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Linear deterministic adaptive control: fundamental limitations?
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Abstract

This paper is concerned with the achievable performance of adaptive control algorithms. We show that when the only
uncertainty is in the form of .xed parameter errors, then there exists an adaptive feedback law whose performance can be
made arbitrarily close to that achievable when the system is a priori known. The result is not intended as a practical strategy.
Instead, we use it to make the, perhaps obvious, point that meaningful results on performance of adaptive control algorithms
must account for non-ideal factors including, at a minimum, noise, parameter time variations and unstructured uncertainty.
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1. Introduction

Many results are available regarding fundamen-
tal limitations that apply to linear feedback systems.
These results take several di8erent forms, e.g.

• limitations on time domain transients (see for
example [9]);

• frequency domain integrals on sensitivity (see for
example [3,5]); and

• L2 cheap control results (see for example [11,12]).

A summary of some of these results is available in
recent texts, see for example [4,5,14].
The above work on fundamental limitations has fo-

cused on the case when the model is a priori known.
This raises the question, regarding the e8ect of mod-
eling errors on these results. A very preliminary .rst
step in this direction was discussed in [7]. In that
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paper, the interaction between a right half plane zero
and an uncertain pole was analyzed.
The issue of performance limitations in the face

of model uncertainty clearly overlaps with the area
of adaptive control. Indeed, if we view adaptive con-
trol as providing a solution to the control of speci.c
classes of uncertain systems, then the question of per-
formance limitations can be rephrased as, “How good
can an adaptive controller be?” or “Does there exist a
computable lower bound on achievable performance
of adaptive control algorithms, and if so, how closely
do existing algorithms approach this bound?”
Such questions have been posed in the literature.

See for example the comparison of Lyapunov-based
adaptive controllers and certainty equivalence adap-
tive controllers for linear time-invariant systems, dis-
cussed in [8].
More recently, Anderson and Gevers [1] have posed

several questions regarding fundamental performance
of trade-o8 issues in adaptive control. The later pa-
per takes an engineering viewpoint of adaptive con-
trol. The authors of the current paper share a similar
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prospective on adaptive control. Indeed, we suggest
that, to be meaningful, comparisons of performance
must rigorously account for non-ideal factors includ-
ing (but not restricted to):

• time-varying parameters,
• unstructured model uncertainty,
• measurement noise,
• actuator limitations, and
• numerical issues.

To reinforce the need to consider these non-ideal fac-
tors, we will present below a very simple result which
shows that, in the ideal case, one can design an adap-
tive control algorithm whose performance is arbitrar-
ily close to that achievable when the model is a priori
known.

2. Problem setup

We consider an ideal adaptive control setup of
the type considered in the literature on determin-
istic model reference adaptive control (see e.g.
[2,6,10,13]).
Thus, consider a linear time-invariant continuous

time system having transfer function G(s)=b(s)=a(s),
having known denominator degree, n, but unknown
coeGcients in the polynomials a(s) and b(s). It is well
known (see [6]) that an alternative representation of
G(s) is as follows:

y(t) =
E(D)− a(D)
E(D)

y(t) +
b(D)
E(D)

u(t) + (t); (1)

where D is the derivative operator, E(D) is an arbi-
trarily chosen polynomial with roots in the left half
plane (representing the observer poles) and (t) satis-
.es E(D)(t)=0 and represents the state observation
error. Clearly, there exist a; c¿ 0 such that

|(t)|6 ce−at ∀t ¿ 0; (2)

where c depends on the initial conditions and a is
completely determined by the choice of E(D), and
hence, can be made as large as we want. Another way
of writing (1) is

y(t) = ’(t)T�0 + (t); (3)

where

’(t)T =
[
Dn−1

E(D)
y(t);

Dn−2

E(D)
y(t); : : : ;

1
E(D)

y(t);

Dn−1

E(D)
u(t); : : : ;

1
E(D)

u(t)
]
; (4)

�T0 = [e1 − a1; e2 − a2; : : : ;
en − an; b1; : : : ; bn]: (5)

{ai} and {bi} are the unknown coeGcients of the poly-
nomials a(s) and b(s), respectively, and {ei} denotes
the coeGcients of the known polynomial E(s).
Our strategy will be to place the system under .xed

(but otherwise arbitrary) feedback control for an ar-
bitrarily small time period, �. We do not assume that
the .xed controller is necessarily stabilizing, although
we do note that a .nite escape cannot occur since the
signal growth is at most exponential. During the pe-
riod �, we apply an arbitrarily small external signal so
that ’(t) satis.es∫ �

