac Delta functions). Also note that the signal fe (x) is
the result of expanding f (x) by a factor R and yd (x) results from decimating ye (x) by
a factor M where both R and M are (integral) matrices.

Given the above background, we are now in a position to state and prove the following:

Theorem 1 Let fc (x) be such that (6) is satisfied. Consider T, TQ, satisfying Assump-

tion 1, with M , R, fM , eR as in (8) and {kc}
N
c=1 = SR

¡
MT

¢ nekcoN
c=1

= SR
³fMT

´
enumerated so that (10) holds. Then, the configurations in Figures 3 and 4 are equiva-
lent provided we choose

beh (ω) = N

|det (TQ)|
X
n∈ZD

NX
c=1

bhc ¡ω − 2πT−TQ kc + 2πT
−T
Q MTn

¢
(11)

Proof. (See Appendix B.)

Remark 1 For the scalar case Assumption 1 becomes T/TQ = R/M for any coprime
integers M,R. This generalizes the result in [4] where it is assumed that T/TQ − 1/M
is an integer (namely, R ≡ 1mod (M)).

Remark 2 Note that by virtue of (11), the resultant filter beh (ω) is indeed periodic in the
expanded reciprocal lattice LAT

¡
2πT−TRT

¢
= LAT

¡
2πT−TQ MT

¢
i.e., beh ¡ω + 2πT−TQ MTn

¢
=beh (ω) for all ω. Furthermore, equation (11) can be thought of as a tiling process over one

“period” in the frequency domain i.e., over a unit cell of LAT
¡
2πT−TRT

¢
. This unit cell

is divided into N = |det(M)| unit cells of the reciprocal “Nyquist” lattice LAT
¡
2πT−TQ

¢
.

In each of the unit cells we place the shifted frequency response of one continuous fil-
ter. This process is illustrated in Figure 5 for the simple example above. In this figure
we demonstrate how the unit cell UC

¡
2πT−TRT

¢
of the lattice LAT

¡
2πT−TRT

¢
(which

is the period of filter beh (ω)) is constructed from the unit cell of the ’Nyquist lattice’

LAT
¡
2πT−TQ

¢
shifted by 2πT−TQ kc and how each period of

beh (ω) is constructed from the

filters bhc (ω) shifted by 2πT−TQ kc respectively.

As an illustration of the utility of the above result we apply it, in the following sections, to
some special cases namely, the reconstruction of a signal sampled on recurrent sampling
patterns.

4 Multi-dimensional recurrent nonuniform sampling.

In this section, we consider a special case of multi-dimensional nonuniform sampling.
Let LAT (TQ) and LAT (T ) be two sampling lattices. Assume that

T = TQR (12)



Figure 5: Demonstration of the ’tiling’ construction of beh (ω) as defined in equation (11).

Figure 6: A 2D example of recurrent sampling.

for some nonsingular R ∈ ZD×D. Thus, clearly LAT (T ) ⊂ LAT (TQ). The sampling
pattern we consider here is defined by

Ψ =
P
∪
p=1

©
LAT (T ) + xp

ª
xp ∈ RD (13)

This sampling pattern is commonly referred to as a recurrent sampling pattern, see e.g.[2].
A 2D example is presented in Figure 6. The solid circles, in Figure 6, represent the points
of LAT (T ) and the hollow circles the additional points. Note that the pattern of the
added samples in each shifted unit cell of LAT (T ) is identical. The union of these sets
is a recurrent sampling pattern, Ψ. A specific example of this situation arises when one
utilizes multiple identical digital cameras on the same scene.

In the one dimensional case (see e.g. [4]) the number of distinct points added in each
sampling period (unit cell) of LAT (T ) determines the bandwidth of reconstructible
signals. The corresponding multi dimensional case is more complex as we show below.
Let cl = 2πT

−Tkl ∈ LAT
¡
2πT−T

¢
where {kl}

L
l=1 = SR

¡
RT
¢
and L = |det (R)|. Then



it can be shown that

UC
¡
2πT−TQ

¢
=

L
∪
l=1

©
UC
¡
2πT−T

¢
+ cl

ª
(14)

Note that a similar construction has been demonstrated in Figure 5 (see Remark 2).

