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Abstract

We propose a novel model for discrete Linear Periodic Time Varying (LPTV) sys-
tems using wavelets. The new model is compared with the ’raised model’, which
is commonly used for modeling LPTV systems. In fact, it turns out that the new
model can be viewed as a generalization of the raised model.

The wavelets model will be shown to be particularly suitable for adaptive identifi-
cation of LPTV systems. It offers a compromise between time- and frequency-based
algorithms. Time resolution is needed for modeling reasons and minimizing process-
ing delay. Frequency resolution enables faster convergence of adaptive algorithms
in general and the Least Mean Square (LMS) algorithm used here, in particular.
Simulations show that for a colored input using the new model results not only
in faster convergence compared to the raised model based algorithm, but also pro-
duces a lower steady-state error. This, at no significant additional cost in numerical
complexity.

1 Introduction

On-line identification of general Linear Time Variant (LTV) systems, although
very important for a variety of applications, is still a relatively open issue. If the
changes are sufficiently slow a Linear Time Invariant (LTI) model can be used
and the changes are tracked by an adaptive algorithm [1], [2] and [3]. However,
when these changes are fast, the time variations need to be modeled. If there
are some underlying constant parameters which model the system, they can
be estimated using adaptive or off-line algorithms. Furthermore, even if these
parameters vary slowly an adaptive algorithm can track these variations. So,
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for the identification of LTV systems, a priori knowledge about the variations
in time is assumed. Usually one assumes that the changes are characterized
by a finite set of functions [4], [5] and [6]. However, all these cases refer only
to limited classes of LTV systems.

One important class of LTV systems includes the Linear Periodically Time
Varying (LPTV) systems [7], [8]. For quite a number of applications period-
icity in the time variation can be observed, see [9], [10] and [11]. A number
of physical phenomena have periodic characteristics and using a LPTV model
is very reasonable. Orbital motion, AC motors [12], rhythm of the heart, or
periodic disturbances (vibrations) in helicopters [13] are just a few examples
of such phenomena. Design of optimum periodic time varying filters for ap-
plications in diagnostics of combustion engines appears in [12] and periodic
optimal control is discussed in [11]. Note that if a system is LTV, but its time
variations consist of a fast mode which is periodic and a slow mode, an LPTV
model can be used combined with an adaptive algorithm. The LPTV model
then handles the fast changes and the adaptive algorithm the slow changes. A
common way to model LPTV systems is via the raising method described in,
e.g. [14].

In this paper we describe a new approach for modeling discrete LPTV systems
with finite impulse responses using wavelets. We assume that the period is
known a priori and, for simplicity, that it is a power of two (when the sampling
time is under the user’s control, he can choose it accordingly). In fact, we show
that using wavelets can be viewed as a generalization of the raised model. Using
wavelets in modeling LTV systems is discussed by Doroslovacki and Fan [4].
For the periodic case the authors assume that the period of the system and a
set of functions that characterize the changes are known a priori.

After introducing the model we investigate its use for adaptive identification
with the LMS algorithm. This algorithm is simple, has reasonable tracking
abilities and low computational complexity. Its main disadvantage, as is well
known, is its slow convergence. This disadvantage becomes more acute here
since time scale for any adaptive algorithm is slowed down with LPTV systems,
by a factor equal to their period.

The convergence rate disadvantage has motivated us to consider using wavelets
in adaptive identification of linear systems. Wavelets have been used for adap-
tive identification of LTI systems. The convergence rate of the LMS algorithm
is shown to be higher when wavelets are used [15], [16] and [17]. The mo-
tivation behind these algorithms is separation of the parameters, similar to
Frequency Domain Least Mean Square (FDLMS) [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29] and [30]. The FDLMS uses the Fast Fourier
Transform (FFT) for reasons of lower complexity and faster convergence rate.
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Convergence rate is also a motivation for sub-band approaches [31], [32] and
Gabor domain adaptive filtering [33]. Frequency resolution schemes enable
separation and therefore faster convergence, while time resolution is needed
for minimizing the delay and for accurate modeling of the unknown system’s
impulse response. Wavelets provide flexible trade-offs between time and fre-
quency resolutions.

