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methods [1]. This paper focuses on a generalization of the
method proposed by Horn and Schunck for the estimationThis paper presents a new approach based on the differential

framework proposed by Horn and Schunck, to the problem of of optical flow, which is a differential-based method [2].
recursive optical flow estimation from image sequences. The The differential framework methods start with a bright-
original method of Horn and Schunck is applicable only to the ness constraint equation which forms a single linear equa-
problem of estimating the optical flow between a pair of images tion per each pixel, constraining its motion vector [1, 2].
from an image sequence. When we aim at estimating the optical Such linear constraints are posed over all the pixels in the
flow for longimage sequences recursively, thequestion is whether

current image, forming an ill-posed estimation problem.and how can we gain from previous estimates. In this paper we
The various differential-based methods thus vary in theshow that gain is achieved from both computational and accu-
way they add constraints in order to ensure a single andracy pointsof view.Incorporation of the timeaxis intothe estima-
accurate solution to the estimation problem. For example,tion process is done by assuming temporal smoothness of the op-

tical flow, resulting in simplified spatial–temporal models. The Lucas and Kanade [3] assume that the optical flow is locally
obtained models permit incorporation of the constrained constant, thus making possible the construction of a
weighted least squares (CWLS) estimator. This estimator is weighted combination of several constraints, assuming
shownto yieldRLS andLMSadaptive filterversions forrecursive they have the same solution. The Horn and Schunck ap-
optical flow estimation in time. An interesting and desirable

proach [2] was a regularization based on the assumptionproperty of the proposed estimation algorithms is their flexibility
of spatial smoothness over the optical flow field.with respect to performance versus computational requirements.

In a comparison between different optical flow estima-By a simple choice of a parameter these algorithms can be modi-
tion algorithms made by Barron [4], it was found that thefied to exploit the available time to improve their performance

with respect to estimation error. The convergence properties of performance of the Horn and Schunck algorithm is inferior
these estimation algorithms are analyzed. Simulations for vari- to other differential methods. However, for image se-
ous image sequences support the analysis and demonstrate the quences showing distant static objects filmed with camera
performance of the estimation algorithms.  1998 Academic Press motion, the spatial smoothness assumption is highly valid

and the algorithm of Horn and Schunck performs quite
well. Moreover, adopting the modifications in the way the

1. INTRODUCTION local gradients are estimated proposed by Barron [4] can
also improve the performance of the algorithm, resulting
in an attractive method of optical flow estimation. Thus,Optical flow is the displacement field related to each of
for many applications the above assumptions about thethe pixels in an image sequence. Such a displacement field
motion field are quite reasonable [1, 2, 4–8].results from the apparent motion of the image brightness

Most algorithms for the estimation of optical flow concen-in time. Estimating the optical flow is a fundamental prob-
trate on estimating the motion field between succeeding im-lem in low-level vision and can undoubtedly serve many
ages in a sequence, disregarding the estimates obtained forapplications in image sequence processing. There are many
the previous image pair. Among such procedures we candifferent methods of estimating the optical flow [1–9, 14,
count both the Horn and Schunck [2] and the Lucas and18–27]. Roughly speaking, these methods can be divided

into correlation, energy, phase, and differential-based Kanade [3] methods. However, several attempts have al-
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ready been made to efficiently include the time axis in the sulting in a new model describing the propagation of the
optical flow field in time and space. The new model lendsoptical flow estimation process. Both Singh [6] and Chin and

co-workers [7, 8] proposed the application of a Kalman filter itself easily to the application of the constrained weighted
least squares (CWLS) estimator. Exact solution of the min-estimate the optical flow sequence in time. In [6], a correla-

tion-based (block-matching) technique is generalized to in- imization problem yields the Pseudo-RLS algorithm [10],
which roughly require the same amount of computationsclude spatial and temporal smoothness. The measurements

are fused in space and time using a Bayesian interpretation. as the original Horn and Schunck algorithm, but applies
temporal smoothness as well. Two simplified methodsHowever, the proposed method is computationally very

complex since it includes (in addition to other things) block based on the LMS [10] algorithm are proposed, both with
dramatic savings in the computational complexity. The re-matching for each pixel at the measurements stage, and a

full iterative Gauss–Siedel algorithm (with roughly the sulting algorithms share simplicity, low computational cost,
and accurate estimation performance. We prove that thesesame computational complexity as the whole Horn and

Schunck algorithm) for the spatial smoothness stage. algorithms converge to the true optical flow in time.
Before we turn to present our detailed approach, weChin and co-workers proposed [7, 8] a state-space model

which combines temporal smoothness to the brightness con- acknowledge the vast existing literature on optical flow
and motion estimation algorithms. However, in our list ofstraint equation. This way they generalized the Horn and

Schunck algorithm to adequately treat the time axis. In or- references we have chosen just a sample of these results.
Statistical methods such as the Markov random fieldsder to propagate the autocorrelation matrix in time effi-

ciently, a square-root information (SRI) Kalman filter is (MRF) and Bayesian based optical flow estimation algo-
rithms [20, 21], multiresolution and multistage motion esti-proposed. The main drawback in their approach is the very

high computational complexity of the resulting algorithm. mation techniques [14, 22–24], global motion estimation
algorithms [25–27], and other approaches are emerging,The main problem in this regard is the order of the matrices

involved, in spite of the fact that these matrices are sparse. combining estimation algorithms and applications. Our
contribution in this paper is the suggestion of a generalizedFleet and Langley [9] proposed a different approach for

the same task, based on the Lucas and Kanade [5] optical differential based method in a manner which we believe
can be combined with the above trends.flow method, combined with recursive filters in time and

space for the computation of the spatial and temporal We also note that in this paper we adopt the matrix
notations proposed and used by Chin and co-workers [7,gradients. Their method uses a recursive IIR filter as part

of the temporal smoothing of the images before estimating 8]. This representation, though ‘‘heavy’’ or complex, en-
ables us to come up with more compact and clear equa-the optical flow. The proposed smoothing is shown to yield

recursive update equations for the estimation system in tions. Another benefit of this representation is its relative
ease in simulating the proposed algorithms using MAT-time. In this way, the temporal smoothness assumption is

made implicit, rather than explicit. LAB. This, however, does not imply that the matrix ap-
proach is the one to adopt at the implementation stageAnother recursive optical flow estimation approach is

proposed by Black [18]. This work proposes the application and it should be clear that the complexity of the proposed
algorithm is far smaller than that of the Horn and Schunckof robust estimators, combined with ‘‘temporal continu-

ity,’’ in order to obtain temporal coherence. The temporal original algorithm.
This paper is organized as follows: In Section 2 we brieflycontinuity is obtained by penalizing motion vectors which

deviate from their predicted values based on past data. present the differential framework and the Horn and
Schunck algorithm. Section 3 presents the new spatial–Since robust estimation is applied, and since the overall

optimization problem becomes nonconvex, sophisticated temporal optical flow model and recursive algorithms to
estimate the optical flow based on the RLS and the LMSalgorithms which enable convergence to the global mini-

mum point are required. The proposed algorithm is an adaptive filters. In Section 4 convergence properties of the
proposed algorithms are discussed. Simulation results areincremental version of the graduated nonconvexity (GNC)

algorithm [19]. The main benefit of this algorithm is its presented in Section 5, and conclusion in Section 6.
ability to treat discontinuous optical flow fields because of
the penalizing function—the Lorentzian [18, 19]. Its main

2. HORN AND SCHUNCK FRAMEWORK FORdrawbacks are its complexity and its relatively simplistic
temporal smoothness model. OPTICAL FLOW ESTIMATION

The purpose of this paper is to generalize the Horn
and Schunck algorithm to inherently include the time axis, In this section we briefly present the differential frame-

work [1, 2] and Horn and Schunck method for opticalwhile preserving simplicity and low computation of the
algorithms. We begin by combining the temporal smooth- flow estimation [2]. The presentation will be done using

matrix–vector notation, similarly to the way it is done inness assumption with the Horn and Schunck method, re-
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[7, 8]. This notation will serve to simplify the analysis in
I(x, y, t) 5 I(x, y, t) 2 dx(x, y, t)

I(x, y, t)
xthe following sections. Further details on the presented

optical flow estimation algorithm can be found in [1, 2,
7, 8]. 2 dy(x, y, t)

I(x, y, t)
y

2
I(x, y, t)

t
(2.2)The image sequence brightness is denoted by I(x, y, t),

where (x, y, t) represent the spatial and temporal location. ⇒ 0 5 dx(x, y, t)
I(x, y, t)

xThe brightness constraint equation is thus

1 dy(x, y, t)
I(x, y, t)

y
1

I(x, y, t)
t

.
I(x, y, t) 5 I(x 2 dx(x, y, t), y 2 dy(x, y, t), t 2 1) (2.1)

The above equation connects the local spatial and temporal
gradients (assumed known) to the motion vector. Thus wewhere [dx(x, y, t), dy(x, y, t)] is the motion vector which

corresponds to the pixel positioned at (x, y, t). Note that have a single linear equation per pixel, posing a constraint
over the motion field. Combining all those equations isthe temporal sampling rate is assumed to be 1 sample/s.