Consider next a bandlimited signal fc (x) such that

support
³ bfc (ω)´ ⊆ UC ¡2πT−TQ

¢
=

L
∪
l=1

©
UC
¡
2πT−T

¢
+ cl

ª
(15)

Thus LAT (TQ) is a ’Nyquist lattice’ for this signal.

In the sequel, we make extensive use of the Generalized Sampling Expansions (GSE)
results (see [13], [1] and [6]). For the benefit of the reader we formally restate the most
general form of this result below:

Theorem 2 Let fc (x), TQ and T be as in (12) and (15). Suppose fc (x) is passed

through a bank of L filters
nbhp (ω)oL

p=1
to generate the signals gp (x). Namely, bgp (ω) =bhp (ω) bfc (ω). Then, a necessary and sufficient condition that fc (x) can be reconstructed

from {gp (Tn)}Lp=1 is that the equation bh1 (ω + c1) · · · bhP (ω + c1)
...
. . .

...bh1 (ω + cL) · · · bhP (ω + cL)




Φ1 (ω, x)
Φ2 (ω, x)

...
ΦP (ω, x)

 =


ejc
T
1 x

ejc
T
2 x

...
ejc

T
Lx

 (16)

has a solution for all x and every ω ∈ UC
¡
2πT−T

¢
. Under these conditions, the recon-

struction given by

fc (x) =
PX
p=1

X
n∈ZD

gp (Tn)ϕp (x− Tn) (17)

where

ϕp (x) =
|det (T )|
(2π)D

Z
UC(2πT−T )

Φp (ω, x) e
jωTxdω (18)

and Φp are solution of (16).

Proof. See [6].

We now return to recurrent sampling such that fc (x) is sampled on Ψ (see (13)). This
problem can be reformulated as a special case of the GSE described in Theorem 2.
Choosing bhp (ω) = ejω

Txp we get gp (x) = fc
¡
x+ xp

¢
and sampling each on LAT (T )

results in the same data as by the recurrent sampling. We can now readily apply Theorem
2. Specifically, we have for the case of interest here that bh1 (ω + c1) · · · bhP (ω + c1)

...
. . .

...bh1 (ω + cL) · · · bhP (ω + cL)

 = H · diag
n
ejω

T xp

o
∈ CL×P (19)



Figure 7: Reconstruction from recurrent nonuniform sampling.

where

H =


ejc

T
1 x1 ejc

T
1 x2 · · · ejc

T
1 xP

ejc
T
2 x1 ejc

T
2 x2 · · · ejc

T
2 xP

...
...

. . .
...

ejc
T
Lx1 ejc

T
Lx2 · · · ejc

T
LxP

 (20)

and (16) has a solution if H has full row rank (see [6]). A necessary condition for this to
hold is clearly, that L ≤ P . We assume, in the sequel, that L = P and that the matrix
H is non singular. Then, the reconstruction is carried out using (17) and (18).

Equation (17) can also be rewritten in an equivalent convolution form

fc (x) =
LX

p=1

fp (x) ∗ ϕp (x) (21)

where
fp (x) =

X
n∈ZD

fc
¡
Tn+ xp

¢
δ (x− Tn) (22)

This form of the result is depicted in Figure 7. We further illuminate this result below.

