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Abstract

Man-made structures often appear to be distorted in
photos captured by casual photographers, as the scene lay-
out often conflicts with how it is expected by human per-
ception. In this paper we propose an automatic approach
for straightening up slanted man-made structures in an in-
put image to improve its perceptual quality. We call this
type of correction upright adjustment. We propose a set
of criteria for upright adjustment based on human percep-
tion studies, and develop an optimization framework which
yields an optimal homography for adjustment. We also de-
velop a new optimization-based camera calibration method
that performs favorably to previous methods and allows the
proposed system to work reliably for a wide variety of im-
ages. The effectiveness of our system is demonstrated by
both quantitative comparisons and qualitative user studies.

1. Introduction
A large portion of consumer photos contain man-made

structures, such as urban scenes with buildings and streets,
and indoor scenes with walls and furniture. However,
photographing these structures properly is not an easy
task. Photos taken by amateur photographers often contain
slanted buildings, walls, and horizon lines due to improper
camera rotations, as shown in Fig. 1. On the contrary, our
visual system always expects tall man-made structures to be
straight-up, and horizon lines to be parallel to our eye level.
This conflict leads us to a feeling of discomfort when we
look at a photo containing slanted structures.

Assuming the depth variations of the scene relative to
its distance from the camera are small, correcting a slanted
structure involves a 3D rotation of the image plane. We
call this type of correction upright adjustment, since its
goal is to make man-made structures straight up as ex-
pected by human perception. Similar corrections have been
known as keystoning and perspective correction, which can
be achieved by manually warping the image using existing
software such as Photoshop, or during capture using a spe-

(a) Urban building

(b) Planar board

(c) Indoor restaurant

(d) Urban scene

(e) Natural scene with mountains and trees

Figure 1. Various examples of upright adjustment of photos. (left)
original; (right) our result.



cial Tilt-Shift lens1. However, the target domain of these
tools is mostly facades of buildings, while our upright ad-
justment method does not explicitly assume specific types
of objects in the scene. In addition, manual correction not
only requires special skills, but also becomes tedious when
we need to process hundreds of photos from a trip.

In this paper, we propose a fully automatic system for
upright adjustment of photos. To the best of our knowl-
edge, our system is the first one that automatically handles
this kind of correction, although there have been several pa-
pers dealing with sub-problems of our framework. Our sys-
tem introduces several novel technical contributions: (1) we
propose various criteria to quantitatively measure the per-
ceived quality of man-made structures, based on previous
studies on human perception; (2) following the criteria, we
propose an energy minimization framework to compute an
optimal homography that can effectively minimize the per-
ceived distortion of slanted structures; and (3) we propose a
new camera calibration method which simultaneously esti-
mates vanishing lines and points as well as camera param-
eters, and is more accurate and robust than the state-of-the-
art. Although not designed to, our system is robust enough
to handle some natural scenes as well (see Fig. 1e and ad-
ditional results in the supplementary material). We evaluate
the system comprehensively through both quantitative com-
parisons and qualitative user studies. Experimental results
show that our system works reliably on a wide range of im-
ages without the need for user interaction.

1.1. Related work

Photo aesthetics and composition Automatic photo aes-
thetics evaluation tools [5, 11, 16, 7] and composition ad-
justment systems [15, 22] have been proposed recently,
which introduced various criteria for aesthetics and com-
position quality of photographs. We propose a set of new
criteria specific to the uprightness of man-made structures,
based on well-known studies in human perception. Our
method is based on an objective function that quantifies
these criteria, and thus could potentially be used to enhance
previous aesthetic evaluation methods with an additional
uprightness score.

Manual correction Commercial software such as Adobe
Photoshop provides manual adjustment tools, such as lens
correction, 3D image plane rotation, and cropping. By com-
bining these tools together, an experienced user can achieve
similar upright adjustment results to our system. Profes-
sional photographers sometimes use an expensive Tilt-Shift
lens for adjusting the orientation of the plane of focus
and the position of the subject in the image for correcting
slanted structures and converging lines. Both solutions re-
quire sophisticated interaction which is hard for a novice.

1http://en.wikipedia.org/wiki/Tilt-shift photography

Carroll et al. [2] proposed a manual perspective adjustment
tool based on geometric warping of a mesh, which is more
general than a single homography used in this paper, but
requires accurate manual control.