Expanding the right term in the above equation using Tay- possible by matrix notation. We define the following matrix
and vectors:lor series and neglecting higher derivative terms, we get

Y(t) 5 2 FI(1, 1, t)
t

? ? ?
I(x, y, t)

t
? ? ?

I(N, N, t)
t GT

(2.3)

H(t) 53
I(1, 1, t)

x
I(1, 1, t)

y

? ? ? s ? ? ? s
I(x, y, t)

x
I(x, y, t)

y

s ? ? ? s ? ? ?

I(N, N, t)
x

I(N, N, t)
y

4 (2.4)

X(t) 5 FDx

Dy
G[ R2N2

where
DT

x 5 [dx(1, 1, t) ? ? ? dx(x, y, t) ? ? ? dx(N, N, t)]

DT
y 5 [dy(1, 1, t) ? ? ? dy(x, y, t) ? ? ? dy(N, N, t)]

(2.5)

([N 3 N] is the number of pixels in each image) then we proposed the Laplacian), the smoothness of X(t) can be
measured byhave the model equation

Y(t) 5 H(t)X(t) 1 E(t) EhE(t)ET(t)j 5 s 2
e(t)I, (2.6)

iSDxi2
2 1 iSDyi2

2 5 iSX(t)i2
2 where S 5 FS 0

0 S
G. (2.7)

where X(t) is the optical flow vector that should be esti-
mated, and E(t) is the model error which comes from

Horn and Schunck proposed that the optical flow estimateseveral sources: the fact that we neglect higher derivatives,
should be the solution of the following quadratic minimiza-the fact that we need to compute the local gradients from
tion problem, which searches for the best matching opticalsampled signals, and the fact that the model is inaccurate
flow vector while forcing smoothness of the solution,for actual scenes for various reasons. The matrix H(t) and

the vector Y(t) can be both calculated from the image pair
X̂(t) 5 arg min

X(t)
h«2j

(2.8)
I(x, y, t), I(x, y, t 2 1) by discrete derivatives [1, 2, 7, 8].

Horn and Schunck proposed that additional spatial
5 arg min

X(t)
hiY(t) 2 H(t)X(t)i2

2 1 biSX(t)i2
2j,smoothness constraint should be combined in order to

assure single solution and regularized problem. Letter, S
denote a certain differentiation matrix (Horn and Schunck where b is a parameter that controls the relative smooth-
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ness required. The solution to the above minimization FY(t)

0
G5 FH(t)

S
GX(t) 1 FE(t)

F(t)
Gproblem is simple to obtain because of the quadratic form

of the overall error and is given by

E HFE(t)

F(t)
G FE(t 2 v)

F(t 2 v)
GTJ (3.2)

X̂(t) 5 [H T(t)H(t) 1 bSTS]21H T(t)Y(t), (2.9)

5 FWE(t) 0

0 WF(t)
G d(v),where instead of inverting the positive definite matrix

shown above, the iterative Gauss–Siedel algorithm was
suggested [2]. The above approach could be repeated at

where the spatial smoothness serves here as an additionaleach time t in order to estimate the optical flow between
measurements vector of zeros. Having the above two equa-pairs of images, disregarding the previous estimates.
tions permits the direct use of the Kalman filter. However,
the dimensions of the matrices involved (though sparse)

3. OPTICAL FLOW ESTIMATION ALONG
are very large, hence the direct application of the Kalman
filter is impossible. In [7, 8], using this exact model, a square

THE TIME AXIS root information (SRI) Kalman filter [11] which propagates
the square root of the inverse of the autocorrelation matrix

As was said before, our aim is to propose a mechanism in time is suggested. Yet the computational complexity
that will include the time axis in the optical flow estimation of the final algorithm is far too high, and only parallel
process. An implicit assumption in the following is that implementation can cope with it effectively.
the properties of Horn and Schunck’s algorithm are accept-
able for the case of two images and that all that remains 3.2. Constrained Weighted Least-Squares Approach
is to attempt to generalize the algorithm for an infinitely

Instead of the state-space model presented above, welong sequence of images. We seek a recursive approach
can suggest the following model, which combines Hornwhich will enable to estimate the optical flow sequentially
and Schunck equations with the temporal smoothness con-based on previous results, rather than in parallel form. We
straint differently,shall use the temporal smoothness assumption explicitly

in order to include the time axis in the estimation process.
We begin our presentation with the method presented in

;k $ 0 FY(t 2 k)

0
G5 FH(t 2 k)

S
GX(t) 1 E(t, k)[7, 8].

EhE(t, k)ET(t, j)j 5 WE(t, k)d(k 2 j) (3.3)

3.1. Kalman Filter Approach
5 f21(t, k) Fs 2

eI 0

0 s 2
f I
G d(k 2 j),The Kalman filter is a very well-known estimator, aimed

at giving the minimum mean squared error (MMSE) esti-
mate of the state of a linear system, represented by state-

where
space equations [11]. Thus, in order to use the Kalman
filter for the optical flow estimation task, we must start
with a model which represents the problem in a state-space

f(t, k) 55
1 k 5 0

p
k21

i50

l(t 2 i) k $ 1.
(3.4)form. The unknown optical flow at time t—X(t)—will

serve as the state vector to be estimated. The temporal
smoothness constraint can be represented by the equation

Note that f(t, k) 5 l(t)f(t 2 1, k 2 1) for k $ 1.
This model simply states that the optical flow vector X(t)X(t) 5 X(t 2 1) 1 N(t) EhN(t)NT(t 2 v)j 5 WN(t)d(v)

matches the model equations for all casual times t 2(3.1)
k # t, and this way the temporal smoothness is applied.
But, since we know that there are changes in the optical

which simply says that the change in time in the optical flow in time, we allow them by exponentially raising the
flow is white (in time) vector N(t). The above equation is variance of the model error for far-away model equations,
the system equation in the state-space equations. Taking and the parameters 0 ! l(t) , 1 act as forgetting factors
Eq. (2.6) and combining the regularization with it gives for this very purpose. Having the new model, we can define

a quadratic error:the measurements equation
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Second, although Fleet and Langley [9] proposed a tem-
«2(t) 5 Ot

k50
IFY(t 2 k)

0
G2 FH(t 2 k)

S
GX(t)I2

W21
E (t,k)

poral generalization of the Lucas and Kanade [4] optical
flow estimation method, their final result is also a one-
pole filtering, similar to the one proposed here. Thus, the
presented model and results are parallel to the method5

1
s 2

e
Ot

k50
f(t, k)hiY(t 2 k) 2 H(t 2 k)X(t)i2

2 1 biSX(t)i2
2j.

proposed by Fleet and Langley for the generalization of
(3.5) the Horn and Schunck [2] algorithm. However, both in [7

and 8] and in [9], the temporal smoothness is utilized only
This squared error can be shown to emerge from the appli- to improve the accuracy of the estimated optical flow. Here,
cation of the Maximum Likelihood (ML) estimator [11] as we show in the remainder of the paper, the new recursive
with regularization if we assume that all the random pro- formulation can be further simplified resulting in algo-
cesses involved are Gaussian. The new parameter b is the rithms with reduced computation requirements, with as-
ratio between the variance of the model error and the sured convergence and acceptable performance. This way
smoothness error—b 5 s 2

e/s 2
f . A different approach to we gain both in accuracy and in computational efficiency.

the above error definition can be the use of the maximum
a posteriori probability (MAP) estimator [11] on the model 3.3. The Pseudo-RLS Optical Glow
given in Eq. (3.3), where again the Gaussianity is assumed Estimation Algorithm
and the second equation (the smoothness term) stands

One way to solve the minimization problem in Eq. (3.5)for the prior or the auto-regressive (AR) model of the
is direct solution of the linear system in Eq. (3.6). In orderunknown random process X(t).
to do that, we have to first update R(t) and P(t) in timeDifferentiating with respect to the vector X(t) yields
according to Eqs. (3.7) and (3.8) and then solve the linearthe equations
system in Eq. (3.6). The matrix R(t) is sparse (see Appendix
A for a proof and discussion of this property) and can«2(t)