Subband approaches are used in applications such as echo cancellation [33]
and equalizers [34]. Splitting a stationary input signal into different frequency
bands and decimations, result in a lower spread of eigenvalues. A number of
independent adaptive filters are updated at a reduced rate. The price is a
larger steady-state error because of insufficient order estimation and aliasing.
In some of those approaches an effort is made to minimize the aliasing error
caused by non-ideal filters [35]. It is shown in [36] that decimated-based models
used for LTI systems are in fact LPTV models. Moreover, these approaches
are shown to be special cases of the new model we present here, which is more
general for modeling both LPTV and LTI systems.

For many stationary and non-stationary inputs the wavelet transform is claimed
to be very close to the Karhunen-Loēve Transform (KLT), which achieves
exact diagonalization [37]. When the auto-correlation of the input signal is
known a priori, the KLT can be used. Otherwise, it can be estimated. How-
ever, the complexity of such estimation is high [15]. Therefore, in [4], [16] and
[37] wavelet transforms are used. This is a sub-optimal attempt to approach
diagonalization, but suitable for real-time processing.

The next section briefly describes the raising technique. Section 3 presents a
new wavelet model for LPTV systems which is analyzed in the ’raised do-
main’. Applying the new model to adaptive identification of LPTV systems is
described in Section 4 and Section 5 summarizes some simulation experiment
results. Conclusions are discussed in the last section.

2 Theoretical background

Let us start with a brief review of the raised model as one of the common ways
to model LPTV systems. Generally, linear systems (LTV) can be modelled via
their impulse response. Namely

y[n] =
X
c

h[n, c]x[c] (1)

where x[n], y[n] are the system input and output sequences respectively and
h[n, c] is the system response to an impulse sequence δ[n − c]. When h[n +
N, c+N ] = h[n, c] for every n, c, the system is periodic (LPTV) with period
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N and when N = 1 the system is time invariant (LTI). Using this property of
the linear periodic system, (1) can be rewritten as

y[n] =
X
j

N−1X
m=0

h[n, jN +m]x[jN +m]

=
X
j

N−1X
m=0

h[n− jN,m]x[jN +m] (2)

or
Y [k] =

X
j

H[k − j]X[j] (3)

where k is an N times slower time scale than n, and

X[j] =



x[jN ]

x[jN + 1]
...

x[jN +N − 1]


;Y [k] =



y[kN ]

y[kN + 1]
...

y[kN +N − 1]


;

H[k − j] =



h[kN,jN ] h[kN,jN+1] ··· h[kN,jN+N−1]

h[kN+1,jN ] h[kN+1,jN+1] ··· h[kN+1,jN+N−1]
...

...
...

...

h[kN+N−1,jN ] h[kN+N−1,jN+1] ··· h[kN+N−1,jN+N−1]


(4)

This is commonly referred to as the raised model of the LPTV system. Clearly,
the raised form, (3), is a MIMOLTI system. Depending on the properties of the
matrix sequence {H[k]} one can talk about an FIR or IIR system with the
corresponding transfer function matrix, H(z) =

P
kH[k]z

−k. This sequence
contains all the information of the LPTV system and identifying the system
is identifying this sequence (or the corresponding transfer function matrix).

The raising concept appears in the ’filter bank’ literature where it is referred
to as ’polyphase transform’ (see, e.g. [38]). Figure 1 illustrates the structure
of the raised model.

The main observation we make in this model is that any LPTV system can be
modeled as consisting of three parts: A generic (system independent) linear
periodic transform 1 (the polyphase transform in the raised model case) and

1 By a periodic transform T with period N we mean a transform with the property:
T (x [n+N ]) [k] = T (x [n]) [k + 1], where n and k are the times scales in the input
and transform domains respectively.
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Fig. 1. The Raised Model (Polyphase transfomed).

its inverse and in between a LTI system which captures the particular system
parameters. This is demonstrated in Figure 2. With this in mind we proceed
to present our approach next.

Fig. 2. Generalized LPTV model

3 A novel approach for modeling LPTV systems by wavelets

With the generic model of Figure 2 in mind, we recall that the DiscreteWavelet
Transform (DWT) is a periodic transform, hence, can be used to model LPTV
systems. The benefit of doing that will be discussed later on.

