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Abstract

A sub-optimal receding horizon control strategy for input constrained linear sys-
tems is presented. The strategy is based on a singular value decomposition (SVD)
of the Hessian of the quadratic performance index generally considered in Model
Predictive Control (MPC). The singular vectors are employed to generate a basis
function expansion of the unconstrained solution to the finite horizon optimal con-
trol problem. At each sampling time, a feasible control sequence is determined by
selecting a variable subset of the basis representation. No solution to the associated
quadratic program is needed. For cases in which the Hessian is poorly conditioned,
the proposed strategy can provide a sub-optimal solution with minimal performance
degradation. Properties of the singular values of the Hessian are also studied: it is
shown that, for sufficiently long prediction horizons, the singular values are arbitrar-
ily close to the magnitude of the energy density spectrum of the system seen by the
performance index.

1 Introduction

Model predictive control (MPC) has become a standard approach in advanced control of
constrained multivariable systems (Qin and Badgwell, 2003; Mayne et al., 2000). MPC

solves, at each sampling time, a finite horizon constrained optimization problem based on
the current value of the state vector. Only the first move of the resulting optimal control
sequence is applied to the system. At the next time step, when a new state measurement
is available, the optimization procedure is repeated over a shifted horizon. The resulting
control strategy leads to a receding horizon control (RHC) policy.

One of the key advantages of MPC is its ability to incorporate constraints directly
into the problem formulation. When a quadratic cost is considered, the finite horizon
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optimal control problem can be cast into a quadratic program (QP) for which efficient
numerical algorithms are available - see, for example, (Bartlett et al., 2002; Rao et al.,
1998). However, one important difficulty associated with this class of algorithms is that,
depending upon the specific application, considerable computational effort may still be
required. This, in turn, has limited the application of MPC to relatively “slow” or “small”
dimensional systems.

Some important research efforts have recently been reported aimed at reducing the on-
line computational burden associated with the solution of QP problems. Independently
Serón et al. (2000) and Bemporad et al. (2002) have provided a finitely parameterized
explicit solution to QP problems. The solution is characterized by a partition of the state
space into a finite number of regions in which the corresponding control law is an affine
function of the states. The main advantage of this approach is that the explicit QP solution
can be computed entirely off-line. Only a simple search to determine the region that
contains the current state is needed on-line. However, a potential disadvantage of this
approach is that the state partition becomes increasingly more complex as the prediction
horizon increases.

An alternative approach to reducing the on-line computational effort is the develop-
ment of some sort of sub-optimal solution to the QP problem. In this case, an appropriate
balance between loss of performance and improved computational speed needs to be con-
sidered. This method has been proposed by several authors - see, for example, (Johansen
et al., 2002; Kouvaritakis et al., 2002).

In this contribution, we propose a sub-optimal receding horizon control strategy, based
on a singular value decomposition (SVD) of the Hessian of the quadratic performance
index generally minimized in Model Predictive Control. The SVD of the Hessian allows
one to highlight the components of the decision variable in the optimization problem that
have greater influence on the performance index. Furthermore, the singular vectors of the
Hessian provide a set of orthogonal basis vectors spanning the control space. At each
sampling time, the set of singular vectors are used to construct a basis function expansion
of the unconstrained optimal control solution to the optimization problem. By considering
a variable subset of the basis representation, the proposed SVD- RHC strategy ensures that
no constraints are violated at any time.

In this paper we focus on the input constraint case only. This simplifying assumption
ensures that a feasible solution to the finite horizon optimization problem can always be
found. With this set-up the proposed receding horizon control strategy is especially simple
to implement. In the more general case in which state and input constraints are present,
the strategy requires the computation of a feasible solution first. This, in turn, could be
achieved with a separate linear programming problem but distracts from the simplicity of
the method.

The strategy proposed in this paper has evolved from ideas first developed by the
authors for anti-windup control in cross-directional (CD) control systems (Rojas et al.,
2002a; Rojas et al., 2002b). CD systems are typically high dimensional multivariable
problems (with up to 300 actuator/sensor pairs) characterized by strong spatial interaction
among actuators. This coupling leads to poor conditioning of the steady state interaction
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matrix describing the system.

For many ill-conditioned problems, the singular value approach appears to be an effec-
tive way of characterizing the elements of the problem in terms of the difficulty associated
with handling them. Large singular values indicate a large gain between the correspond-
ing control basis vector and the cost function. This suggests that a near optimal strategy
would be to construct a feasible control vector by retaining the basis vectors associated
with the largest singular values while progressively discarding the components associated
with the smallest singular values until a constraint boundary is reached.

Parallel work relating to a similar strategy has been described in (Sanchis et al., 2001).
Also, note that there is a link between the algorithm described here and recent work
reported in (Kojima and Morari, 2001) where a fixed set of singular values is used to
simplify the continuous MPC problem. By way of contrast, we use a variable number of
singular values at each time step.