X(t)
5 0 5

2
s 2

e
[R(t)X(t) 2 P(t)], (3.6) easily be updated (in time) and stored. If the number of

pixels in the image sequence is N2 then the number of
unknowns in the vector X(t) is 2N2 and the size of thewhere
matrix R(t) is [2N2 3 2N2]. Since N is typically large, this
means that a direct inversion of R(t) is impossible and
indirect methods are required in order to solve (3.6). ManyR(t) 5 Ot

k50
f(t, k)hH T(t 2 k)H(t 2 k) 1 bSTSj

iterative algorithms such as the steepest decent (SD) [12],
conjugate gradient (CG) [12], and error relaxation meth-5 l(t)R(t 2 1) 1 H T(t)H(t) 1 bSTS (3.7)
ods (such as Jacoby, Gauss–Siedel, successive over-relax-
ation) [13] and the multigrid method [14] can be suggested.P(t) 5 Ot

k50
f(t, k)H T(t 2 k)Y(t 2 k)

The underlying principle common to all these iterative
algorithms is their ability to solve Eq. (3.6) using only

5 l(t)P(t 2 1) 1 H T(t)Y(t). (3.8)
matrix–vector multiplications which are easily performed
for sparse matrices.Note that the matrix R(t) is a symmetric positive definite

The reason we call such procedures pseudo-RLS algo-(and nonsingular) matrix because of the regularization
rithms comes from the fact that we update the matrix R(t)term bSTS.
and the vector P(t) recursively, as can be done in theThe obtained recursive equations for R(t) and P(t) form
recursive least squares (RLS) algorithm [9]. However, inthe basis of the optical flow estimation algorithms that will
contrast to classic RLS, we do not propagate nor computebe presented in the sequel. The choice of exponentially
the matrix Q(t) 5 R21(t) in time. In our case this matrixdecaying weights in the temporal squared error is the rea-
is not even sparse, which means, again, intolerable compu-son behind the simple recursive formulation obtained.
tational and storage demands.Two interesting points with respect to the recursive for-

Assuming that we applied one of the iterative algorithmsmulation obtained should be mentioned here. First, assum-
successfully, with a sufficient number of iterations, the esti-ing that the optical flow process is correctly modeled by
mated optical flow will converge tothe state equations (3.1), (3.2); obviously, the Kalman filter

is the optimal linear estimator. The proposed formulation
X̂(t) 5 R21(t)P(t), (3.9)can be shown to emerge from this Kalman filter by simple

approximation. In the next section this point is investi-
gated, showing a connection between the forgetting factors which we consider an optimal result since this vector mini-

mizes the squared error defined in Eq. (3.5). The numberl(t) and the model given in Eqs. (3.1)–(3.2).
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of computations required is similar to the number required
by the original Horn and Schunck algorithm. This is be-
cause we have to compute the update terms for the matrix
R(t) and the vector P(t), which are exactly the terms com-
puted for the Horn and Schunck algorithm; we have to
add them to R(t) and P(t), which requires only additions;
and then we have to apply an iterative algorithm similar
to what is done in the original Horn and Schunck algorithm.
There can be a considerable saving in computations if we
use the previous result as an initialization for the iterative
procedure, but it is difficult to quantify the saving in compu- SCHEME 1. The M-LMS algorithm basic idea.
tations if this initialization is used.

The pseudo-RLS algorithm requires the propagation of
P(t) as usual using Eqs. (3.7) and (3.8), and then performthe matrix R(t) in time as part of the estimation process.
M steepest descent iterations. We already know that forThe practicality of the pseudo-RLS lays heavily on the
1 ! M R y we get the pseudo-RLS. We will refer to theassumption that R(t) is highly sparse for all times t . 0,
above algorithm with M iterations per each time instantsince R(t) dimensions are huge. Appendix A discusses the
as the M-SD algorithm. One interesting property of thestructure of the matrix sequence R(t) in time and shows
M-SD algorithm is its flexibility with regard to the compu-that this sequence of matrices is indeed sparse for all t . 0.
tational requirements. For any optical flow estimation sys-
tem which applies the M-SD algorithm we can adopt the3.4. The LMS Optical Flow Estimation Algorithms
algorithm to fully exploit the available time, by adding

A different approach that can be taken in order to mini- more iterations. The more iterations performed (which
mize the temporal squared error in Eq. (3.5) is suggested means that M is increased) the better is the quality of the
by the least mean squares (LMS) algorithm [10]. First, estimated optical flow (see the next section).
instead of a full minimization of this error at each time In the context of the M-SD presented above we proposed
instant, we can simply take the previous result X̂(t 2 1) and only the steepest descent algorithm. The reason is the
update it using the instantaneous gradient of the temporal relative simplicity of the required convergence analysis.
squared error and get the following recursive equation: However, the SD is known to be inferior to algorithms

such as the CG and Gauss–Siedel. An interesting question
is whether using other iterative algorithms can improve

X̂(t) 5 X̂(t 2 1) 2
e
2

«2(t)
X(t)UX̂(t 2 1)

(3.10)
the convergence rate. This question will not be treated
analytically in this paper, but simulation results for this
issue will be presented.5 X̂(t 2 1) 1 e[P(t) 2 R(t)X̂(t 2 1)].

Using Eq. (3.10) as our estimation process is an approxi-
mation to the pseudo-RLS estimator presented in Eq. (3.5).The main idea behind this approach is the assumption that
Using the recursive equations (3.7) and (3.8) in Eq. (3.10),the quadratic surface representing the squared error
we get«2(t 2 1) changes only slightly in time, because of the

temporal smoothness assumption. This can also be seen
X̂(t) 5 X̂(t 2 1) 1 el(t)[P(t 2 1) 2 R(t 2 1)X̂(t 2 1)]from Eq. (3.5), since for l(t) R 1 (which means high tempo-

1 eH T(t)Y(t) 2 e[H T(t)H(t) 1 bSTS]X̂(t 2 1).ral smoothness) the update term is small compared to the
(3.11)accumulated error. Therefore, instead of minimizing «2(t)

from the start, all we have to do is to descend on the
Thus, if we assume further that the previous solutionsurface «2(t) from the position X̂(t 2 1) to a new position,
X̂(t 2 1) is close to the optimal one, then we can say thatgoverned by the local gradient of the surface to be mini-
P(t 2 1) 2 R(t 2 1)X̂(t 2 1) 5 0, and this term canmized. Scheme 1 illustrates this idea for the 2-D case.
be omitted from the above equation. The new recursiveAnother view of the obtained recursive equation is that
equation is thusEq. (3.10) is simply one iteration of the steepest descent

algorithm. Thus, instead of performing many iterations
X̂(t) 5 X̂(t 2 1) 1 eH T(t)Y(t)

(3.12)at each time instant as was proposed in the Pseudo-RLS
2 e[H T(t)H(t) 1 bSTS]X̂(t 2 1),algorithm, all we are proposing to do here is a single itera-

tion, and continue to the next temporal point. Therefore,
we can suggest also a midway algorithm, namely, at each which is a simpler algorithm with even more reduced com-

putations, since this algorithm no longer require the propa-temporal point, update the matrix and the vector R(t) and
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gation of R(t) and P(t) in time. The above equation is rithm could serve as confidence measures somehow, but
their computation is impossible because of the dimensiona single SD iteration of the original Horn and Schunck

algorithm. Interesting as it may seem, Horn and Schunck on the matrix involved. In [4], it is proposed to threshold
the spatial gradient local norm as a tool to measure thein their original paper [2] suggested this very algorithm

based on intuition only as an alternative to the application reliability of the estimates of the Horn and Schunck algo-
rithm. The reliable estimates are those which satisfyof their algorithm with many iterations per step. Following

the same reasoning as in the M-SD algorithm, we can
propose here that M iterations of Eq. (3.12) can be per- i=I(x, y, t)i2

2 5 FI(x, y, t)
x G2

1 FI(x, y, t)
y G2

$ Thr, (3.14)
formed per time step, which might improve the overall
performance of the algorithm, when compared to the single

where Thr is some threshold value. Naturally, this ideaiteration algorithm. We choose to call such algorithm the
could serve for our algorithm too, since these gradientsM-LMS algorithm for obvious reasons.
are available for the pseudo-RLS, M-SD, and M-LMS algo-The major questions with regard to the M-SD and the
rithms. However, Eq. (3.14) does not use knowledge accu-M-LMS algorithms are whether they converge and what
mulated over time. Instead, we suggest the use of the maintheir convergence properties are. An analysis of these top-
diagonal elements of the matrix R(t) as replacements forics is given in the next section. One more issue to discuss
the eigenvalues. Thresholding these values can serve asis the choice of e for the M-SD and M-LMS algorithms.
confidence measures. Since there is some relation betweenTheoretic bounds on the value of this parameter are de-
the main diagonal values of a positive definite matrix andrived in the next section. However, one easy and efficient
its eigenvalues [16], this choice of confidence measuresapproach to the choice of e is the application of the follow-
seems worthwhile.ing equation, which is taken from the normalized SD algo-