Image rectification and rotation Robust methods for im-
age rectification [14, 18, 23] were developed by analyz-
ing the distortions of planar objects in the scene, such as
windows of buildings. However, the main purpose of the
methods was to use rectified objects in the image as input
for other applications, such as 3D geometry reconstruction
or texture mapping. Gallagher [9] proposed an automatic
method that adjusts rotation of an image, but the method
is limited to only in-plane rotations. Our method does not
simply rectify or rotate the input but reproject overall scene
of the image to obtain a perceptually pleasing result.

Camera calibration Calibrating camera parameters2

from a single image is a well-studied problem [12, 10, 6, 20,
23, 17]. Most approaches employ a two-step framework: a
set of vanishing points/lines is first extracted from the input
image, and then used to calibrate the camera. In contrast,
our system simultaneously estimates vanishing lines/points
and camera parameters in a single optimization framework.
Our technique is thus more robust and accurate than previ-
ous methods.

2. Adjustment Criteria and Formulation

In this section, we first discuss a set of criteria for upright
adjustment of photos. We then propose our formulation of
the image transformation used for upright adjustment.

2.1. Criteria

Scenes with well-structured man-made objects often in-
clude many straight lines that are supposed to be horizontal
or vertical in the world coordinates. Our proposed criteria
reflect these characteristics.

Picture frame alignment When looking at a big planar
facade or a close planar object such as a painting, we usually
perceive it as orthogonal to our view direction, and the hor-
izontal and vertical object lines are assumed to be parallel
and perpendicular to the horizon, respectively. When we see
a photo of the same scene, the artificial picture frame im-
poses significant alignment constraints on the object lines,
and we feel discomfort if the object line directions are not
well aligned with the picture frame orientation [13, 8]. Figs.
1a and 1b show typical examples. It is also important to note

2Note that by camera parameter calibration we mean estimation of the
intrinsic parameter and external orientation matrices of a camera, not radial
and other non-linear distortions that are assumed in our work to be small
or already corrected.



that such an artifact becomes less noticeable as the mis-
alignments of line directions become larger, since in that
case we begin to perceive 3D depths from a slanted plane.

Eye level alignment The eye level of a photo is the 2D
line that contains the vanishing points of 3D lines paral-
lel to the ground [4]. In a scene of an open field or sea,
the eye level is the same as the horizon. However, even
when the horizon is not visible, the eye level can still be
defined as the connecting line of specific vanishing points.
It is a well-known principle in photo composition that the
eye level or horizon should be horizontal [8]. The eye level
alignment plays an important role in upright adjustment es-
pecially when there exist no major object lines to be aligned
to the picture frame. In Fig. 1d, the invisible eye level is
dominantly used to correct an unwanted rotation of the cam-
era.

Perspective distortion Since we do not usually see ob-
jects outside our natural field of view (FOV), we feel an
object is distorted when the object is pictured as if it is out
of our FOV [13, 4]. We can hardly see this distortion in
ordinary photos, except those taken with wide-angle lenses.
However, such distortion may happen if we apply a large ro-
tation to the image plane, which corresponds to a big change
of the camera orientation. To prevent this from happening,
we explicitly constrain perspective distortion in our upright
adjustment process.

Image distortion When we apply a transformation to a
photo, image distortion cannot be avoided. However, hu-
man visual system is known to be tolerant to distortions of
rectangular objects, while it is sensitive to distortions of cir-
cles, faces, and other familiar objects [13]. We consider this
phenomenon in our upright adjustment to reduce the per-
ceived distortions in the result image as much as possible.

2.2. Formulation

We assume no depth information is available for the in-
put photo, and thus use a homography to transform it for
upright adjustment. A more complex transformation could
be adopted, e.g., content-preserving warping [2]. However
such a transformation contains more degrees of freedom,
and therefore requires a large amount of reliable constraints
which should be fulfilled with user interaction or additional
information about the scene geometry. A homography pro-
vides a reasonable amount of control to achieve visually
plausible results in most cases, especially for man-made
structures.

A given image can be rectified with a homography ma-
trix H using the following equation [10]:

p′ = Hp = K(KR)−1p, (1)

where p and p′ represent a position and its reprojection in
the image, respectively. K and R are intrinsic parameter
and orientation matrices of the camera, respectively:

K =

 f 0 u0
0 f v0
0 0 1

 andR = RψRθRφ,

where Rψ , Rθ, and Rφ are rotation matrices with angles ψ,
θ, and φ along the x, y, and z axes, respectively.