The layout of the remainder of the paper is as follows: in Section 2 we provide a
brief review of quadratic receding horizon control. In Section 3 we analyse the singular
value decomposition of the Hessian of the performance index and describe the proposed
receding horizon strategy in Section 4. The stability of the closed loop is studied in
Section 5. We draw some connections between the singular values of the Hessian and the
frequency response of the system in Section 6 and finally we present a simulation example
based on a 3 input - 3 output plant in Section 7.

A preliminary version of this paper was presented in (Rojas et al., 2003).

2 Review of quadratic constrained receding horizon con-
trol

Consider a discrete time linear system described in state space form by

xk+1 = Axk + B uk , k = 0, 1, . . .

yk = C xk , (1)

where xk ∈ R
n is the state vector, uk ∈ R

m is the input vector, and yk ∈ R
p is the output

vector. Assume that the pair (A,B) is stabilisable and that the system is subject to input
constraints

uk+t ∈ U, t = 0 , 1 , . . . . (2)

The input constraint set U is a convex, compact subset of R
m which contains the origin in

its interior (Mayne et al., 2000).

We are interested in the quadratic performance index

JN(xk,u) =
N−1∑

t=0

[xT
k+t|kQxk+t|k + uT

k+tR uk+t] + xT
k+N |kP xk+N |k , (3)
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where the vector u contains the control moves uk+t defined over the finite horizon
t ∈ [0 , N − 1] with N ∈ Z

+ and N ≥ 1 , that is

u =
[
uT

k uT
k+1 . . . uT

k+N−1

]T
. (4)

The weighting matrices Q and R satisfy

Q = QT > 0 ,

R = RT > 0 ,

whilst the terminal weighting matrix P is the unique symmetric positive definite solution
of the discrete time algebraic Riccati equation

P = Q + AT PA − KT (R + BT PB)K , (5)

where

K = R
−1

BT PA , (6)

R = R + BT PB . (7)

The vector xk+t|k in (3) represents the prediction of the state vector of the system at time
k + t given the information available at time k and based on the model in (1) i.e.,

xk+t+1|k = Axk+t|k + B uk+t , t = 0 , 1 , . . . (8)

and xk|k = xk .

Model Predictive Control (MPC) solves, at each time step, the following finite horizon
optimal control problem

PN(x) :





uo(x) = arg min JN(x,u) ,

subject to

uk+t ∈ U, t = 0 , 1 , . . . N − 1 ,

(9)

where x = xk is the state measurement at the current time k. Only the first move of
the optimal control vector uo(x) is applied to the system (1), i.e., uk = uo

k(x). The
optimization procedure is repeated at each time step when a new state measurement x

becomes available and over a shifted horizon. The resulting control strategy leads to a
receding horizon control (RHC) policy.

3 Singular value decomposition of the optimization prob-
lem

In this section, we analyse in more detail the structure of the performance index JN(x,u)
in (3). Our main objective is to gain insight into the inherent structure of JN(x,u) so
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as to set the background for the sub-optimal receding horizon control strategy we will
introduce in Section 4.

Using matrix notation, JN(x,u) can be expressed as follows:

JN(x,u) = xT Y x + uT Hu + 2uT Fx , (10)

where

Y = Q + ΛTQΛ ∈ R
n×n , (11)

H = R + ΓTQΓ ∈ R
Nm×Nm , (12)

F = ΓTQΛ ∈ R
Nm×n . (13)

Also

Q = diag{Q, . . . , Q, P} ,

R = diag{R, . . . , R} ,

and

Λ =




A

A2

...
AN


 , Γ =




B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B


 . (14)

Matrices Λ and Γ define the relationship between the vector of control moves u and the
vector

x =
[
xT

k+1|k xT
k+2|k . . . xT

k+N |k

]T

which contains the future time evolution of the state vector of system (1) i.e.,

x = Λx + Γu .

The unconstrained solution to the finite horizon optimal control problem PN(x) is readily
found to be

uo
uc(x) = −H−1Fx .

However, there is no such simple explicit expression for the constrained optimal solution
to PN(x). Indeed, as pointed out by Bemporad et al. (2002) and Serón et al. (2000)
an explicit solution for uo(x) in (9) consists of a partition of the state space into a finite
(but possibly large) number of regions in which the corresponding control law is an affine
function of the states.