The proposed confidence measures can be applied inrithm [12, 13]:
the Pseudo-RLS and the M-LMS algorithms. Since the M-
LMS does not propagate the matrix R(t) in time, we can
use instead the confidence measures in Eq. (3.14) for thisek(t) 5

ÊT
k(t)Êk(t)

ÊT
k(t)R(t)Êk(t)

; Êk(t) 5
n P(t) 2 R(t)X̂k(t 2 1).

algorithm. Note that the above approach supplies each
(3.13) component of each motion vector with a confidence num-

ber. By adding the two confidence measures for the x and
The NSD performs a line search which finds the best possi- y components of each motion vector we get one confidence
ble e for each iteration separately. Since the NSD con- measure per each pixel. Adding the two components yields
verges faster than the SD, such approach is better, but we a confidence measure which is very similar to the one
will not supply a proof for this property in this framework. proposed in Eq. (3.14). If we omit the regularization, the
This approach offcourse yields a time and iteration depen- sum of the x and y components of the matrix HT(t)H(t) is
dent value for e. Similar equations can be written for the exactly the spatial gradient norm in (3.14). The regulariza-
M-LMS algorithm with different definitions for R(t) and tion matrix bSTS adds a constant C to each of the gradients,
P(t) (see Section 4.3 for further details). yielding the value

3.5. Confidence Measures for the Above Algorithm f(x, y, t) 5 FI(x, y, t)
x

1 CG2

1 FI(x, y, t)
y

1 CG2

, (3.15)
Many of the optical flow estimation algorithms supply

as byproducts confidence measures coupled with motion which can serve to detect low gradient norms by thresh-
vectors, determining the reliability of these motion vectors. olding. The accumulation in time performed by the matrix
It is expected that every motion estimation algorithm will R(t) smooths the values of f(x, y, t) over time. It is obvious
supply estimates whose accuracy varies in space and time. that having a low local gradient norm at time t does no
Using these confidence measures to extract nonreliable necessarily mean that the obtained estimate at this location
estimates may serve various applications where there is no is inaccurate, since we may get reliable information for this
need for a motion vector for each pixel. In the optical flow location from past history. Therefore, a better confidence
estimation method of Lucas and Kanade [3] an efficient measure which takes the time axis into account is the value
confidence measure for the estimation results is the condi-
tion number of a 2 3 2 matrix to be inverted, or the minimal F(x, y, t) 5 Ot

k50
f(t, k) f(x, y, t 2 k)

(3.16)
eigenvalue of this matrix as proposed in [4]. We note that
every pixel has a corresponding matrix like this, which

5 l(t)F(x, y, t 2 1) 1 f(x, y, t)
then provides a simple confidence measure.

Following the same reasoning, the eigenvalues of the and this is exactly the value obtained using the main diago-
nal elements of the matrix R(t), as proposed.large matrix to be inverted in the Horn and Schunck algo-
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3.6. Higher Order Temporal Smoothness Model Using the same reasoning as in Section 3.2, instead of
the state-space model presented above we can suggest the

Equation (3.1) represents the temporal smoothness as-
following model, which combines Horn and Schunck equa-

sumption for all the above analysis. This equation is a first
tions with the temporal smoothness constraint differently,

order AR model assumed on the optical flow sequence in
time. Such model is adequate for sequences where the

;k $ 0 Ỹ(t 2 k) 5 H̃(t 2 k)A2kF(t) 1 Ẽ(t, k)motion is almost constant, with relatively small variations
in time. We can generalize the temporal smoothness model

EhẼ(t, k)ẼT(t, j)j 5 WẼ(t, k)d(k 2 j) (3.20)to be a higher order AR model, as proposed in [7, 8]. This
way we could present a better temporal smoothness model

5 f21(t, k) Fs 2
mI 0

0 s 2
sI
G d(k 2 j),for slowly varying optical flow sequences. The proposed

higher order smoothness model is

which is quite similar to the model in Eq. (3.3). The qua-
X(t) 5 OK0

k51
akX(t 2 k) 1 N(t) EhN(t)NT(t 2 v)j

(3.17)
dratic error term is then defined as

5 WN(t)d(v),
«2(t) 5 Ot

k50
iỸ(t 2 k) 2 H̃(t 2 k)A2kF(t)U2

W21
Ẽ (t,k)

. (3.21)

where aK0
? 0 and the AR coefficients should be such that

stability of the model is assured [10]. In order to represent
Differentiation with respect to the vector F(t) yields thethis smoothness model as a state-space equation we define
equationsa new longer state vector, which gives the following

state equations:
«2(t)
F(t)

5 0 5
2

s 2
m

[R̃(t)F(t) 2 P̃(t)], (3.22)

whereF(t) 53
X(t)

X(t 2 1)

???

X(t 2 K0)
4⇒ 3

X(t)

X(t 2 1)

???

X(t 2 K0)
4

R̃(t) 5 Ot

k50
[AT]2kH̃T(t 2 k)W21

Ẽ (t, k)H̃(t 2 k)A2ks 2
m

5 l(t)A2TR̃(t 2 1)A21 (3.23)

5 3
a1I a2I ? ? ? aK0

I

I 0 0 0

0 ? ? ? 0 ???

0 0 I 0
4 3

X(t 2 1)

X(t 2 2)

???

X(t 2 K0 2 1)
4

1 3
HT(t)H(t) 1 bSTS 0 ? ? ? 0

0 0 ? ? ? 0

???
???

? ? ?
???

0 0 ? ? ? 0
4[ R2K0N2

32K0N2

1 3
N(t)

0

0

0
4 P̃(t) 5 Ot

k50
[AT]2kH̃T(t 2 k)W21

Ẽ (t, k)Ỹ(t 2 k)s 2
m

⇒ F(t) 5 AF(t 2 1) 1 Ñ(t) EhÑ(t)ÑT(t 2 v)j

5 l(t)A2TP̃(t 21) 13
HT(t)Y(t)

0

???

0
4, (3.24)5 W̃N(t)d(v) (3.18)

FY(t)

0
G5 FH(t) 0 ? ? ? 0

S 0 ? ? ? 0
G 3

X(t)

X(t 2 1)

???

X(t 2 K0)
41 3

E(t)

0

???

0
4 and again we got two recursive equations which could be

used to estimate the state-vector F(t), or even only its
upper part, which corresponds to the new optical flow to
be estimated—X(t). The new defined problem is more⇒ Ỹ(t) 5 H̃(t)F(t) 1 Ẽ(t) EhẼ(t)ẼT(t 2 v)j 5 W̃E(t)d(v)

(3.19) complex than the one originated from the first-order AR
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smoothness model since the matrix R̃(t) is of size [2K0N2 3 beyond that, the second equation above is trivial with no
contribution to the estimation goals, we can use the first2K0N2], compared to the size of R(t), [2N2 3 2N2].

The development of the Pseudo-RLS, M-SD, and equation alone as a recursive update for X̂(t):
M-LMS algorithms is very similar to the one presented
earlier for the first order AR smoothness model. In this

X̂(t) 5 [I 2 e[H T(t)H(t) 1 bSTS]]framework we shall present only the M-LMS approach for
3 [aX̂(t 2 1) 1 (1 2 a)X̂(t 2 2)] 1 eH T(t)Y(t).second order AR model. The M-LMS algorithm can be

(3.28)obtained from the pseudo-RLS direct approach by two
major steps—fixing that l(t) 5 0, and performing several
SD iterations per time point. The equation obtained from As expected, the recursive equation X̂(t) uses second order
the first step is history, and performing M iterations of Eq. (3.28) gives

the second order M-LMS algorithm. By assuming that
a 5 1, Eq. (3.28) is reduced to the first order AR modelF̂1(t) 5 AF̂m(t 2 1) 1 es 2

mhH̃T(t)W21
Ẽ (t, 0)Ỹ(t)

M-LMS algorithm as given by Eq. (3.12).
2 H̃T(t)W21

Ẽ (t, 0)H̃(t)AF̂m(t 2 1)j

4. CONVERGENCE PROPERTIES OF THE
5 FaI (1 2 a)I

I 0
G F̂m(t 2 1) PROPOSED ALGORITHMS

In the previous section we proposed some relatively
1 e HFH T(t)Y(t)

0
G (3.25) simple algorithms for the recursive estimation of optical

flow for image sequences. In this section we analyze the
properties of three of those algorithms. All three are first

2 FH T(t)H(t) 1 bSTS 0

0 0
G order AR smoothness model algorithms—the pseudo-

RLS, the M-SD, and the M-LMS. The analysis of higher
order smoothness models can be carried out using simi-FaI (1 2 a)I

I 0
G F̂m(t 2 1)J lar approach.

