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On Sparse Representation in Pairs of Bases

Arie Feuer, Senior Member, IEEE,and Arkadi Nemirovski

Abstract—In previous work, Elad and Bruckstein (EB) have provided
a sufficient condition for replacing an optimization by linear program-
ming minimization when searching for the unique sparse representation.
We establish here that the EB condition is both sufficient and necessary.

Index Terms—Dictionary, sparse representation, tight frame.

I. INTRODUCTION

In their recent publication, [1], Elad and Bruckstein (EB) address the
following problem:

Given two orthogonal matrices�; 	 2 N�N and a vectorS 2 N

consider the following two optimization problems:

(P0) Minimize



0
=

2N

k=1



0
k

subject to

S = [�; 	] 


and

(P1) Minimize



1
=

2N

k=1

j
kj

subject to

S = [�; 	] 


where byk
k0 we refer to the number of nonzero entries of vector
.
The columns of each matrix�; 	 constitute an orthonormal basis in
N . When viewed together as a set of2N vectors they are referred to in

[1] as a dictionary (we also note that this set of vectors is in fact a tight
frame with frame bound2). The vector
 2 2N is a representation
of vector (signal)S in this dictionary. A question of obvious interest is
what can be gained by representingS in the dictionary rather than in
either basis. The answer lies in the possibility of getting sparser repre-
sentations where the measure of sparseness is the normk � k0 (which
just counts the nonzero entries of the vector). Clearly, one can always
find 
 so thatk
k0 � minfk�k0; k�k0g whereS = �� = 	� (note
that[�

0
] and[ 0

�
] are also representations of the signal in the dictionary).

Hence, problem(P0) is in fact an attempt to find the sparsest represen-
tation of a given vector (signal) in a particular dictionary—this is of
much interest in, e.g., signal compression problems.

In [1], the following result on the uniqueness of this representation
is given.

Theorem 1 [1, Theorem 2]:Let

M = max
1�i; j�N

� i;  j (1)
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wheref� ig; f jg are the columns of� and	, respectively. If the
signalS is to be represented using the concatenated dictionary[�; 	]
(2N vectors), for any two feasible distinct representations denoted by

 1, 
 2 2 2N , we have that


 1
0
+ 
 2

0
� 2

M
: (2)

This means that the uniqueness of a sparse representation is ensured by



0
<

1

M
: (3)

Clearly, condition (3) guarantees the uniqueness of the solution of
problem(P0). However, finding this representation, namely, solving
(P0) is a problem we do not know how to solve efficiently. As pointed
out in [2], under certain conditions, solving(P0) can be traded with
solving(P1) a much easier problem. The sufficient condition found by
Donoho and Huo is that if



0
<

1

2
1 +

1

M
(4)

then (P0) and (P1) are equivalent problems in the sense that the
(unique) solution of(P1) is also the (unique) solution of(P0).

In [1], this condition is relaxed and a higher bound is given, again,
as a sufficient condition



0
<

p
2� 0:5

M
: (5)

We are going to show that the condition in (5) is in fact both necessary
and sufficient. So, this bound for the equivalency of problems(P0) and
(P1) is tight.

II. M AIN RESULT

In this section, we are going to show that the bound presented in [1]
is tight. To do that we first prove the following proposition.

Proposition 2: LetL0 < 1
M

be a given integer and

�L (x) =
SL (x)

kxk1
(6)

whereSL (x) is the sum of theL0 largest absolute values of the entries
of x 2 2N . Then,(P0) and(P1) are equivalent if and only if

sup
[�;	]x=0

�L (x) <
1

2
: (7)

Proof: Note that in the proof here we use Theorem 1 implicitly,
claiming that sinceL0 < 1

M
, 
 is indeed the unique solution of(P0)

for S = [�; 	] 
.
Suppose (7) holds. Then for any
; ~
 2 2N such that 


0
= L0

and[�; 	] 
 = [�; 	] ~
 we have

2SL 
 � ~
 < 
 � ~

1
: (8)
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Let ji; i = 1; . . . ; 2N , be a permutation of the indexes1; . . . ; 2N
such thatj1; . . . ; jL are the indexes of theL0 entries of
 with the
largest absolute values. Then, from (8) we have

2

L

i=1

j
j � ~
j j <
L

i=1

j
j � ~
j j+
2N

i=L +1

j~
j j

L

i=1

j
j � ~
j j <
2N

i=L +1

j~
j j

L

i=1

(j
j � ~
j j+ j~
j j) <
L

i=1

j~
j j+
2N

i=L +1

j~
j j

and since

j
j j < j
j � ~
j j+ j~
j j

we get

L

i=1

j
j j <
2N

i=1

j~
j j

namely,



1
< ~


1

so that(P0) and(P1) are equivalent.
Suppose (7) does not hold for somex2 2N such that[�;	] x=0,

namely,2SL (x) � kxk
1
. Let us use, again, the permuted indexes

fjig2Ni=1 so that this timej1; . . . ; jL are the indexes of theL0 entries
of x with the largest absolute values. Then choose
 so that


j =
�2xj ; for 1 � i � L0

0; otherwise

and~
 = 
 + x. Then, clearly, 

1
= 2SL (x) and ~


1
= kxk

1
,

so that



1
� ~


1

and since 
 6= ~
, clearly, (P0) and(P1) are not equivalent, which
completes the proof.

The next proposition is basically a reworded version of a similar re-
sult proven in [1]. However, we believe the proof here is somewhat
more straightforward and provides the motivation for the main contri-
bution of this note—a family of counterexamples which show that the
bound in [1] is indeed tight.