In this paper, we explore an alternative approach. We first seek to determine which of
the components of the vector of control moves u have the biggest impact on the reduction
of the magnitude of the performance index JN(x,u). Note that this is determined by
the structure of JN(x,u) in terms of the control vector u and, hence, is independent
of the current value of the state vector x. To clarify this, we consider a singular value
decomposition (SVD) (Golub and Van Loan, 1996) of the Hessian H of JN(x,u),

H = V S V T . (15)

5



The matrix S ∈ R
Nm×Nm is diagonal, with positive values {σ1 , σ2 , . . . σNm} arranged

in decreasing order. The scalars {σi}Nm
i=1 are the singular values of H . The columns of

the matrix V ∈ R
Nm×Nm contain the right singular vectors of H; however, in this case,

left and right singular vectors are identical since H is symmetric - see (12). An important
property is that the singular vector matrix V is orthogonal i.e., V T V = V V T = INm,
where INm is the Nm by Nm identity matrix. This, in turn, implies that the columns
of V provide a set of orthogonal basis vectors spanning R

Nm. As a result, the vector of
control moves u in (4) can be expressed as a linear combination of the singular vectors of
H ,

u = V ũ =
Nm∑

i=1

viũi , (16)

where vi , i ∈ INm , {1, 2, . . . , Nm}, are the columns of V and ũi are the entries of the
vector ũ.

Using the change of variable defined in (16), we can next recast the performance index
(10) in terms of the new vector of control moves ũ,

J̃N(x, ũ) , JN(x, V ũ) = xT Y x + ũT Sũ + 2ũT V T F x .

Completing squares around the unconstrained optimal solution

ũo
uc(x) = −S−1V T Fx , (17)

we finally obtain

J̃N(x, ũ) = J̃o
N ,uc(x) + (ũ − ũo

uc(x))T S (ũ − ũo
uc(x)) =

= J̃o
N ,uc(x) +

Nm∑

i=1

σi

(
ũi − ũo

i ,uc

)2
,

(18)

where ũo
i ,uc is the i-th entry of vector ũo

uc(x), and J̃o
N ,uc(x) is the unconstrained value

function. Clearly, whenever ũ = ũo
uc(x) we have that J̃N(x, ũo

uc) = J̃o
N ,uc(x). Eq. (18)

shows that, in the singular value space of H , the entries of ũ are ordered starting from the
one that influences the performance index the most and ending with the one that influences
the performance index the least, since σ1 ≥ σ2 ≥ . . . ≥ σNm.

In the next Section we will propose an algorithm able to find a sub-optimal solution
to the constrained optimization problem PN(x), based on the insight provided by the
SVD of the Hessian H . The intuitive rationale behind our approach is that a sub-optimal
feasible solution to PN(x) should be constructed by considering the components of ũ

that are more cost effective i.e., those components associated with largest singular values.

Remark 3.1. Note that the SVD of the Hessian H adopted here is also a useful approach to
deal with the common issue of ill-conditioning of H when long horizons N are used. This
is the consequence of the entries of Γ in (14) being related to powers of the state matrix A.
The conditioning of H becomes especially sensitive to the prediction horizon N when the
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system in (1) is open-loop unstable. In this case, the difference between A and AN−1 can
be significant even for short horizons N . Rossiter et al. (1998) have noted this difficulty
and have proposed to pre-stabilize the prediction model (8) by re-parameterizing the input
as uk = −Lxk + rk where L is any linear stabilizing gain for (A,B). Alternatively, one
could improve the conditioning of the problem by simply discarding the singular values
of H below certain value and solve the QP problem with the modified performance index.

Remark 3.2. A numerical problem related to that described in Remark 3.1 is that of the
poor-conditioning of the system model (1). This can occur when the gain of the model
is highly dependent on the direction of the input. An example in which this difficulty
appears is the cross-directional control of web forming processes (Featherstone et al.,
2000). In these cases, poor-conditioning is quantified via a SVD of the system model or,
equivalently, of the matrix Γ in (14). Singular values smaller than a certain pre-specified
threshold are discarded and a process model with a lower condition number is re-derived
and used to implement the controller. This approach is usually known as singular value
thresholding (Qin and Badgwell, 2003; Aoyama et al., 1997). It is not difficult to see
that there exists a direct connection between the singular values of the matrix Γ and the
singular values of H . To clarify, consider the following SVD

Γ = USV T ,

and for simplicity consider R = 0 and Q = In with In the n by n identity matrix. Then,
from the definition of H in (12) we obtain

H = ΓT Γ = V S
2
V T ,

since UT U = UUT = INn.

The connection between the singular values of H and the open loop properties of the
system will be further investigated in Section 6.

4 Receding horizon strategy using singular value decom-
position

We next seek a modification of the unconstrained solutionũo
uc in (17) in order to construct

a vector of control moves ũ that satisfies the constraints imposed on the finite horizon
optimal control problem PN(x), without incurring the full computational load of solving
the associated QP problem.

The key concept underpinning the approach suggested in this contribution is based on
the representation of the performance index J̃N(x, ũ) in (18). If one had to construct a
sub-optimal solution to PN(x) based on the selection of a subset of the elements of ũo

uc,
then it would be reasonable to include, in the selection, those components of ũo

uc with
the biggest impact on the reduction of the magnitude of J̃N(x, ũ) i.e., those associated
with the biggest singular values. Moreover, the components of ũo

uc associated with the
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smallest singular values are more likely to violate the input constraints in (2), since they
are inversely proportional to the value of σi - see (17).