Before we start our analysis let us recall the underlying
and the equation for the second step (M steepest descent model assumption for X(t), the optical flow vector. Rewrit-
steps) gives the equation ing Eqs. (3.1) and (3.2), we have

F̂k(t) 5 F̂k21(t) 1 ehH̃T(t)Ỹ(t) 2 H̃T(t)H̃(t)F̂k21(t)j 5 F̂k21(t)
X(t) 5 X(t 2 1) 1 N(t)

N(t) ⇒ Gh0, WN(t) 5 s 2
NIj1 e HFHT(t)Y(t)

0
G (3.26)

Ỹ(t) 5 C(t)X(t) 1 V(t) (4.1.1)

2 FHT(t)H(t) 1 bSTS 0

0 0
G F̂k21(t)J

V(t) ⇒ G H0, WV(t) 5 Fs 2
eI 0

0 s 2
f I
GJ,

for k 5 2 to m. Bearing in mind that the state-vector F(t)
contains two optical flow vectors, we can write the above

wherevector–matrix equation as two equations,

F X̂(t)

X̂(t 2 1)
G5 ? ? ? Ỹ(t) 5 FY(t)

0
G; C(t) 5 FH(t)

S
G; V(t) 5 FE(t)

F(t)
G. (4.1.2)

4.1. The Pseudo-RLS Algorithm Analysis
5 3

[I 2 e[H T(t)H(t) 1 bSTS]][aX̂(t 2 1) 1

(1 2 a)X̂(t 2 2)] 1 eH T(t)Y(t)

X̂(t 2 1)
4,

With the model assumed in (4.1.1), as we stated before,
the first approach that comes to mind is the Kalman filter.

(3.27) This approach is, however, computationally prohibitive.
Instead we proposed the pseudo-RLS algorithm, which as
we have seen in Section 3.3 is defined by the equation:but since we are interested in X(t) rather than F(t), and
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R(t)X̂(t) 5 P(t), (4.1.3) l(t1 1 1)P1(t1 1 1)R(t1)

5 l(t1 1 1)a(t1 1 1)R21(t1)R(t1)where R(t) and P(t) satisfy the updating formula
1 l (t1 1 1)(P21

1 (t1) 1 CT(t1)W21
V (t1)C(t1))21R(t1)

R(t) 5 l(t)R(t 2 1) 1 CT(t)W21
V (t)C(t) · s 2

e (4.1.4)
5 [1 2 l(t1 1 1)]I

P(t) 5 l(t)P(t 2 1) 1 CT(t)W21
V (t)Ỹ(t) · s 2

e (4.1.5)
1 l(t1 1 1)[I 1 P1(t1)CT(t1)W21

V (t1)C(t1)]21P1(t1)R(t1).

and 0 , l(t) , 1. We first establish a relationship between
But by (4.1.4) and (4.1.2), for t 5 t1 we havethe pseudo-RLS and the Kalman filter.

THEOREM 4.1.–1. The pseudo-RLS algorithm is in fact P1(t1)R(t1) 5 l(t1)P1(t1)R(t1 2 1) 1 P1(t1)CT(t1)W21
V (t1)C(t1)

the Kalman filter when the model assumption in (4.1.1) is
5 I 1 P1(t1)CT(t1)W21

V (t1)C(t1),replaced by

so we get by substitutionX1(t) 5 X1(t 2 1) 1 N1(t)

N1(t) ⇒ Gh0, WN1
(t) 5 a(t)R21(t 2 1)j l(t1 1 1)P1(t1 1 1)R(t1) 5 [1 2 l(t1 1 1)]I

1 l(t1 1 1)[P1(t1)R(t1)]21P1(t1)R(t1) 5 IỸ(t) 5 C(t)X1(t) 1 V(t) (4.1.6)

and using simple induction (4.1.12) follows for all t . 0.V(t) ⇒ G H0, WV(t) 5 Fs 2
eI 0

0 s 2
f I
GJ,

Now substituting (4.1.3) in (4.1.4) and using (4.1.12) to
show that CT(t)W21

V (t) 5 R(t)K(t), we can readily show
that X̂(t) in (4.1.3) satisfies Eqs. (4.1.8), which completeswhere
the proof. n

The significance of Theorem 4.1–1 can be seen in thea(t) 5
1 2 l(t)

l(t)
. (4.1.7)

following result, which relies heavily on Theorem 4.1–1.

THEOREM 4.1–2. The pseudo-RLS algorithm guaran-Proof. The Kalman filter equations for the model
tees an unbiased estimate of the optical flow X(t), and if we(4.1.6) are given by
choose l(t) such that

X̂1(t) 5 X̂1(t 2 1) 1 K(t)[Ỹ(t) 2 C(t)X̂1(t 2 1)] (4.1.8)
l(t) #

1
1 1 s 2

NiR(t 2 1)i
, (4.1.13)

K(t) 5 P1(t)CT(t)[C(t)P1(t)CT(t) 1 WV(t)]21 (4.1.9)

and we are guaranteed to have

P1(t 1 1) 5 P1(t) 1 WN1
(t 1 1) S(t) 5 Eh[X̂(t) 2 X(t)][X̂(t) 2 X(t)]Tj # R21(t). (4.1.14)

2 P1(t)CT(t)[C(t)P1(t)CT(t) (4.1.10)
Namely, the pseudo-RLS estimation error covariance ma-1 WV(t)]21C(t)P1(t).
trix is bounded by the matrix R21(t).

The matrix P1(t) plays the role of the prediction error Proof. The unbiasness of the estimate follows directly
covariance matrix in the Kalman filter. Then, assuming the from Theorem 4.1–1 and the Kalman filter properties. For
initial conditions satisfy S(t) we have from (4.1.1), Theorem 4.1–1, and (4.1.8)

l(1)P1(1)R(0) 5 I, (4.1.11) S(t) 5 (I 2 K(t)C(t))(S(t 2 1)
1 WN(t))(I 2 K(t))T 1 K(t)WV(t)KT(t).

(4.1.15)

we can show that
While using (4.1.1), (4.1.9), (4.1.10), and Theorem 4.1–1

l(t)P1(t)R(t 2 1) 5 I ;t . 0. (4.1.12) we can also show that

l(t 1 1)P1(t 1 1) 5 (I 2 K(t)C(t))P1(t)(I 2 K(t)C(t))TTo show that let us assume (4.1.12) holds for some t 5 t1 .
Then, using (4.1.10), (4.1.12), and (4.1.7) we get 1 K(t)WV(t)KT(t).
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Subtracting this from (4.1.15), we get X̂0(t) 5 X̂M(t 2 1)

Xj(t) 5 X̂j21(t) 1 e [P(t) 2 R(t)X̂j21(t)] for 1 # j # M.
S(t) 2 l(t 1 1)P1(t 1 1)

(4.2.1)
5 (I 2 K(t)C(t))(S(t 2 1) 2 l(t)P1(t))(I 2 K(t)C(t))T

1 (I 2 K(t)C(t))[WN(t) 2 (1 2 l(t))P1(t)](I 2 K(t)C(t))T.
Chaining these equations together we get a single recursive
equation which presents the relation between the MthClearly, from (4.1.1) and (4.1.12) we have
result for time (t 2 1) and the Mth result for time (t),

WN(t) 2 (1 2 l(t))P1(t)
# s 2

NR21(t 2 1)[R(t 2 1) 2 iR(t 2 1)iI ] # 0.
(4.1.17)

X̂M(t) 5 [I 2 eR(t)]M X̂M(t 2 1) 1 e OM21

k50
[I 2 eR(t)]kP(t)

On the other hand, using the definition of C(t) in (4.1.2)
5 [I 2 eR(t)]M[X̂M(t 2 1) 2 X̂opt(t)] 1 X̂opt(t),

and Eqs. (4.1.1), (4.1.4), (4.1.9), and (4.1.12) we can con- (4.2.2)
clude that there exists « . 0 such that

where we have used the fact that R(t)X̂opt(t) 5 P(t), and
the formula for a sum of geometric sequences [16]. The(I 2 K(t)C(t)) 5 FI 1 P1(t)C(t)W21

V (t)CT(t)G21

#
1

1 1 «
.

relationship between the M-SD algorithm and the pseudo-
(4.1.18) RLS solution is given by the following theorem.