Let us denote G = H−1 then from (16) and (19) we have

Φp (ω, x) = e−jω
Txp

LX
l=1

Gp,le
jcTl x

and

ϕp (x) =
|det (T )|
(2π)D

Z
UC(2πT−T )

ejω
T (x−xp)dω

LX
l=1

Gp,le
jcTl x (23)



Then

bϕp (ω) =

Z
RD

ϕp (x) e
−jωT xdx

=
|det (T )|
(2π)D

LX
l=1

Gp,l

Z
UC(2πT−T )

·Z
RD

e−j(ω−cl−η)
T
xdx

¸
e−jη

Txpdη

= |det (T )|
LX
l=1

Gp,l

Z
UC(2πT−T )

δ
¡
ω − cl − η

¢
e−jη

Txpdη

=
LX
l=1

Gp,le
−j(ω−cl)TxpbhLP ¡ω − cl;UC

¡
2πT−T

¢¢
(24)

where we have used notation similar to the one in [4] for the ideal lowpass filter

bhLP ¡ω;UC ¡2πT−T¢¢ = ½ |det (T )| for ω ∈ UC
¡
2πT−T

¢
0 otherwise

(25)

We see from (14), (16), (18) and (19) that bϕp (ω) = 0 for all ω /∈ UC
¡
2πT−TQ

¢
, namely,

the filters bϕp (ω) are bandlimited to the same bandwidth as the signal fc (x). Thus, the
reconstruction in Figure 7 is achieved via continuous filtering.

We will next utilize Theorem 1 to show how discrete filtering can be employed for this
problem. To this end, we directly apply the result of Theorem 1 to each branch of Figure
7. This is illustrated in Figure 8 where, in this case, the discrete filters satisfybehp (ω) = X

n∈ZD
bϕp

¡
ω + 2πT−TQ n

¢
=

1

|det (TQ)|

LX
l=1

Gp,le
−j(ω−cl+2πT−TQ n)

T
xp

bhLP ¡ω − cl + 2πT
−T
Q n;P (Λ∗)

¢
(26)

Thus, using Theorem 1, we have generated the samples on a Nyquist lattice. In many
applications, this will be the desired end result. However, if the continuous signal is
required, then one need only apply the low pass filter ĥLP (ω;UC

¡
2πT−TQ

¢
) as shown on

the far right hand side of Figure 8.

5 Multi-dimensional Pth order nonuniform sampling.

In Section 4, the sampling used consisted of shifted versions of the same lattice. A further
embellishment arises when one uses distinct lattices. A specific application would be the
use of multiple cameras, each having a distinctive sampling pattern.

The combined sampling pattern in this case can be described as

Ψ =
P
∪
p=1

©
LAT (Tp) + xp

ª
xp ∈ RD (27)



Figure 8: Discrete filter bank reconstruction from recurrent nonuniform sampling.

We again, assume that there exist a ’Nyquist’ sampling lattice LAT (TQ) and consider
signals satisfying

support
³ bf (ω)´ ⊆ UC ¡2πT−TQ

¢
(28)

We also assume that, for each Tp we have

Tp = TQ eRfM−1
p

= TQM
−1
p Rp (29)

with |det (Mp)| =
¯̄̄
det

³fMp

´¯̄̄
for some nonsingular integral matrices eR,fMp. Note that

there is no loss of generality in assuming that eR is common to all Tp since if it is not, we
can always choose eR = l.c.r.m

³ eRp

´
= eRp

eSp and replace the fMp by fMp
eSp maintaining

the ratio and resulting in the form of (29).

We wish to reconstruct the signal f (x) from its samples on Ψ, namely, from the data
set {f (x) : x ∈ Ψ}. Denoting

T = TQ eR (30)

we obtain from (29)
Tp = TfM−1

p (31)

Furthermore, let ©emp,r

ªLp
r=1

= SR
³fMp

´
(32)

where Lp =
¯̄̄
det

³fMp

´¯̄̄
.

It can then be readily shown that

Ψ =
P[
p=1

Lp[
r=1

©
LAT (T ) + xp + Tp emp,r

ª
(33)

Once put in this form, we can see that this problem is a special case of the recurrent
sampling discussed in the previous section. Hence, denoting L =

¯̄̄
det

³ eR´¯̄̄ we need to



have L ≤
PP

p=1 Lp. We will assume L =
PP

p=1 Lp, and, as in (15), that

UC
¡
2πT−TQ

¢
=

P[
q=1

Lp[
l=1

©
UC
¡
2πT−T

¢
+ cq,l

ª
(34)

where cq,l = 2πT
−Tenq,l and PS

q=1

©enq,lªLpl=1 = SR³ eRT
´
(The two indexed enumeration is

adopted for notational convenience.)