The above suggests that a feasible solution to the constrained optimization problem
PN(x) can be constructed by considering the vector ũo

uc and progressively discarding its
components, starting from the one associated with the smallest singular value, until the
resulting control vector is brought inside the constraint set. Therefore, if the unconstrained
solution to PN(x) is

uo
uc(x) = V ũo

uc(x) =
Nm∑

i=1

viũ
o
i, uc(x) , (19)

then we can define

usvd(x) =
r∑

i=1

viũ
o
i, uc(x) +

(
vr+1 α ũo

r+1, uc(x)
)

, (20)

for a given integer r ∈ INm , {1, 2, . . . , Nm} and a given scaling factor α ∈ [0 , 1). It
is clear that if r = Nm, then α = 0 and the unconstrained solution (19) is recovered.

The proposed singular value based receding horizon control strategy (SVD- RHC) is
described in the following algorithm.

Algorithm 4.1 (SVD- RHC strategy).

1. At time k, given the current state xk calculate the unconstrained optimal solution to
PN(xk) i.e.,

ũo
uc(xk) = −S−1V T F xk .

2. Find the largest γ , r + α, where r ∈ INm , {1, 2, . . . , Nm} and α ∈ [0 , 1),
such that the vector

usvd(xk) = V ũsvd(xk) = V [ũo
1, uc . . . ũo

r, uc αũo
r+1, uc 0 . . . 0]T

lies on the boundary of the constraint set in R
Nm constructed from the input con-

straint set U.

3. Apply, as the current control move, the first m elements of the control vector
usvd(xk) i.e.,

uk = D usvd(xk) ,

where
D =

[
Im 0m×(N−1)m

]
, (21)

and 0m×(N−1)m is a sub-matrix of specified dimensions with zero entries.

4. Set k = k + 1 and return to step 1.
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Figure 1: Graphical comparison between the optimal QP solution ũo
qp to PN(x) and the

solution ũsvd obtained with the SVD- RHC strategy for a simple case with Nm = 2.

Note that the proposed SVD- RHC strategy computes, at each time step, a different
value of γ such that the resulting control vector usvd(x) is feasible. In addition, the
strategy ensures that the available control authority is used in full, by selecting the largest
possible γ , r + α so that usvd(x) is on the boundary of the constraint set.

The control law defined by the SVD- RHC strategy can be expressed as a state depen-
dent feedback gain matrix Kγ(xk) such that

uk = −Kγ(xk) xk ,

with Kγ(xk) given by

Kγ(xk) = D V diag(1, . . . , 1︸ ︷︷ ︸
r

, α , 0, . . . , 0︸ ︷︷ ︸
Nm−r−1

) S−1V T F . (22)

Remark 4.1. The control vector usvd(x) is clearly a sub-optimal solution to PN(x) in
(9). However, for cases in which the Hessian of the performance index (10) is poorly-
conditioned, the proposed strategy is expected to deliver a feasible solution which is close
to the QP optimal solution. Indeed, when H is ill-conditioned there will be only a few
relevant singular values σi, while all the others may be discarded without excessively
increasing the value of the performance index. A graphical interpretation of the SVD- RHC

strategy is shown in Fig. 1 for a simple case in which Nm = 2. The control vectors are
plotted in the singular value space of H . The ellipsoids represents the level curves of the
performance index. The point of tangency between the largest level set and the constraint
polytope represents the optimal solution ũo

qp(x) obtained by solving the QP problem. By
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way of contrast, the solution ũsvd(x) delivered by the proposed strategy is constructed by
keeping the first component ofũo

uc(x) entirely and scaling the second component so that
the constraints are met. We observe from Fig. 1 that the solution ũsvd(x) is very close to
the solution ũo

qp(x) in this case.

Remark 4.2. As mentioned in Section 1, a special case of the SVD- RHC strategy has pre-
viously been used in the context of the cross-directional control of web forming processes
(Rojas et al., 2002a). In this latter work, only the singular values of the static inter-
action matrix of the system were considered. However, in the light of the formulation
given above we can provide a more general interpretation of the anti-windup algorithm in
(Rojas et al., 2002a): the cross-directional control objective can be cast into a simplified
version of the quadratic performance index (10) in which the prediction horizon is N = 1
and only the spatial interaction between actuators determines the effect of the control se-
quence u over the performance index JN(x,u). This is an example of an application of
the strategy described here in which u shows high spatial dimensionality but only one
component in the time dimension.

5 Stability analysis

We next analyse the stability properties of the SVD- RHC strategy by means of simple
Lyapunov arguments. First, we require the following Lemma.