Then, assuming that S(0) # l(1)P1(0), (4.1.14) follows THEOREM 4.2–1. Consider the M-SD algorithm as given
directly from (4.1.16), (4.1.17), and (4.1.8), and the theorem in Eq. (4.2.2) with arbitrary initial conditions X̂M(0), P(0),
is proven. n and R(0) $ 0. Let

The pseudo-RLS estimation result will be denoted in
the following analysis as X̂opt(t) 5 R21(t)P(t). These vectors

0 , e ,
2

lmax
, where lmax 5 sup

t.0
H max

1#k#N2
hlkhR(t)jjJ.are not obtainable by practical means since they require

the inversion of R(t) which is an impossible task. The (4.2.3)
purpose of the M-SD and the M-LMS algorithms is to
supply an estimate which attempts to approximate Then ' 0 , « , 1 such that
X̂opt(t)—this is the reason we denote the pseudo-RLS re-
sult as an optimal sequence.

The following lemma presents an important property of ;t . 0 sD(t) 5
D

EhiX̂M(t) 2 X̂opt(t)ij
the sequence hX̂opt(t)jt.0—bounded variation of the se-
quence. This property will be used in the analysis of the #

DD ? [1 2 «]M

1 2 [1 2 «]M 1 [1 2 «]Mt ? sD(0).
M-SD and the M-LMS estimation algorithms.

(4.2.4)
LEMMA 4.1–1. The sequence hX̂opt(t)jt.0 satisfies the fol-

lowing property:
Proof. Since R(t) is positive definite, the spectral radius

of the matrix M(t) 5 [I 2 eR(t)]M isDD 5
D

sup
t.1

EhiX̂opt(t) 2 X̂opt(t 2 1)ij , y. (4.1.18)

iM(t)i2 5 i[I 2 eR(t)]M i2 # I 2 eR(t)iM
2Proof. The proof is given in Appendix B. n

5 iI 2 eU(t)D(t)UT(t)iM
2 (4.2.5)In this sub-section we have shown that the pseudo-RLS

algorithm is actually an approximated Kalman filter with 5 iU(t)[I 2 eD(t)]UT(t)iM
2 5 iI 2 eD(t)iM

2 .
bounded estimation error and unbiased estimation. How-
ever, despite the proposed approximation, the pseudo-RLS The obtained matrix I 2 eD(t) is diagonal with 1 2 elk(t)
algorithm is yet far too complex to be implemented. The on the main diagonal. The choice of e as given in (4.2.3)
M-SD and the M-LMS algorithms are practical approxima- guarantees that ulhM(t)ju , 1, and thus
tions of the pseudo-RLS. In the following subsections we
shall analyze their properties.

' 0 , « , 1 u;t . 0 iM(t)i2 # [1 2 «]M. (4.2.6)
4.2. The M-SD Algorithm Analysis

The M-SD algorithm equations updating the estimate In order to guarantee that such a choice of e always exists
we must show the following two things:of the optical flow in time are given by
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Then, from (4.3.1), we get
lmax 5 sup

t.0
H max

1#k#N2
hlkhR(t)jjJ, y;

(4.2.7)
x̂m(t) 5 [I 2 er(t)]Mx̂m(t 2 1) 1 e Om21

k50
[I 2 er(t)]kp(t)

lmin 5 inf
t.0
H min

1#k#N2
hlkhR(t)jjJ. 0.

5 [I 2 er(t)]m[x̂m(t 2 1) 2 x̂opt(t)] 1 x̂opt(t). (4.3.3)

The minimum eigenvalue is indeed higher than zero since
This equation is similar to the one given for the M-SDR(t) is positive definite for all t. The maximum eigenvalue
algorithm with matrix r(t) replacing R(t), vector p(t) replac-can be bounded by
ing P(t), and x̂opt(t) replacing X̂opt(t). Note that the se-
quence hx̂opt(t)jt$0 is actually the Horn and Schunck opticallmax , sup

t$0
trhR(t)j

flow as described in Eq. (2.9).
From Eq. (4.3.3) clearly we get x̂m(t) R x̂opt(t) as

5 sup
t$0

Oy
k50

lk trhHT(t 2 k)H(t 2 k) 1 bSTSj m R y. However, as argued earlier, this is not a desired
(4.2.8) result. In contrary to the M-SD algorithm, increasing the

number of iterations per time point does not necessarily
#

trhHT(t2k)H(t2k)j#T1

trhbSTSj#T2

Oy
k50

lk [T1 1 T2] 5
T1 1 T2

1 2 l
, y. improve the estimation performance. Actually, since the

M-LMS can be obtained from the M-SD algorithm using
l(t) 5 0 (thus removing the temporal smoothness factor),
using small m values is the only mechanism by which toUsing (4.2.2) we get
reachieve the temporal memory.

X̂M(t) 2 X̂opt(t) 5 [I 2 eR(t)]Mh[X̂M(t 2 1) 2 X̂opt(t 2 1)] THEOREM 4.3-1. Consider the M-LMS algorithm as
2 [X̂opt(t) 2 X̂opt(t 2 1)]j. given in Eq. (4.3.1) with arbitrary initial condition x̂m(0).

(4.2.9) Let

Applying Euclidean norm and expectation to the above
equality, using the triangle inequality, and inserting the 0 , e ,

2
lmax

, where lmax 5 sup
t.0

H max
1#k#N2

hlkhr(t)jjJ.
result of Lemma 4.1-1 we get

(4.3.4)
sD(t) # [1 2 «]MhsD(t 2 1) 1 DDj. (4.2.10)

Then ' 0 , « , 1 and 0 , C1 , y such that
By applying the above inequality recursively we get the
inequality in (4.2.4), which completes this theorem’s
proof. n ;t . 0 sf(t) 5

D
Ehix̂m(t) 2 X̂opt(t)ij

From the above theorem it is evident that the smaller the
# [1 2 «]mtsf(0) 1

[[1 2 «]m21(C1 1 1) 1 C1]
1 2 [1 2 «]m DD .changes in X̂opt(t) with time, the better the M-SD tracking

capabilities are. Increasing M clearly improves the M-SD (4.3.5)
tracking performance—any desired accuracy can be
reached with large enough M.

Proof. Using Eqs. (4.1.3–5) and (4.3.1) we get that for
the first iteration4.3. The M-LMS Algorithm Analysis

The M-LMS algorithm updating equations are
f̂1(t) 5

D
x̂1(t) 2 X̂opt(t)

x̂0(t) 5 x̂m(t 2 1) 5 x̂m(t 2 1) 2 X̂opt(t) 1 e[P(t) 2 R(t)x̂m(t 2 1)]
2 le[P(t 2 1) 2 R(t 2 1)x̂m(t 2 1)]x̂j(t) 5 x̂j21(t) 1 e[HT(t)Y(t) (4.3.6)

2 [HT(t)H(t) 1 bSTS]x̂j21(t)] for 1 # j # m. 5 [I 2 eR(t)][f̂m(t 2 1) 2 D̂opt(t)]
(4.3.1) 1 leR(t 2 1)f̂m(t 2 1)

5 [I 2 er(t)]f̂m(t 2 1) 2 [I 2 eR(t)]D̂opt(t),Let us define the sequence x̂opt(t) through p(t) 5
r(t)x̂opt(t), where

where we have defined D̂opt(t) 5
D

X̂opt(t) 2 X̂opt(t 2 1).
Similarly for the 2 # k # m other iterations we getr(t) 5 H T(t)H(t) 1 bSTS; p(t) 5 HT(t)Y(t). (4.3.2)
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f̂k(t) 5
D

x̂k(t) 2 X̂opt(t)

5 x̂k21(t) 2 X̂opt(t) 1 e[P(t) 2 R(t)x̂k21(t)]
2 le[P(t 2 1) 2 R(t 2 1)x̂k21(t)] (4.3.7)

5 f̂k21(t) 2 eR(t)f̂k21(t)
2 leR(t 2 1)[X̂opt(t 2 1) 2 x̂k21(t)]

5 [I 2 er(t)]f̂k21(t) 1 leR(t 2 1)D̂opt(t).

Chaining these m equations together we get

f̂m(t) 5 [I 2 er(t)]m f̂m(t 2 1)
2 [I 2 er(t)]mr21(t)R(t)D̂opt(t) (4.3.8)
1 [r21(t)R(t) 2 I]D̂opt(t).

Choosing e according to (4.3.4) guarantees that '« [
(0, 1)u ;t iI 2 er(t)i , 1 2 «. Applying Euclidean norm
and expectation to the above equality and inserting the FIG. 1. The source image.
result of Lemma 4.1–1, we get

M-SD both the bound derived and our experiments show
sf(t) 5

D
Ehif̂m(t)ij # [1 2 «]msf(t 2 1) monotonicity—the larger M is, the better the performance.
1 [[1 2 «]m21C1 1 [C1 1 1]]DD ,

(4.3.9)
However, in the M-LMS, as we commented after equation
(4.3.3), the performance for large M is not satisfactory.
Hence, there seems to be a value of M at which the perfor-where we have used the bounds
mance is optimal and increasing M beyond this value causes
deterioration in performance. We did not succeed in cap-

ir21(t)R(t)i # ir21(t)i ? iR(t)i # C1 turing this phenomenon in our derivation of the bounds
(4.3.10) in Eq. (4.3.5) and Eq. (4.3.8).iI 2 r21(t)R(t)i # 1 1 ir21(t)i ? iR(t)i # C1 1 1.