Using (20) and (33) the resulting matrix H will have the form

H =

 H1,1 · · · H1,P

...
. . .

...
HP,1 · · · HP,P

 (35)

where the (q, p)th block is

Hq,p =


ejc

T
q,1(xp+Tp emp,1) ejc

T
q,1(xp+Tp emp,2) · · · ejc

T
q,1(xp+Tp emp,Lp)

ejc
T
q,2(xp+Tp emp,1) ejc

T
q,2(xp+Tp emp,2) · · · ejc

T
q,2(xp+Tp emp,Lp)

...
...

. . .
...

e
jcTq,Lq(xp+Tp emp,1) e

jcTq,Lq(xp+Tp emp,2) · · · e
jcTq,Lq(xp+Tp emp,Lp)

 ∈ CLq×Lp (36)

Assuming H is invertible with G = H−1, the reconstruction formula, using continuous
filtering, can then be obtained as in (17)-(24), i.e.

f (x) =
PX
p=1

LpX
r=1

X
n∈ZD

f
¡
Tn+ xp + Tp emp,r

¢
ϕp,r (x− Tn) (37)

where

ϕp,r (x) =
|det (T )|
(2π)D

Z
UC(2πT−T )

ejω
T (x−xp−Tp emp,r)dω

PX
q=1

LqX
l=1

(Gp,q)r,l e
jcTq,lx (38)

The reconstruction formula (37) can be reformulated as (see Appendix C for details):

f (x) =
PX
p=1

 LpX
l=1

X
m∈ZD

f
¡
Tpm+ xp

¢
e−j2π

ekTp,lfM−1
p mhp,l (x− Tpm)

 (39)

where bhp,l (ω) = 1

|det (Mp)|

LpX
r=1

ej(ω−2πT
−T ekp,l)TTp emp,rbϕp,r (ω) (40)

In (39), for every p, in the square brackets we have exactly the configuration described
in Figure 3. Indeed, as stated earlier, (39) is the motivation for the general configuration
we considered in our Interpolation Identity.



Figure 9: Reconstruction from P th nonuniform sampling using a discrete filterbank.

Next we consider the case of discrete filtering. Using the Interpolation Identity of The-
orem 1 the reconstruction can be carried out as depicted in Figure 9 where Rp and Mp

are as in (29) and the filters behp are given by (see (11))
behp (ω) = Lp

|det (TQ)|
X
n∈ZD

LpX
l=1

bhp,l ¡ω − 2πT−TQ kp,l + 2πT
−T
Q MT

p n
¢

(41)

where
©
kp,l
ªLp
l=1

= SR
¡
MT

p

¢
. This leads to samples on a Nyquist lattice. Finally, the

original signal can be reconstructed via a simple lowpass filter as shown on the far right
hand side of Figure 9.

6 Conclusion

This paper has presented a generalized interpolation identity applicable to multi-dimensional
signals. The identity establishes the equivalence of two multi-dimensional processing op-
erations. The key point here is that one of these utilizes discrete processing operations
and leads to the data being transferred to a “Nyquist lattice” from which the continuous
signal, if required, can be readily reconstructed by a simple multi-dimensional low pass
filter. We have also illustrated the application of the result to the special case of re-
current sampling. Beyond the cases discussed, we anticipate that the multi-dimensional
result presented here will find wide spread application as already exemplified in [4] for
the one dimensional case. In fact, the authors have been using the result presented here
in a variety of multivariable reconstruction problems.
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7 Appendix A: Proof of Lemma 1.

Proof. From the definitions of SR
¡
MT

¢
and SR

³fMT
´
and (9), we have that for

every k ∈ SR
¡
MT

¢
there exists a ek ∈ SR³fMT

´
such that ek = ρ (k). Hence the

mapping is onto. We use contradiction to establish the one to one property. Assume the
converse of the result i.e., suppose that ρ (k1) = ρ (k2) for some k1 6= k2 ∈ SR

¡
MT

¢
.