Lemma 5.1. Consider the matrices

K , H−1F , (23)

Kγ , V diag(1, . . . , 1, α , 0, . . . , 0) S−1V T F , γ ∈ [0 , Nm] , (24)

where H and F are defined in (12) and (13) respectively and S and V are defined in (15).
Let

Eγ , K − Kγ . (25)

Then, given any two values γ1, γ2 ∈ [0 , Nm] such that γ1 ≥ γ2, we have that

‖Eγ1
‖2 ≤ ‖Eγ2

‖2 .

Proof. We first note that

uo
uc(x) = −K x ,

usvd(x) = −Kγ x .

Replacing (15) in (23) we can write

K = V S−1V T F .

Thus
Eγ , K − Kγ = V diag(0, . . . , 0, 1 − α , 1, . . . , 1) S−1V T F .
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Next, let dγ = Eγ x for any given state vector x ∈ R
n. Then we have

‖dγ‖2 = ‖V diag(0, . . . , 0, 1 − α , 1, . . . , 1) S−1V T F x‖2

= ‖ diag(0, . . . , 0, 1 − α , 1, . . . , 1) S−1V T F x‖2 ,

since V is orthogonal. We can see that, as the value of γ , r + α is increased, there
are fewer components of the vector S−1V T F x that are considered when constructing dγ .
Hence, given γ1, γ2 ∈ [0 , Nm] such that γ1 ≥ γ2, we can conclude that

‖dγ1
‖2 ≤ ‖dγ2

‖2 ⇐⇒ ‖Eγ1
x‖2 ≤ ‖Eγ2

x‖2 , ∀x ∈ R
n . (26)

We can now choose x = v1 where v1 is the right singular vector associated with the
largest singular value of the matrix Eγ1

. In this case

‖Eγ1
v1‖2 = ‖Eγ1

‖2‖u1‖2 = ‖Eγ1
‖2 , (27)

where u1 is the corresponding left singular vector. Recall that both u1 and v1 are vectors
with norm one. Finally, replacing (27) in (26) we obtain

‖Eγ1
‖2 ≤ ‖Eγ2

v1‖2 ≤ ‖Eγ2
‖2‖v1‖2 = ‖Eγ2

‖2

=⇒ ‖Eγ1
‖2 ≤ ‖Eγ2

‖2 .

This completes the Proof.

Corollary 5.2. The norm of the matrix Eγ , K − Kγ satisfies

0 ≤ ‖Eγ‖2 ≤ ‖K‖2 , ∀γ ∈ [0 , Nm] .

Proof. Directly from Lemma 5.1 with γ2 = 0. Also, note that ‖Eγ‖2 = 0 when γ = Nm

by construction.

We are now able to present the main stability result for the SVD- RHC strategy.

Theorem 5.3. Consider the discrete time linear system (1) and the SVD- RHC control law
uk = −Kγ xk determined via Algorithm 4.1. Consider δ > 0 and γ∗ ∈ [0 , Nm] such
that

‖Eγ∗‖2 <

√
λmin(Q) − δλmax(P )

‖R‖2

,

where P is the solution to the discrete time algebraic Riccati equation in (5) and R is
defined in (7). Then the closed loop system is exponentially stable for all γ ≥ γ∗.

Proof. The closed-loop system obtained by applying the SVD- RHC strategy to the system
(1) is readily seen to be

xk+1 = Axk − BKγ xk = AK xk + BEγ xk , (28)
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where the matrix AK = A − BK is the closed loop state matrix obtained using the
unconstrained optimal LQR solution uk = −Kxk, with K as in (6), and

Eγ , DEγ = K − Kγ ,

where matrices D and Kγ are defined in (21) and (22) respectively. Next, consider the
Lyapunov function candidate V (x) = xT Px, with P being the symmetric positive def-
inite solution to the discrete time algebraic Riccati equation (5). Along the closed-loop
trajectories in (28) we have

∆V (xk) = V (xk+1) − V (xk) = xT
k { − Q − KT RK + ET

γ BT PBEγ+

ET
γ BT PAK + AT

KPBEγ}xk .

Using BT PB = R − R and BT PAK = RK and after some algebraic manipulation we
obtain

∆V (xk) = −xT
k {Q + (K − Eγ)

T R (K − Eγ) − ET
γ REγ }xk . (29)

Since the second term in (29) is negative semidefinite, we can write

∆V (xk) ≤ −xT
k {Q − ET

γ REγ }xk .

Given δ > 0 we seek to determine a sufficient condition on Eγ such that the inequality

Q − ET
γ REγ ≥ δP

holds. This condition is readily seen to be

‖Eγ‖2 ≤ ‖D‖2‖Eγ‖2 <

√
λmin(Q) − δλmax(P )

‖R‖2

, (30)

since ‖D‖2 = 1. Clearly δ needs to be selected such that λmin(Q) > δλmax(P ).