5. SIMULATIONS AND RESULTSApplying the above inequality, recursively we get

In this section we shall present various demonstrations
of the proposed optical flow estimation algorithms andsf(t) # [1 2 «]mtsf(0) 1 Ot21

k50
[1 2 «]mk

discuss their properties. All the tests were performed on
semisynthetic image sequences with a priori known optical[[1 2 «]m21C1 1 (C1 1 1)]DD
flow, in order to be able to quantify the results. There were
four different image sequences, all based on a single image(4.3.11)# [1 2 «]mtsf(0) 1

1 2 [1 2 «]mt

1 2 [1 2 «]m shown in Fig. 1.
In the first and second image sequences the optical flow[[1 2 «]m21C1 1 (C1 1 1)]DD is constant in time—one with constant translations ([20.7,

0.5] per image) and the second with constant rotation (1.28
# [1 2 «]mtsf(0) 1

[[1 2 «]m21C1 1 (C1 1 1)]
1 2 [1 2 «]m DD ,

per image). In the third image sequence there is a constant
rotation as above with additional zoom in and out in the
form of half a cycle of a sine function in the range [0.85–which is exactly the statement of the theorem. n
1.15]. The fourth sequence was constructed by constant
translation ([20.6, 0] per image) with the same zoom inWe have derived performance bounds for the M-SD and

M-LMS algorithms. While these bounds are quite similar, and out as in the third sequence. The optical flow sequences
in the third and fourth sequences thus change in time.our experience indicates a difference in the performance

of these two algorithms. In particular, we refer to the de- Figures 2, 3, 4, and 5 each present six equally spaced images
and optical flow maps from these sequences. Each of thesependence of the performance of these algorithms on the

value of M—the repetitious between-sample times. In the four sequences contained 101 images of size [50 3 50]
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FIG. 2. The first image sequence.

pixels. Each image in these movies was contaminated by
EWMSE(t) 5

iX̂(t) 2 X(t)iW(t)

iX(t)i2additive Gaussian white random noise with variance sn 5
4, where the dynamic range of the images is [0, 255].

Because there are too many result graphs, we have cho-
sen to include only part of the graphical results and only
for the third sequence only, and to refer to all the other 5!ON2

k51
Wk(t)[X̂k(t) 2 Xk(t)]2

ON2

k51
Wk(t)[Xk(t)]2

. (5.2)
results only if important contradictions exists.

In all the demonstrations we have compared the esti-
mated optical flow to the true optical flow in order to
determine quantitative results. Two formulations for the

The weights that were used in the WMSE were basedcomputation of this estimation errors where used—the
on the confidence measures presented in Section 3.5. Thedirect (normalized) mean square error (DMSE) (as used
confidence measures were scaled so that the least confidentin [8]) and the weighted (normalized) mean square error
estimates are given a zero weight, and after this scaling(WMSE). These two errors were computed according to
each motion vector received the square of its confidence
measure as its weight (this choice was found empirically
to be good).EDMSE(t) 5

iX̂(t) 2 X(t)i2

iX(t)i2 The image sequences were spatially blurred using a 5 3
5 uniform smoothing kernel before entering the optical
flow estimation process. This step is well recommended [2,
4, 7, 8] for additive noise suppression and better match to

5!ON2

k51
[X̂k(t) 2 Xk(t)]2

ON2

k51
[Xk(t)]2

(5.1) the differential framework. The boundaries of the images
were found to cause estimation errors because of the pre-
smoothing which is a neighborhood operation. In order to

FIG. 3. The second image sequence.
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FIG. 4. The third image sequence.

remove the influence of the spatial and temporal erroneous ing the matrix R(t) and the vector P(t) in time. Both
of them were initialized to zero for t 5 0. Unless statedgradients on the estimation results, we used a diagonal
otherwise, the iterative scheme was that used in normalizedweight matrix V in the quadratic term in Eq. (3.4). The
steepest descent, so the parameter e is determined inter-alternative squared error is therefore
nally. In all the simulations we tested the performance of
the algorithm twice—once with initialization X̂(0) 5 0 to

«2(t) 5 Oy
k50

lkhiY(t 2 k) 2 H(t 2 k)X(t)i2
V

(5.3)
learn the convergence properties, and ones with true opti-
cal flow X̂(0) 5 Xopt(1) to learn the steady-state and

1 biSX(t)i2
2j, tracking performances. However, we shall present the

X̂(0) 5 0 initialization only.
Graph 1 presents the influence of l on the algorithmwhere the diagonal of the matrix V is zero for boundary

pixels (three pixels from each border), and ones otherwise. performance for the third sequence. Since the third se-
quence has a temporally varying optical flow, a less thanThis way we also got as a byproduct that the confidence

measures of the estimate results in the boundaries were one forgetting factor is required in order to allow for
changes in the estimation process. Choosing l 5 0.8–0.85the lowest.

The Laplacian which was used is the one that was recom- (b 5 1000, and M 5 10 iterations) gave similar results—the
WMSE converged to less than 10% error for both zeromended by Horn and Schunch [2]. In lines which corre-

spond to boundaries of the optical flow, the main diagonal and true initializations. Graph 2 presents the performance
for varying b. It was found that b 5 300 gives the bestelement were modified to give that the sum of the elements

in the line is zero. The spatial derivatives were computed results, leading to less than 10% weighted estimation error
(l 5 0.85 and M 5 10). Graph 3 tested the influence ofwith the simple kernel [21, 0, 1]/2. The temporal gradients

were computed by simple subtraction of the current and the number of iterations M. As expected, the higher the
value of M, the faster the convergence, and to a lowerthe previous images.

We first present the various results which corresponds steady state error. In this case (l 5 0.85 and b 5 1000),
for M 5 30 we obtained 8% weighted estimation error.to the M-SD algorithm. In this algorithm we are propagat-

FIG. 5. The fourth image sequence.
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GRAPHS 1–4. The influence of l, b, M, and the replacement with the CG on the M-SD performance.

The final simulated comparison with regard to the M-SD (Graph 5). We have tried second order AR model by using
a 5 60.3. As can be shown from Graph 6, it was foundis the replacement of the NSD with the conjugate gradient

(CG). For a small number of iterations (M 5 2) this change that the smoothing choice a 5 0.3 gave slightly better
results. Increasing the number of iterations m in the lowalmost was not perceived. This is because two iterations

of the NSD are almost equivalent to two CG iterations. range of values (m , 50) gave better results both for
the convergence and the steady state results (Graph 7).For higher values of M (M 5 10 and 30) faster convergence

was obtained, but with the same steady state error. Graph Changing to the CG algorithm almost did not influence
the performance results (Graph 8).4 present these results.

Referring to the other image sequences, the results were Figure 6 presents the true optical flow (A) versus the
performance of the M-SD (B), the M-LMS (C), and thevery similar. The best l for the first and second sequences

was l 5 0.95, reflecting the fact that the optical flow se- Horn and Schunck (D) algorithms. The parameters for
the various parameters were chosen to be the ones withquence is constant in time. The best value of b was 5000

if fast convergence was sought, but higher values gave the best results from the previous graphs. As can be seen,
the M-SD and the M-LMS outperform the Horn andlower steady state error. The weighted errors for these

sequences was in the range 2–5%. The parameters that Schunck algorithm, and converge to high quality optical
flow.best matched the fourth sequence were l 5 0.8 and b 5

300. The steady state weighted error in this case was 12%. Generally speaking, we can make the following impor-
tant observations: First, the obtained DMSE for all theseWe now turn to present the various results which corre-

spond to the M-LMS algorithm. We have tested this algo- cases was significantly higher than the WMSE, revealing
the effectiveness of the proposed confidence measure. Sec-rithm simply by using the M-SD algorithm with l 5 0,

the iterative scheme that was used in normalized steepest ond, all the simulations revealed a robustness to the various
parameters involved—the performance does not changedescent. As before, we have made each test twice, for

X̂(0) 5 0 and for X̂(0) 5 Xopt(1), but only the zero initial- significantly with the parameters. Third, in order to get
better insight into the estimation error results we haveization will be presented here. The best value of b for the

third sequence was in the range b 5 300–1000. The steady simulated the Horn and Schunck algorithm on the same
sequences. Graph 9 shows the performance of the Hornstate weighted error was 10% (for m 5 10 iterations)
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GRAPHS 5–8. The influence of b, a, M, and the replacement with the CG on the M-LMS performance.

and Schunck algorithm [2] on the third sequence for vari- more computations to yield quite poor results. This com-
parison confirms our original claim that improvement isous values of b. As can be seen, the error is almost constant

and is relatively very high (WMSE 5 35%). We should possible both for the accuracy and complexity points of
view if the time axis is used properly.note that these results were obtained by performing 200

NSD iterations per each temporal point, thus using much One final remark that should be mentioned is this: we

FIG. 6. The optical flow, (A) true, (B) M-SD, (C) M-LMS, (D) Horn and Schunck algorithms.
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noted by #dhAj, is the number of its nonzero elements
relative to its size.