Fig. 3. A general model with DWT and IDWT.

We assume first that the period is such that N = 2L . Then, the model takes
the form presented in Figure 3. However, with this choice of transform, we face
a problem with the linear processing block. Each input entry to this block has a
different sampling rate. One possibility, commonly referred to as the subband
approach (see [31] and [32]), is to have a separate LTI processing on each
branch. This clearly limits the scope of this model. Motivated by the theory
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of Young about modeling LTV systems by the Continuous Wavelet Transform
(CWT) [39] we prefer addressing this problem in a different way.

Our approach is to equalize the sampling rates of all branches and, as we will
shortly show, it fits well into the structure of filter banks (which is used to
implement the DWT). As is well known, dyadic filter banks are constructed
using the blocks in Figure 4 for appropriately chosen filters H1, H0, G1 and
G0.

Fig. 4. Typical dyadic filter bank blocks.

When we choose H1 = 1, H0 = z, G1 = 1 and G0 = z−1 AB and SB become
the polyphase transform and its inverse, respectively (denoted then as PP and
IPP). Combining these two sets of blocks we construct what we refer to as
Wavelet Analysis Tree (WAT) and Wavelet Synthesis Tree (WST). These are
presented in Figure 5. Note that, in this figure, if all the AB and SB blocks are
also replaced by PP and IPP blocks respectively, we simply get the polyphase
transform and its inverse (or, the raising process).

Fig. 5. The WAT and WST structures.

WAT has one input at rate Fs transformed into N = 2L outputs at rate Fs/N
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each, while WST has N = 2L inputs at rate Fs/N each, transformed into one
output at rate Fs. With WAT and WST replacing DWT and IDWT in Figure
3 and restricting ourselves to a MIMO FIR system for the LTI processing
block we get the model we propose for LPTV system identification. This is
presented in Figure 6 where we have denoted the output of WAT and the
input to WST as W x[k] and W y[k] respectively.

Using the polyphase domain analysis as in [38] we can write

W x[k] = HDWT [k] ∗X[k]

and
Y [k] = HIDWT [k] ∗W y[k]

whereHDWT [k] andHIDWT [k] are sequences of N×N matrices determined by
the wavelets chosen and satisfy the perfect reconstruction condition, namely,
HIDWT [k]∗HDWT [k] = δ[k]I and X[k], Y [k] are as in eqn.(4). Then the model
in eqn. (3) can be rewritten as

HIDWT [k] ∗W y[k] = H[k] ∗HIDWT [k] ∗W x[k]

or
W y[k] = A [k] ∗W x[k]

where
H [k] = HIDWT [k] ∗A[k] ∗HDWT [k] (5)

We restrict ourselves to A [k] having a finite impulse response so that the
model we consider is of the form:

W y[k] =
M−1X
c=0

AcW x[k − c] (6)

where Ac ∈ <N×N are the coefficient matrices and M is the memory length of
the FIR. Since WAT and WST are generic, the LPTV system is parameterized
through the {Ac} matrices - MN2 parameters which we wish to estimate.

Remark 1 WAT and WST are a Perfect Reconstruction (PR) pair.

Remark 2 In Figure 5, replacing the AB and SB with PP and IPP the model
reduces back to the raised model.

Remark 3 The structure offered by WAT and WST in Figure 5 can be gen-
eralized to any general tree-structured filter bank and wavelet packet (see e.g.
[38]) by corresponding choices of the AB and SB trees.

Remark 4 The proposed model clearly induces a delay between its input and
output (as does the raised model). This delay, denoted as d0, is the result of
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Fig. 6. The new wavelet model for LPTV systems.

the AB and PP blocks in the WAT which need to be delayed to be made causal.
Assuming that each AB block needs to be delayed by d, the total delay is then

d0 = d ·
L−1X
i=0

2i = d · (2L − 1) = d · (N − 1) (7)

Remark 5 For the choice of Haar wavelets one gets HDWT [k] = δ[k]HH and
HIDWT [k] = δ[k]H−1

H where HH is a constant matrix. This means that the
Haar wavelet choice is equivalent to the raised model up to a coordinate trans-
formation.