The result of Corollary 5.2 and the continuity of the matrix 2-norm guarantee that
there exists γ∗ ∈ [0 , Nm] such that (30) holds. In addition, Lemma 5.1 ensures that
(30) holds for all γ ≥ γ∗. Therefore, since V (x) = xT Px and ∆V (xk) ≤ −δ xT Px,
exponential stability of the closed loop system results if γ ≥ γ∗. This completes the
Proof.

The result of Theorem 5.3 provides a sufficient condition for the exponential stability
of the SVD- RHC strategy. We next seek to estimate the region of attraction of the SVD-
RHC strategy. Let us first introduce the following definition.

Definition 5.4 (Region of admissible states Cγ∗ ).

Consider the value γ∗ ∈ [0 , Nm] defined in Theorem 5.3. Let Cγ∗ represent the set
of all states x ∈ R

n for which the SVD- RHC strategy of Algorithm 4.1 maps x into γ such
that γ ≥ γ∗. That is

Cγ∗ , {x ∈ R
n |Msvd(x) ≥ γ∗} ,

where Msvd(x) : x −→ γ is the mapping implicitly defined in Algorithm 4.1.
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The region Cγ∗ defines the state space region in which the stability condition of Theorem
5.3 holds. In order to obtain an estimate of the region of attraction of the SVD-RHC

strategy we need to find a positively control invariant set for the control law uk = −Kγ xk

that is contained in Cγ∗ (Blanchini, 1999). One possibility is to use ellipsoidal sets, in
particular, the level sets of the Lyapunov function V (x) = xT Px employed in the proof
of Theorem 5.3.

Hence, let us select the largest ρ > 0 such that the ellipsoidal region

Ω ,
{
x ∈ R

n | xT Px ≤ ρ
}

is completely contained in the region Cγ∗ . Then, the SVD- RHC algorithm guarantees
that all states in Ω yield γ ≥ γ∗, and hence all trajectories starting in Ω will converge
exponentially to the origin of the state space. Note that ρ can be determined completely
off - line since it depends solely on the value γ∗ provided by the result of Theorem 5.3
and the corresponding region Cγ∗ .

Remark 5.1. The fact that the input constraint set U in (2) is non empty implies that the
region Cγ∗ of Definition 5.4 is also non empty. Indeed, let CNm be the state space region
in which no constraints are active, that is

CNm , {x ∈ R
n |Msvd(x) = Nm} .

Clearly the region CNm is non empty since ∃x ∈ R
n such that −Kx ∈ U, in particular

x = 0. However, based on Definition 5.4 we have that

CNm ⊆ Cγ∗ , ∀γ∗ ∈ [0 , Nm] ,

from which we conclude that the region Cγ∗ is non empty.

6 Asymptotic behaviour of singular values

In this section we study the asymptotic behaviour of the singular values of the Hessian
H for long prediction horizons N . The purpose of this analysis is to gain a better under-
standing of the inherent structure of the performance index JN(x,u) for long horizons N .
In addition, we believe that the result presented here shows that the SVD- RHC strategy
described in Section 4 can be especially effective when long prediction horizons are used.
We consider the case of the general Hessian H . However, for simplicity of exposition, we
restrict the model of the system (1) to be SISO and open-loop stable. Extensions to MIMO

and unstable models are discussed elsewhere - see (Rojas and Goodwin, 2003).

Consider the finite horizon optimal control problem PN(x) in (9) with a performance
index JN(x,u) as per (3) and final state weighting P = Q (note that this choice is not
restrictive since we are interested in the case N → ∞). Also, consider

Q = CT C , and R = λ > 0 ,
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i.e., we are interested in regulating the output yk of the system to zero. With this set-up
we can define

Γ = (IN ⊗ C)Γ ,

with ⊗ the usual Kronecker product and IN the N by N identity matrix. This definition
leads to the following expression for the Hessian H in (12)

H = Γ
T
Γ + λIN .

Next, consider the impulse response {hk}∞k=0 of the discrete time linear system (1)
i.e.,

{hk}∞k=0 = {0, CB,CAB,CA2B, . . .} . (31)

Since the state matrix A is assumed to be stable, we have that, given any ε > 0 there
exists k0 > 0 such that

∣∣∣∣∣∣

∣∣∣∣∣

∞∑

k=0

hke
−jwk

∣∣∣∣∣

2

−
∣∣∣∣∣

k0∑

k=0

hke
−jwk

∣∣∣∣∣

2
∣∣∣∣∣∣
< ε , ∀w ∈ [−π, π]. (32)

This is equivalent to saying that for k > k0 the terms of the impulse response {hk} are
negligible i.e., we can effectively assume that system has a finite impulse response of
length k0 + 1. As a result, the autocorrelation sequence of the impulse response {hk}k0

k=0

is given by

φl =

k0−l∑

k=0

hkhk+l , for 0 ≤ l ≤ k0 ,

φl ≈ 0 for l > k0 , (33)

φ−l = φl .