0
’(t)’(t)T dt ¿ 0: (6)

It is known that this can be achieved by proper choice
of the external input r(t) (e.g. a combination of suG-
cient number of sine waves).
With the model in (3) we can apply the well-known

recursive least squares algorithm to estimate �0. In
continuous time, the algorithm takes the form

d
dt
�̂(t) = P(t)’(t)e(t) (7)

and

d
dt
P(t) =−P(t)’(t)’(t)TP(t); (8)

where �̂(t) is the estimate of �0, �̂(0) and P(0) are the
algorithm initial conditions,

e(t) = y(t)− ’(t)T�̂(t)
=−’(t)T�̃(t) + (t) (9)

and

�̃(t) = �̂(t)− �0: (10)

Our main result (presented in the next section) is that
by choice of E(D) and P(0) the estimation error can
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be made arbitrarily small. Under these conditions, we
see that, in an arbitrarily small time we can estimate
the parameters to any desired degree of accuracy. Un-
der these conditions one can design the feedback con-
troller to achieve essentially the same performance
as if the parameters had been known a priori. Thus,
in this ideal scenario, the fundamental limitations on
performance of adaptive controllers can be arbitrarily
close to the achievable performance when the model
is known.

3. Main result

Lemma 1. For any �¿ 0 for which Eq. (6) is sat-
is5ed and �¿ 0, there exist K(�; �)¿ 0 and E(D)
such that if we choose in the RLS algorithm P(0) =
K(�; �)I we obtain

‖�̃(t)‖6 �(‖�̃(0)‖+ c) ∀t ¿� (11)

with c as in (2).

Proof (This result is not surprising and may exist in
the literature. For completeness, we present a formal
proof of the result): We denote

M (�) =
∫ �

0
’(t)’(t)T dt (12)

and let �(�) and M�(�) be the minimal and maximal
eigenvalues ofM (�), respectively. Then, from Eq. (6),
�(�)¿ 0 and M�(�)¿ 0. Furthermore, from Eqs. (8)
and (12) we obtain

P(t)−1 = P(0)−1 +M (t) (13)

and from Eqs. (7) and (8)

P(t)−1�̃(t) = P(0)−1�̃(0) +
∫ t
0
’(�)(�) d�: (14)

Then, choosing P(0) = KI , K ¿ 0 we obtain

�̃(t) =
1
K
P(t)�̃(0) + P(t)

∫ t
0
’(�)(�) d�

= [I + KM (t)]−1�̃(0) + �(t): (15)

We can readily see that �(t) satis.es

d
dt
�(t) =−P(t)’(t)’(t)T�(t) + P(t)’(t)(t):

Then, de.ning the function

V (t) = �(t)TP(t)−1�(t) +
∫ ∞

t
(�)2 d�;

we obtain
d
dt
V (t) =−(’(t)T�(t)− (t))2¡ 0;

which implies that

�(t)TP(t)−1�(t)6V (t)6V (0)6
c2

2a
:

On the other hand,

�(t)TP(t)−1�(t)¿ �(t)TP(0)−1�(t) =
1
K
‖�(t)‖2:

Hence, we have

‖�(t)‖26 c
2K
2a
: (16)

Also, since M (t)¿M (�) for all t¿ � we have

[I + KM (t)]−16 [I + KM (�)]−1 ∀t¿ �:
Combining this with (16) in (15) we conclude that

‖�̃(t)‖6 ‖[I + KM (�)]−1‖ ‖�̃(0)‖+ ‖�(t)‖

6
1

1 + K�(�)
‖�̃(0)‖+ c

√
K
2a
:

Choosing

K(�; �)¿
1− �
��(�)

and

a(�; �)¿
K(�; �)
2�2

will result in (11) and the proof is complete.

4. Conclusions

The paper con.rms that parameters of an initially
unknown system can be estimated to an arbitrary de-
gree of accuracy in an arbitrarily small time by the ap-
plication of an arbitrarily small external signal. Thus,
in the ideal case, the performance of an adaptive al-
gorithm can always be made arbitrarily close to the
performance achieved when the model is fully known.
Of course, this result would not be used in practice.
For example, the presence of noise and numerical er-
rors will limit the accuracy of estimation in closed
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loop. Our point here is not to deny this but to rein-
force the point that adaptive control algorithms must,
inter alia, address non-ideal issues in a rigorous way
if meaningful benchmarks for performance limits are
to be analyzed.
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