Remark 6 Let the wavelet generating filter be of length c. Then the resulting
HDWT [k] and HIDWT [k] at depth L, are of length

l
(c−1)(N−1)

N

m
+ 1 and the

length of H [k] is

Mtotal =M + 2

&
(c− 1) (N − 1)

N

'
(8)

The newmodel (Figure 6) has the advantage of ”almost diagonalization” of the
input’s auto-correlation matrix performed by the wavelet transform (because
of its frequency localization property), a very important feature for adaptive
filtering. The proposed model is, as far as we know, the first attempt to use
the classical DWT of Mallat [40] for on-line modeling of LPTV systems. The
structures of WAT and WST enable online processing with a low complexity
and relatively small delay.

Choosing the wavelet function (or, equivalently, the filters H1, H0, G1 and
G0) for the new model is an important issue. To minimize delay we wish to
get as good a time localization as possible while to get an ’almost’ diagonal
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auto-correlation matrix (which is a desired property for adaptive processing),
frequency localization is desired. Wavelets provide a wide variety of choices
and possible compromises between the two contradicting desired properties.
They have localization qualities in both time and frequency, hence constitute
a desired choice for our adaptive identification problem. Combined with our
choice of FIR for the LTI part in the model, using wavelets has an additional
benefit over the raised model. With the same number of parameters one can
model a longer finite impulse response. This follows directly from eqn.(5) and
is illustrated in Figure 7 where we note again (see Remark 5) that the model
with the Haar wavelet is equivalent to the raised model.

Fig. 7. Sub-domains of LPTV models.

In Figure 7, one sub-domain contains all LPTV FIR systems of length less than
or equal to Q. It can be spanned by a raised model or by the Haar base (where
H [k] = H−1

H A [k]HH), hence the length of H [k] is the same as that of A [k].
The second sub-domain is spanned by another wavelet model (not Haar) of
the same order. Since other wavelets are generated by higher order filters, their
maximum memory length is larger than their dimension (Q0 = Mtotal · N >
Q = M · N , since here, the length of the resulting H [k] will be larger than
M , the length of A [k]T - see eqn. (8)). There are systems which are part of
both sub-domains and there are systems that can be modeled exactly only by
one of them. If we want to model all systems of length Q0 by a raised model,
we need a larger number of parameters where the value of Q0 depends on the
wavelet filter and on N . This model spans the bigger sub-domain (circled by
a thick solid line) in the figure. Hence, the choice of the wavelet clearly affects
the resulting modeling error (or, in term of adaptive identification, the steady
state performance). Other considerations for choosing the mother wavelet and
the decomposition depth are processing delay time and complexity.
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4 Applying the new model to adaptive identification of LPTV sys-
tems

The adaptive identification scheme we propose for our model is described in
Figure 8. As we see, there are two types of errors one could consider for the
adaptation algorithm - the error in the time domain, e, or the error in the
transform domain W e. Note that we need to delay the system output y to
compare it with its estimated value by.

Fig. 8. The suggested adaptive scheme.

With the two errors one can define two corresponding measures of performance

JMS [k] ,
1

N
E

(
N−1X
i=0

|e [kN − i]|2
)

(9)

where e[n] = y[n]− by [n] or
JWMS

[k] , 1

N
E

(
NX
i=1

|Wei [k]|2
)

(10)

where We [k] = Wy [k] − cWy [k] are the errors calculated in the wavelet do-
main (see Figure 8). Since we are assuming orthonormal filter bank the two
criteria result in the same optimal choice for the FIR filter and, from Parse-
vall’s equality, the same optimal value. However, the corresponding adaptive
algorithms will be different and we have chosen the latter (as seen in Figure
8).

Clearly, different choices of wavelets will result in different optimal solutions
and, as discussed earlier, depending on the modeled LPTV system, one could
be better than another.

While we have used the Mean Squared Error (MSE) as our performance cri-
teria (resulting in the LMS as the adaptive algorithm), one could consider

10



using Least Squares (LS), see eqn. (11), as the criteria (resulting in the RLS
algorithm). This, as we well know, is a faster converging algorithm at the price
of increased computation load.