We observe that the j-th column of Γ contains the sequence {hk}k0

k=0 delayed j − 1
samples, that is

Γ =




h1 0 . . . . . . . . . 0
...

. . . . . .
...

hk0
. . . h1 0

...

0
. . . . . . . . .

...
. . . . . . . . . 0

0 . . . 0 hk0
. . . h1




.

Recall that for the linear model (1) the first element of the impulse response sequence
is h0 = 0 since there is no feed-through between the output yk and input uk - see (31).
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Hence, if N ≥ 2k0 + 1 we can write

HN =




X1 | 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ−k0
. . . φ0 . . . φk0

0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 φ−k0

. . . φ0 . . . φk0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 | X2




+ λIN , (34)

where X1 and X2 are appropriate sub-matrices. Note that we have made use of the
notation HN in order to make explicit the dependence on the prediction horizon N . We
then have the following result.

Theorem 6.1. Consider the discrete time linear system (1) and assume that there exists
k0 > 0 such that (32) holds. Let the matrix HN in (34), for N ≥ 2k0 + 1, be the Hessian
of the quadratic performance index JN(x,u) in (3) with λ = 0. Let

Φ(w) =
∞∑

l=−∞

φl e
−jwl, w ∈ [−π, π]

be the Discrete Time Fourier Transform (DTFT) of the autocorrelation sequence in (33).
Also, consider the vector

wN
l =

1√
N

[
1 e−j 2π

N
l e−j 2π

N
2l . . . e−j 2π

N
(N−1)l

]T

, (35)

where l ∈ Z such that 0 ≤ l ≤ N − 1 and
∥∥wN

l

∥∥
2

= 1.

Then, for every given frequency w0 = 2π
N0

l0, we have that

lim
N→∞

∥∥HNwN
l

∥∥
2

= Φ(w0) .

Proof. We will show that for every w0 = 2π
N0

l0 and ε0 > 0 there exists L ∈ Z
+ such that

∣∣∣
∥∥HNwN

l

∥∥
2
− Φ(w0)

∣∣∣ < ε0 ,

whenever N > LN0.

We first note that, given N0 > 0 and 0 ≤ l0 ≤ N0 − 1, we can obtain, by direct
calculation, the following expression.

HN0
wN0

l0
=




c1

Φ(w0) · wN0

l0
(k0 + 1 : N0 − k0)
c2


 , (36)
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where c1 and c2 are appropriate column vectors of length k0 and wN0

l0
(k0 + 1 : N0 − k0)

is the column vector formed by considering the entries of the vector wN0

l0
in (35), starting

from k0 + 1 and ending with N0 − k0.

Subtracting Φ(w0)w
N0

l0
from (36) we obtain

HN0
wN0

l0
− Φ (w0)w

N0

l0
= dN0

w0
,

where

dN0

w0
=

1√
N0




d1

0N0−2k0

d2


 .

Both d1 and d2 are column vectors of the same dimension of vectors c1 and c2, respec-
tively. Moreover, 0N0−2k0

is a column vector with zero entries and length N0 − 2k0. It
can be easily shown that the norms of both vectors d1 and d2 are bounded. They are
determined by the entries of sub-matrices X1 and X2 in (34) (which remain unchanged
whenever the prediction horizon N is increased), the fixed value Φ(w0) and the entries of
vector wN0

l0
which are bounded. As a result, we can find Tw0

> 0 such that

∥∥dN0

w0

∥∥
2

=
1√
N0

√
‖d1‖2

2 + ‖d2‖2
2 ≤

1√
N0

Tw0
. (37)

We now choose N = LN0 and l = L l0, for some L ∈ Z
+, such that

2πl

N
=

2πl0

N0

= w0 .

As a result, the following holds.
∣∣∣
∥∥HNwN

l

∥∥
2
− Φ(w0)

∣∣∣ =
∣∣∣
∥∥HNwN

l

∥∥
2
− Φ(w0)

∥∥wN
l

∥∥
2

∣∣∣
≤

∥∥HNwN
l − Φ(w0)w

N
l

∥∥
2

=
∥∥dN

w0

∥∥
2

.

This allows us to conclude that for every ε0 > 0

∥∥dN
w0

∥∥
2

< ε0 =⇒
∣∣∣
∥∥HNwN

l

∥∥
2
− Φ(w0)

∣∣∣ < ε0 .

Using the bound derived in (37), we now can find L > 0 such that

∥∥dN
w0

∥∥
2
≤ 1√

N
Tw0

=
1√

LN0

Tw0
< ε0 .

The above is satisfied for L ∈ Z
+ such that

L >
T 2

w0

N0 ε2
0

.

This completes the Proof.
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Corollary 6.2. Consider the same conditions of Theorem 6.1 and choose R = λ > 0.
Then

lim
N→∞

∥∥HNwN
l

∥∥
2

= Φ(w0) + λ .