Proposition 3: Let L0 < 1

M
be a given integer. Then, for allx 2

2N such that[�; 	] x = 0, we have

�L (x) � p
2 +ML0 � 1

2

(9)

where�L (x) is as in (6).
Proof: Since[�; 	] x = 0, x must be of the form

x =
I

A
v

for somev 2 N , whereA = �	T� is also an orthogonal matrix.
Let us now fixv and let us denotew = Av. Swapping, if necessary,
v andw, we may assume without loss of generality that among theL0

largest (in absolute value) entries ofx,m � L

2
are the firstm entries

of v, and the remainingL0�m are entries ofw. Since, by its definition,
�L (�x) = �L (x) for all � > 0, we may assume that

m

i=1

jvij = 1: (10)

Let us denote

P =

N

i=m+1

jvij :

Observe that

kwk
1

= kAvk
1

� max
1�i; j�N

jAi; j j kvk1 =M kvk
1

�M (1 + P ) : (11)

Similarly, we can conclude that

kvk1 �M kwk
1
: (12)

Since we assumed that the firstm entries inv are the largest, (10)
implies thatkvk1 � 1

m
and it follows from (12) that

kwk
1
� 1

mM
: (13)

Denoting� = mM , we have from (11) and (13)

�L (x) =

m

i=1

jvij + SL �m (w)

kvk
1
+ kwk

1

� 1 + (L0 �m) kwk1
kvk

1
+ kwk

1

� 1 +M (L0 �m) (1 + P )

1 + P + 1

mM

� 1 + (ML0 � �) (1 + P )

1 + P + ��1
: (14)

Denoting the right-hand side of (14) byf (�; P ), we note that for
ML

2
� � � ML0

@f (�; P )

@P
=

��1ML0 � 2

(1 + P + ��1)2
� 0

so

f (�; P ) � max
���ML

ff (�; 0)g

� max
���ML

1 +ML0 � �

1 + ��1

=
p
2 +ML0 � 1

2

:

Hence,

�L (x) � p
2 +ML0 � 1

2

:
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Clearly, ifML0 <
p
2� 0:5 then by this proposition

�L (x) < 2 +
p
2� 0:5� 1

2

=
1

2
:

Hence, by Proposition 2,(P0) and(P1) are equivalent. This is a re-
statement of a result in [1].

Next we prove the following proposition.

Proposition 4: For every positive integerr, there exist orthogonal
matrices� = [�1 � � ��2 ] and	 = [ 1 � � � 2 ] such that
�Ti  j �M

�
=2�r+0:5and a vectorx 6= 0 satisfying[�; 	] x = 0 so

that�L (x) � 1
2

for all integersL0 for which
p
2�0:5 �ML0 � 1.

Proof: We will prove the proposition by construction.
Let r > 0 be any integer and we denote

m =2r

k =22r�1

M =
1p
k

Lmax =
1

M

Lmin =

p
2� 0:5

M
: (15)

Furthermore, let

F (1) =
1 1

1 �1
(16)

and

F (s) = F (1) 
 � � � 
 F (1)

s times

=F (1) 
 F (s�1) (17)

where
 denotes the Kronecker product (these matrices are known as
the Hadamard matrices).

Now we choose

U =
1p
k
F (2r�1) (18)

and

v =
1m

0 k�m

= e
( )

1 
 1m (19)

where1m and0 k�m arem- andk �m-dimensional vectors of ones

and zeros, respectively,e
( )

1 is the first column of thek
m

= 2r�1-di-
mensional identity vector. Then

Uv =
1p
k

F ( ) 
 F (m) e
( )

1 
 1m

=
1p
k

F ( )e
( )

1 
 F (m)1m

=
mp
k
1 ( ) 
 e

(m)
1 : (20)

Define

x =
v

Uv
(21)

then we observe from (19)–(21) thatx has a total ofm + k

m
nonzero

entries,m of which are equal to1 and the remainingk
m

= 2r�1 are
equal to mp

k
=
p
2.

Hence, for anyLmin � L0 � Lmax (noting thatLmin > 2r�1 and
Lmax < 2r + 2r�1) we get

�L (x) =
SL (x)

kxk1

=

k

m

mp
k
+ L0 � k

m

k

m

mp
k
+m

� 2r�0:5 � 2r�1 + Lmin

2r�0:5 + 2r

=
1

2
:

Namely,� = I; 	 = �U; andx as defined in (21) constitute the
required example which completes the proof of the proposition.

We can combine now the consequences of Propositions 3 and 4 and
state our main result.

Theorem 5: (P0) and(P1) are guaranteed to be equivalent for any
given two orthogonal matrices�, 	, and signalS = [�; 	] 
 if and
only if M 


0
� p

2 � 0:5.

III. CONCLUSION

Given a signalS 2 N one is interested in the sparsest represen-
tation of this signal in a given dictionary which consists of� and
	, two orthonormal bases inN . This is anl0-optimization problem
which is very difficult to solve. An alternative approach was proposed
in [2], where it was shown that if the signal representation has no more
than0:5 (1 + 1=M) nonzero entries it can be found using anl1-op-
timization approach which leads to linear programming methods and
is much simpler to solve. This bound was improved in [1] to becomep

2� 0:5 =M > 0:5 (1 + 1=M).
However, the question whether the bound is tight was left unan-

swered. We have established here that the Elad and Bruckstein bound
is indeed tight.
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