JWLS
[k] =

kX
j=0

We [j]T We [j] (11)

Back to eqn. (10) and Figure 8 we observe that,

min
M−1∪
c=0

Ac

(JWMS
[k]) =

NX
i=1

min
M−1∪
c=0

Ac(i,:)

(J i
WMS

[k])

where
J i
WMS

[k] , E
n
|Wei [k]|2

o
∀i ∈ [1, N ] (12)

This is because every Wei [k] is influenced by disjoint sets of parameters - the
collection of all the ith rows of the matrix coefficients Ac, of the MIMO FIR
filter. The result is N parallel independent joint processing estimators based
on the LMS algorithm. Note that the adaptive algorithm operates at a rate of
Fs
N
samples per second.

We make the following claim:

Claim 1 For any unknown LPTV system with period N and stationary input
signal x [n] , the optimal solution, [Ac]op and the minimum value of JWMS

are
given by: ·

A0 A1 · · · AM−1

¸
op
= ePW

³ eRWx

´−1 ³∈ <N×NM
´

(13)

and
[JWMS

]op = tr
h
RWy [0]

i
− tr

· ePW

³ eRWx

´−1 eP T
W

¸
(14)

where ePW =
·
PW [0] PW [1] · · · PW [M − 1]

¸ ³
∈ <N×NM

´

eRWx =



RWx[0] RWx[1] · · · RWx[M − 1]
RWx[1]

T RWx[0] · · · RWx[M − 2]
...

...
. . .

...

RWx[M − 1]T RWx[M − 2]T · · · RWx[0]


³
∈ <NM×NM

´

PW [c] = E
n
W y[k]W x[k − c]T

o ³
∈ <N×N´

RWx [c] = E
n
W x[k]W x[k − c]T

o ³
∈ <N×N´

and
RWy [0] = E

n
W y[k]W y[k]

T
o ³
∈ <N×N´
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Proof. By straight forward substitutions and calculations.

Remark 7 The above result applies also to cyclo-stationary input signals with
period N , since then, the regression vector W [k] is still stationary.

Remark 8 In view of Remark 5 it can readily be shown that if the LPTV
system is such that for a particular choice of wavelet (see eqn. (3) ) H[k] =
HIDWT [k] ∗A∗[k] ∗HDWT [k] and A∗[k] is of length M , then [Ac]op = A∗[c].

To write the N LMS equations explicitly we need to modify our notation. Let
ui denote the ith column of the N ×N identity matrix and

Ci[k]
T , uTi

·
A0[k] A1[k] · · · AM−1[k]

¸ ³
∈ <1×NM

´
(15)

Namely, Ci[k]
T consists of all the i− th rows of the matrices Ac[k] and let

fW x [k] ,



W x [k]

W x [k − 1]
...

W x [k −M + 1]


³
∈ <NM

´
(16)

Then
Wei [k] =Wyi [k]− Ci [k]

T fW x [k] (17)
and, for each index i ∈ [1, N ], the corresponding LMS equation is

Ci [k + 1] = Ci [k] +DWei [k] fW x [k] (18)

To use the ”almost diagonalization” feature of the wavelet transform wisely
(which means, in terms of our notation, that eRWx is almost diagonal), we
introduce a diagonal matrix D, instead of a scalar step size, in the LMS equa-
tions (similar to the way it is done for adaptive identification of LTI systems
[15]-[17]). Specifically,

D , diag(µWav
1 , ..., µWav

M ·N) (19)

where µWav
1 , ..., µWav

M ·N are the different step sizes and

µWav
i , µWav

E{
³fW x [k]

´2
i
}

(20)

with µWav a common value.

Note that the regression vector is the same for all N parallel LMS algorithms,
hence, so is the matrix D, which is chosen according to the statistical nature
of the input signal.
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When the input signal is stationary, the step sizes which relate to the same
scale are equal. Then, there are only L+ 1 different values to be determined
(a single value per scale). The convergence proof of the modified LMS can be
found in [16]. Without this modification (namely, taking µWav

1 = ... = µWav
M ·N)

the advantage of the wavelet model for adaptive implementation is not utilized.