Proof. Directly from Theorem 6.1.

Recall that HN is symmetric and positive definite, so that any singular value of HN

is equal to a corresponding eigenvalue. As a result, Theorem 6.1 shows that given any
frequency w0 ∈ [−π , π], we can find a prediction horizon N such that there exists at
least one singular value of the Hessian HN that is arbitrarily close to the energy density
spectrum Φ(·) of system (1) evaluated at w = w0. The importance of this result is twofold.
It shows that for long prediction horizons N there will be, in general, several singular
values close to zero, since they correspond to high frequency components of Φ(w). In
addition, Theorem 6.1 shows that, for long horizons N , one can avoid the need to compute
the singular values by simply working in the frequency domain.

The following example illustrates the result.

Example 6.1. Consider a discrete-time resonant SISO system with state space matrices
defined as follows:

A =

[
1.5293 −0.7408

1 0

]
, B =

[
0.5
0

]
, C =

[
0.2222 0.2009

]
. (38)

Consider the finite horizon optimal control problem PN(x) with performance index
(3) and Q = CT C, P = Q and R = 0.

Fig. 2 compares the singular values of the Hessian HN (circles), for two different pre-
diction horizons, with the energy density spectrum Φ(w) (continuous line) of the system
in (38). We observe that as the prediction horizon N increases, from N = 51 to N = 401,
the singular values of the Hessian converge, in a well defined sense, to the magnitude of
Φ(w).

7 Simulation example

We illustrate the application of the SVD receding horizon control strategy described in
Section 4 to a 3 input - 3 output MIMO plant. Consider a continuous time stable system
defined by the following transfer function matrix:

G(s) =




1
s2+0.6s+1

4
s+4

−2s+1
s2+2.5s+1

−4s+2
s2+3s+2

1
s2+0.6s+1

1
s+1

2s+4
s2+4s+4

0.5
s+0.5

1.6
s2+0.64s+1.6


 .

Assume that G(s) is appropriately discretized with a sampling period Ts = 0.2[s]. Con-
sider

Q = In , R = 0.1Im , and N = 15 .
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Figure 2: Singular values of the Hessian HN (circles) of Example 6.1 for two different
prediction horizons. The continuous line represents the energy density spectrum Φ(w) of
system (38).

Also, assume that each of the inputs to the plant (7) is constrained to the interval [−1, 1].

Fig. 3 shows the singular values of the Hessian H . We see that, in this case, H is
poorly conditioned. In fact, several of the singular values of H are close to zero (they
converge to 0.1 - see Corollary 6.2) whilst the first six singular values are those that
dominate the performance index. Based on the discussion in Section 6, we expect that the
SVD- RHC strategy will perform adequately in this case.

We compare the response of the closed loop system using MPC and using the proposed
SVD- RHC strategy for a given initial condition. Fig. 4 shows the time evolution of the
outputs of the plant using both strategies. We observe that the results are similar, despite
the fact that no solution to the QP problem was required by the SVD- RHC strategy. Fig.
5 shows the time evolution of the inputs. Although being somewhat dissimilar to the
full MPC result, the control signals generated by the proposed strategy incorporate the
components that affect the reduction of the performance index the most. Note that the 3
inputs to the plant hit the constraints during several samples, indicating that the proposed
SVD- RHC strategy can be effective even in the presence of tight constraints.

We finally show in Fig. 6 the time evolution of the parameter γ which defines the
number of elements in the basis function expansion of uo

uc(x) being used by the SVD-
RHC strategy. We observe that during the initial transient response, the strategy discards
several of the elements of ũo

uc(x). For example, note that less than 6 components are used
during the first 1[s] of the simulation.

Finally, the stability result of Theorem 5.3 ensures that the closed loop is exponentially
stable if

γ ≥ γ∗ = 36.4 with δ = 0.001 . (39)
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Figure 5: Comparison between MPC (stars and dashed line) and the SVD- RHC strategy
response (circles and continuous line): Input response.

However, this is just a sufficient condition for stability. Indeed, the simulation pre-
sented in this Section clearly shows that the closed loop is stable despite the fact that
condition (39) is not satisfied.

8 Conclusions

We have proposed a receding horizon control strategy for input constrained linear systems
based on a sub-optimal solution to the finite horizon optimal control problem solved at
each time step. The sub-optimal solution is constructed from a basis function expansion
of the unconstrained solution to the optimization problem. At each sampling time, the
proposed strategy determines a feasible control sequence by selecting a variable subset of
the basis representation. For systems in which the Hessian of the performance index has
large condition number, the performance obtained using the proposed strategy is compa-
rable to the performance obtained by solving the full on-line optimization problem. We
have also shown that, for prediction horizons long enough, the singular values of the Hes-
sian are arbitrarily close to the magnitude of the energy density spectrum of the system
seen by the performance index.
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