Then, by (9), for some n1, n2 ∈ ZD, we haveeRTk1 − fMTn1 = eRTk2 − fMTn2

or eRT (k1 − k2) = fMT (n1 − n2)

= c ∈ ZD (42)

Hence, c∈
neRTk : k ∈ ZD

o
∩
nfMTn : n ∈ ZD

o
. However, using (3) we observe thatneRTk : k ∈ ZD

o
∩
nfMTn : n ∈ ZD

o
=
neRTMTm : m ∈ ZD

o
=
nfMTRTm : m ∈ ZD

o
Thus, for some m ∈ ZD, (42) implies that

c = eRT (k1 − k2) = eRTMTm

namely,
k1 − k2 =MTm⇔ k1 ≡ k2mod

¡
MT

¢
However, since k1, k2 ∈ SR

¡
MT

¢
⊂ UC

¡
MT

¢
this necessarily implies that k1 = k2. This

leads to a contradiction. Thus the claim is true.

8 Appendix B: Proof of Theorem 1.

Proof. To establish the identity we will derive expressions for the outputs of the
configurations in Figures 3 and 4. We show that, for the same input, they are equal if
(11) is satisfied. In Figure 3 we denote the input to the cth filter by sc (x). Then

sc (x) = fc (x)
X
n∈ZD

e−j2π
ekTc fM−1nδ (x− Tn)

= fc (x) e
−j2πekTc fM−1T−1x

X
n∈ZD

δ (x− Tn)

c = 1, ..., N (43)

The Fourier Transform (FT) of sc (x) is

bsc (ω) = 1

|det (T )|
X
n∈ZD

bfc ³ω + 2πT−TfM−Tekc − 2πT−Tn´



and hence

byc = 1

|det (T )|

NX
c=1

bhc (ω) X
n∈ZD

bfc ³ω + 2πT−TfM−Tekc − 2πT−Tn´ (44)

We next turn to the configuration in Figure 4. The Fourier transforms of f (x) =
fc (x)

P
n∈ZD δ (x− Tn) is

bf (ω) = 1

|det (T )|
X
n∈ZD

bfc ¡ω − 2πT−Tn¢
Since we use continuous frequency, the expansion operation by R to generate fe (x) does
not affect the spectrum. Hencebfe (ω) = bf (ω)

=
1

|det (T )|
X
n∈ZD

bfc ¡ω − 2πT−Tn¢ (45)

However, since the signals fe (x) and ye (x) are sampled on the lattice LAT (TR−1), the
filter eh (x) has the property that its frequency response satisfies the following periodicity
property beh ¡ω + 2πT−TRTm

¢
=
beh (ω) for all m ∈ ZD (46)

Furthermore, it can be shown that the multi-dimensional decimation effect via M can
be described in the frequency domain by

byd (ω) = 1

N

NX
c=1

bye ¡ω + 2πT−TRTM−Tkc
¢

(47)