5 Experiments

In order to illustrate some of the ideas discussed here, Monte-Carlo simu-
lations have been carried out and a sample of the results is presented. The
experimental setup is described in Subsection 5.1 and the results in Subsection
5.2.

5.1 Experimental setup

We start by a general description of the experiments set up. Two distinct
LPTV systems to be identified were chosen and three possible models for
each.

5.1.1 The unknown systems and the input signal

Both LPTV systems used for our experiments are with a period N = 8 (i.e.
L = 3). h [n, c] for these systems is given in Figures 9 and 10. Note that these
inpulse responses are presented in the ranges 0 ≤ n ≤ 48 (or 0 ≤ n ≤ 64) and
0 ≤ c ≤ 7 and extend periodically as h [n+ 8, c+ 8] = h [n, c]. In both case
the resulting H[k] (of eqn. (3)) is FIR. For the first system we get M1 = 7
and for the second M2 = 9. In our experiments we want to illustrate two
aspects of the advantages in using our wavelet model - faster convergence of
the adaptive algorithm and potentially, improved modeling capability. So, for
the first system, the model we use will have the same M and we compare
convergence rates (here, we add some measurement noise, 30dB SNR, just so
that we do not get zero steady state MSE). For the second system we get under
modeling and the emphasis will be on comparison of the optimal solutions and
the steady state errors.

In both cases the input x[n], is a stationary Moving Average (MA) process
of order 48. The frequency response of the input coloring filter (designed by
Remez) is drawn in Figure 11.
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[ ]h ,n

n

Fig. 9. A period of the impulse response for the first system.

5.1.2 The models and adaptive algorithms

We consider three possible models for each system, resulting in three adaptive
identification schemes. In the first we assume that WAT and WST consist of
only PP and IPP blocks (this is the ’raised model’ [14]). The second is based
on the Haar wavelet and the third on the ’db2’ wavelet (see e.g. [38]). In all
models, as said earlier, we chooseM = 7. Hence, each identification algorithm
consists of 8 parallel adaptations updating 56 parameters each at the rate 8
time slower than the rate of the input x[n].

In the raised model all LMS elements are controlled by the same scalar step
size, µTD (TD refers to time domain since in this case we do not use wavelets).
The advantages of this model are its simple structure and low complexity.
However, in the case of a stationary colored input signal its convergence rate
might be too slow. The main reason for that is that the resulting regression
vector (the input and its shifts) has correlated entires resulting in a large
eigenvalue spread of its autocorrelation matrix and this is known to slow the
LMS algorithm convergence [2]. We have already mentioned that convergence
rate in LPTV system identification is more acute a problem since the number
of iterations needed for convergence is multiplied by N , the period length of
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[ ]h ,n

n

Fig. 10. A period of the impulse response for the second system.

the system.

Aiming to speed up convergence we use the new wavelet models and the
corresponding algorithms. The model based on Haar wavelet, as we pointed
out earlier, differs from the raised model only by a coordinate transformation
(namely, WHaar

x [k] = HX[k] and Y [k] = H−1WHaar
y [k] for some constant

matrix H). Hence, its modeling capabilities are the same as the raised model.
However, it does provide some improved resolution in frequency, hence we may
expect to see some improvement in convergence speed over the raised model.
This should be further enhanced with a longer wavelet filter (’db2’) since the
frequency resolution is improved, with an improved modeling capability too.
We use decomposition depth L = 3 and MIMO FIR with memory length
M = 7 with respect to the low rate, i.e. we have 7 · 8 · 8 = 448 parameters
in each model adaptively modified in each one of the algorithms according to
eqns. (15)-(18).

For all LMS elements we use the same step size, denoted as µWav. It is also
denoted as µHaar and µdb2 for Haar and ’db2’ cases. The values for µwavi are
chosen as suggested in Equation (20).
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Fig. 11. The coloring filter designed by Remez, order 48.

The step sizes, µTD, µHaar and µdb2 are chosen in a way that the comparison
between the algorithms is fair. The time domain step size, µTD is chosen to
produce relative fast convergence. The wavelet domains step sizes, µHaar and
µdb2 are chosen in a way that:

MSEss (TD) ≥MSEss (Haar) ≥MSEss (
0db20) (21)

where MSEss (·) is the Mean Square Error (MSE) in steady state for every
one of the identification algorithms.