DEFINITION A-2. A matrix A is considered sparse if
#dhAj ! 1.

DEFINITION A-3. A sparse matrix A is structured if its
nonzero elements appear in a certain logical ordering.

THEOREM A-1. The sequence of matrices R(t) ( for
t . 0) in the pseudo-RLS algorithm are structured sparse
matrices for all t . 0 with fixed density #dhR(t)j > 19/N2

and fixed structure, where N2 is the number of pixels in
the images.GRAPH 9. Horn and Schunck algorithm performance.

Proof. The matrix R(t) is given by the equation

have simulated only image sequences with small image
R(t) 5 Oy

k50
lkhHT(t 2 k)H(t 2 k) 1 bSTSj

(A.1)
size—[50 3 50] pixels—because of MATLAB’s memory
and CPU limitations. We believe that for bigger images,

5 lR(t 2 1)1 HT(t)H(t) 1 bSTSthe proposed algorithms can perform better, yielding lower
weighted estimation error.

We start by analyzing the structure of the term
HT(t)H(t). The matrix H(t), as given in equation (2.4), is6. CONCLUSION
a row combination of two diagonal matrices, where each
of them is of size [N2 3 N2). Thus, the term HT(t)H(t) hasIn this paper we have presented new algorithms for the
the structure described in Fig. 2, and it is easy to see thatestimation of optical flow for image sequences. These new
there are 4N2 nonzero elements in this term.algorithms were based on the Horn and Schunck algorithm

The matrix S is built from two Laplacian matrices as[2], generalized to include temporal smoothness. The un-
described in Eq. (2.7), Denoting the Laplacian matrix asdertaken approach started from state-space equations
S, we have that S is symmetric and thusmodeling the estimation problem, but instead of applying

the Kalman filter, which seems natural at this point, we
chose to further simplify the model, leading to adaptive

STS 5FS 0

0 S
G ? FS 0

0 S
G5FS ? S 0

0 S ? S
G . (A.2)filtering formulations resembling the RLS and the LMS

algorithms [5, 10, 11].
The new estimation methods were shown to converge

Using the Laplacian kernel as defined by Horn andto the required optical flow sequence both by analytical
Schunck,analysis and simulations. Their main advantage is shown

to be the low complexity requirement, while they give more
accurate results than the Horn and Schunck algorithm.
Among the interesting features of these new algorithms KhLaplacianj 5 3

aQs Ah aQs

Ah 21 Ah

aQs Ah aQs
4 . (A.3)

are their simplicity, modularity, and robustness. By simple
parameter choice we can control the steady state estima-
tion error and convergence rate, at the expense of linearly

We have that each line in S contains the most nine nonzerogrowing computational complexity.

APPENDIX A

The Structured Properties of the Matrix R(t)

The proposed pseudo-RLS and M-SD algorithms con-
struct a matrix R(t) as part of the estimation process. This
appendix is devoted to the discussion on the sparseness of
this matrix which is a very important property that can be
used to save computations and memory.

FIG. A-1. The structure of H T(t)H(t).DEFINITION A-1. A density number of a matrix A, de-
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elements. The only lines which do not satisfy this property
S(t21)5

D
Eh[X̂opt(t21)2X(t21)][X̂opt(t21)2X(t21)]Tj.

are the ones representing image boundaries. The multipli-
cation of S by S is simply the performance of the Laplacian

Taking the spectral norm on both sides of Eq. (B.6) we get
twice, and the overall kernel size of this combination con-
tains 37 nonzero elements. Thus, the term STS contains a iSD(t)i# iK(t)C(t)i2[iSE(t)i1 iWN(t)i]1 iK(t)WV(t)KT(t)i.
little less than 2 ? 37N2 nonzero elements. However, the (B.8)
main diagonal in STS is full, and so is the main diagonal of
HT(t)H(t). Thus, the overall number of nonzero elements is From the Kalman filter equations we have that I 2
74N2 1 4N2 2 2N2 5 76N2, and when divided by the K(t)C(t) 5 P̂(t)P̃21(t), where P̂(t) is the Kalman estimation
matrix size 4N4 we get that #dhHT(t)H(t) 1 bSTSj > error covariance matrix and P̃(t) is the Kalman prediction
19/N2. The nonzero elements of the overall matrix error covariance matrix. Since P̂(t) # P̃(t), we get that
HT(H(t) 1 bSTS are very well structured, populating 38

0 # I 2 K(t)C(t) # I ⇒ iK(t)C(t)i # 2. (B.9)specific diagonals.
Since the position of the nonzero elements in H(t) does

The matrix S(t 2 1) is the pseudo-RLS estimation errornot depend on the time t, we have that any combination
covariance matrix. Based on the result of Theorem 4.1–2of such matrices has the same density number, and ac-
we havecording to Eq. (A.1) the above density also applied to R(t).

Thus, the density is very small, which means that R(t) is
very sparse, the density number is indeed constant in time, S(t) # R21(t) 5 FOt

k50
lkCT(t 2 k)W 21

V C(t 2 k)G21

and these matrices are structured with constant ordering
in time. n

#
1 2 l

1 2 lt11 [STW 21
F S]21 # [STW 21

F S]21 (B.10)APPENDIX B

⇒ iS(t)i # i[STW 21
F S]21i , y.Bounding the Temporal Change of the

Sequence hX̂opt(t)jt.0
The norm iK(t)WV(t)KT(t)i is bounded since

LEMMA B-1. The sequence hX̂opt(t)jt.0 satisfies the fol-
lowing property for all t . 1: iK(t)WV(t)KT(t)i # trhK(t)WV(t)KT(t)j

5 trhKT(t)K(t)WV(t)j
(B.11)

DD 5
D

sup
t.1

EhiX̂opt(t) 2 X̂opt(t 2 1)ij , y. (B.1) # NiKT(t)K(t)WV(t)i
# NiKT(t)K(t)i ? maxhs 2

e , s 2
f j

Proof. Let us first bound the spectral norm of the auto-
and the norm of KT(t)K(t) is bounded bycorrelation matrix

iKT(t)K(t)i5 i(11a)2P̂(t21)CT(t)[(11a)C(t)P̂(t21)CT(t)
SD(t) 5

D
Eh[X̂opt(t) 2 X̂opt(t 2 1)][X̂opt(t) 2 X̂opt(t 2 1)]Tj

1WV(t)]22 ? [(11a)C(t)P̂(t21)CT(t)(B.2)
1WV(t)]21C(t)P̂(t21)i

using the relations (4.1.8), (4.1.1), and (4.1.2): #(11a)2NiC(t)P̂2(t21)CT(t)i ? maxhs 22
e ,s 22

f j

#(11a)2N2iCT(t)C(t)i ? iP̂(t21)i2 ? maxhs 22
e ,s 22

f jX̂opt(t) 5 [I 2 K(t)C(t)]X̂opt(t 2 1) 1 K(t)Ỹ(t) (B.3)
#y.

Ỹ(t) 5 C(t)X(t) 1 V(t) 5 C(t)X(t 2 1) (B.12)
1 C(t)N(t) 1 V(t). (B.4)

Using all the above results and inserting them into (B.8)
Combining these relations we get we get that iSD(t)i # C , y. In order to prove the inequality

(B.1) we observe that
X̂opt(t) 2 X̂opt(t 2 1) 5 K(t)[C(t)[X(t 2 1)

(B.5)
2 X̂opt(t 2 1)] 1 V(t) 1 C(t)N(t)]. EhiX̂opt(t) 2 X̂opt(t 2 1)ij

5 EhÏ[X̂opt(t) 2 X̂opt(t 2 1)]T[X̂opt(t) 2 X̂opt(t 2 1)]jThus, the matrix SD(t) can be represented as
# ÏEh[X̂opt(t) 2 X̂opt(t 2 1)]T[X̂opt(t) 2 X̂opt(t 2 1)]j

SD(t) 5 K(t)C(t)[S(t 2 1) 1 WN(t)]HT(t)KT(t)
(B.6) 5 ÏtrhSD(t)j # ÏNiSD(t)i , y

(B.13)1 K(t)WV(t)KT(t),

where we define and the lemma is proved. n
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