where we recall that kc ∈ SR
¡
MT

¢
= UC

¡
MT

¢
∩ ZD and N = |det (M)| =

¯̄̄
det

³fM´¯̄̄.
Now, since bye (ω) = beh (ω) bfe (ω), we have

byd (ω) = 1

N

NX
c=1

beh ¡ω + 2πT−TRTM−Tkc
¢ bfe ¡ω + 2πT−TRTM−Tkc

¢
Then,

byc (ω) = bhLP (ω) byd (ω)
=
1

N
bhLP (ω) NX

c=1

beh ¡ω + 2πT−TRTM−Tkc
¢ bfe ¡ω + 2πT−TRTM−Tkc

¢
Substituting into (45) we obtain

byc (ω) = 1

N |det (T )|
bhLP (ω) NX

c=1

beh ¡ω + 2πT−TRTM−Tkc
¢

X
n∈ZD

bfc ¡ω + 2πT−TRTM−Tkc − 2πT−Tn
¢



Using eqn. (3) and Lemma 1 the above expression can be rewritten as

byc (ω) = 1

N |det (T )|
bhLP (ω) NX

c=1

beh ¡ω + 2πT−TRTM−Tkc
¢

X
n∈ZD

bfc ³ω + 2πT−TfM−T eRTkc − 2πT−Tn
´

Applying Lemma 1 and (9) and (10) we obtain

byc (ω) = =
1

N |det (T )|
bhLP (ω) NX

c=1

beh ¡ω + 2πT−TRTM−Tkc
¢

X
n∈ZD

bfc ³ω + 2πT−TfM−T
³fMTnc + ekc´− 2πT−Tn´

=
1

N |det (T )|
bhLP (ω) NX

c=1

beh ¡ω + 2πT−TRTM−Tkc
¢

X
n∈ZD

bfc ³ω + 2πT−TfM−Tekc − 2πT−Tn´ (48)

Comparing (44) to (48) we observe that the two outputs are equal if

bhc (ω) = 1

N
bhLP (ω) beh ¡ω + 2πT−TRTM−Tkc

¢
for every ω ∈ UC

¡
2πT−TQ

¢
and c = 1, 2, ..., N

or

bhc (ω) = 1

N
bhLP (ω) beh ¡ω + 2πT−TQ kc

¢
for every ω ∈ UC

¡
2πT−TQ

¢
and c = 1, 2, ..., N

Equation (11) follows. This completes the proof of the theorem.

9 Appendix C: Derivation of (39).

We begin by restating the reconstruction formula (38):

f (x) =
PX
p=1

LpX
r=1

X
n∈ZD

f
¡
Tn+ xp + Tp emp,r

¢
ϕp,r (x− Tn)

which can also be rewritten as

f (x) =
PX
p=1

LpX
r=1

f ¡x+ xp + Tp emp,r

¢ X
n∈ZD

δ (x− Tn)

 ∗ ϕp,r (x)



Then, in the frequency domain, we obtain

bf (ω) = (2π)D

|det (T )|
X
n∈ZD

bf ¡ω − 2πT−Tn¢ PX
p=1

LpX
r=1

ej(ω−2πT
−Tn)

T
(xp+Tp emp,r)bϕp,r (ω) (49)

Let
nekp,loLp

l=1
= SR

³fMT
p

´
so that, for every n ∈ ZD, we can write n = fMT

p m + ekp,l.
Then (49) can be rewritten as

bf (ω) = (2π)D

|det (T )|

PX
p=1

X
m∈ZD

LpX
l=1

bf ³ω − 2πT−Tekp,l − 2πT−Tp m
´

LpX
r=1

ej(ω−2πT
−T ekp,l−2πT−Tp m)

T
xpej(ω−2πT

−T ekp,l)T Tp emp,rbϕp,r (ω)

or

bf (ω) = PX
p=1

LpX
l=1

³h bf ³ω − 2πT−Tekp,l´ ej(ω−2πT−T ekp,l)Txpi

∗ (2π)D

|det (Tp)|
X
m∈ZD

δ
¡
ω − 2πT−Tp m

¢
1

|det (Mp)|

LpX
r=1

ej(ω−2πT
−T ekp,l)T Tp emp,rbϕp,r (ω) (50)

Denoting

bhp,l (ω) = 1

|det (Mp)|

LpX
r=1

ej(ω−2πT
−T ekp,l)TTp emp,rbϕp,r (ω)

and applying the inverse Fourier transform to (50) and we obtain

f (x) =
PX
p=1

LpX
l=1

X
m∈ZD

h
f
¡
Tpm+ xp

¢
e−j(2πT

−T ekp,l)TTpmδ (x− Tpm)
i
∗ hp,l (x)

=
PX
p=1

LpX
l=1

X
m∈ZD

h
f
¡
Tpm+ xp

¢
e−j2π

ekTp,lfM−1
p mδ (x− Tpm)

i
∗ hp,l (x)

where we have used (31). The result (39) then follows.