5.2 Results

We have carried out a total of six experiments—one per system per model.
Each run consists of 80,000 data points (10,000 periods) and for each run we
calculated the MSE[k] according to

MSE [k] =
1

8

8X
i=1

|e [8k + i]|2 (22)

The number of Monte-Carlo experiments is 500 in each case and we present
the ensemble average, MSE[k], results for each experiment.

The results are grouped according to the LPTV system identified. For each sys-
tem we apply the three models and the corresponding algorithms. The results
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are then compared using two criterions. The first criterion is the steady-state
MSE, MSEss and the second criterion is the convergence rate—the number of
samples the algorithms takes to reach an MSE which is two times larger than
MSEss.

5.2.1 Sufficient order identification

The results of applying the three models under consideration to the first un-
known system are shown in Figure 12. The step size for the raised model
algorithm, µTD , is 0.015 and the step sizes for the wavelets, µHaar and µdb2

are both 0.013.

Fig. 12. Convergence curves for the sufficient order identification.

It can be observed that the raised model algorithm converges very slowly.
The wavelet algorithms significantly speed up convergence, while steady-state
error is also improved a little. The results confirm our earlier statements. The
wavelet ’db2’ yields better results than Haar thanks to its better frequency
localization. We note that for ’db2’ the result of lower steady-state error is
not fundamental, but depends on the specific unknown system. Convergence
might be even faster if we choose larger step size or longer wavelet filters, but
the price might be a larger steady-state MSE and/or larger complexity and
delay.

The results of this subsection are summarized in the following table:
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MSEss rate (#samples till MSE=0.5MSEss)

raised -27.4680 29,736

Haar -27.7699 17,512

’db2’ -27.9128 13,024

The values of MSEssare quite close, but the differences in convergence rates
are significant. ’db2’ converges about 2.3 times faster than the raise model
algorithm.

5.2.2 Insufficient order identification

The results of applying the three models under consideration to the second
unknown system are shown in Figure 13. The step size for the raise model
algorithm, µTD is 0.015. The step size for the wavelet Haar, µHaar is 0.01 and
for ’db2’, µdb2 is 0.015.

Fig. 13. Convergence curves for the insufficient order identification.

For this case we see that both the convergence rate and the steady state MSE
are improved when the ’db2’ model is used. The results of this subsection are
summarized in the following table:
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Jopt MSEss rate (#samples till MSE=0.5MSEss)

raised -33.7 -27.782 28,168

Haar -33.7 -27.8103 21,232

’db2’ -44.3 -29.263 20,400

We note here a significantly smaller optimal MSE, Jopt, in the ’db2’ case.
This clearly indicates that by tuning µdb2 one could improve steady state
performance while still maintaining some of the convergence rate advantage
over the raised model.

6 Conclusions

In this paper we first presented a generic model for LPTV systems by recog-
nizing the commutative diagram in Figure 14, where eT is a generic periodic
transform (with the same period as the LPTV system). This opens a wide
range of possible models for LPTV systems. On the other hand, when adaptive
implementation is considered it is desired to preprocess the data to achieve
(almost) diagonal data autocorrelation matrix. Recognizing that DWT has
both of the above properties made it an excellent choice for our purposes.

Fig. 14. A commutative diagram for LPTV systems.

Making use of the structure suggested by Mallat we also utilized the benefits of
an efficient implementation of the DWT. Our modification of this basic struc-
ture coined as WAT and WST, significantly increases the utility of wavelets as
a modeling vehicle for LPTV systems. While limiting the LTI part to an FIR
system, as was demonstrated in our simulations, the use of wavelets has the
potential of modeling a larger impulse response with a relatively small number
of parameters.
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In the context of adaptive implementation, the use of wavelets provides a wide
spectrum of possibilities between the two extremes: Time domain (in our case,
the raised model) and frequency domain. With each choice of wavelet we trade
off frequency resolution (i.e. speed of convergence) with time resolution (i.e.
time delay). Accordingly, the choice of a particular wavelet (or equivalently,
the underlying filter), reflects a particular desired trade off combined with
computation cost considerations.
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