Although image rectification is useful for other applica-
tions, it can often generate a visually unpleasing result (see
Fig. 6b). For upright adjustment, we modify Eq. (1) to ob-
tain more flexible control for enhancing the perceptual qual-
ity of the results than a simple rectification. Our homogra-
phy is defined by the following reprojection model:

p′ = Hp = K1

{
R1(KR)−1p+ t1

}
, (2)

where

K1 =

 f1x 0 u1
0 f1y v1
0 0 1

 , (3)

R1 = Rψ1Rθ1Rφ1 , and t1 = [t1x t1y 0]
T .

Compared to Eq. (1), Eq. (2) contains a new intrinsic
parameter matrix K1 with additional 3D rotation R1 and
translation t1. This reprojection model implies re-shooting
of the rectified scene using another camera placed at a possi-
bly different position with novel orientation. We also allow
this new camera to have different focal lengths in horizontal
and vertical directions.

3. Adjustment Optimization
In this section, we derive and minimize an energy func-

tion for the image transformation formulated in Sec. 2.2
using the criteria defined in Sec. 2.1. We assume camera
parameters K and R have been estimated by camera cali-
bration. Then, we have 9 unknowns f1x, f1y , u1, v1, ψ1, θ1,
φ1, tx and ty in Eq. (2). However, u1 and v1 simply shift the
result image after the transformation, and we set u1 = u0
and v1 = v0. Our objective thus becomes optimizing Eq.
(2) with respect to 7 parameters of H.

Although other methods [12, 10] can also be used, we
develop our own method for robust camera calibration,
which will be presented in Sec. 4. In camera calibration,
we take the Manhattan world assumption, i.e. the major
line structures of the scene are aligned to the x-, y-, and
z-directions in 3D. For example, a rectangular building is
assumed to be oriented following the principal directions of
the world.

As a result of camera calibration, in addition to K and R,
we obtain Manhattan directions, M = [vx vy vz], where
vx, vy , and vz represent the three vanishing points corre-
sponding to the x-, y-, and z-directions, respectively. We
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also obtain three pencils of vanishing lines, Lx, Ly , and Lz ,
which contain 2D lines intersecting at vanishing points vx,
vy , and vz , respectively. The vanishing lines in Lx, Ly and
Lz are projections of 3D lines that are parallel to the x-, y-,
and z-axes, respectively.

3.1. Energy terms

Picture frame alignment For major line structures of the
scene to be aligned with the picture frame, all vanishing
lines corresponding to x- and y-directions should be hori-
zontal and vertical in a photo, respectively. That is, vanish-
ing lines in Lx and Ly should be transformed to horizontal
and vertical lines by a homography H, making vanishing
points vx and vy placed at infinity in x- and y-directions,
respectively.

Let l be a vanishing line, and p and q be two end points
of l. Then, the direction of the transformed line l′ is:

d =
q′ − p′

‖q′ − p′‖
,

where
p′ =

Hp

eTzHp
and q′ =

Hq

eTzHq
.

ez = [0 0 1]T is used to normalize homogeneous coordi-
nates. We define the energy term as:

Epic = λv
∑
i

wi
(
eTxdyi

)2
+ λh

∑
j

wj
(
eTy dxj

)2
, (4)

where dyi is the direction of the transformed line l′yi of a
vanishing line lyi in Ly . ex = [1 0 0]T , and eTxdyj is the
deviation of l′yi from the vertical direction. dxi

is defined
similarly for a vanishing line lxj

in Lx, and ey = [0 1 0]T

is used to measure the horizontal deviation.
In Eq. (4), the weight w for a line l is the original line

length before transformation, normalized by the calibrated
focal length f , i.e., w = ‖q−p‖/f . The weights λv and λh
are adaptively determined using initial rotation angles, as
the constraint of picture frame alignment becomes weaker
as rotation angles get bigger. We use:

λv = exp

(
− ψ2

2σ2
v

)
and λh = exp

(
− θ2

2σ2
h

)
, (5)

where ψ and θ are calibrated rotation angles along x- and
y-axes respectively. σv and σh are parameters to control the
tolerances to the rotation angles. We fix them as σv = π/12
and σh = π/15 in our implementation.

Eye-level alignment The eye-level in a photo is deter-
mined as a line connecting two vanishing points vx and
vz [4]. Let v′x and v′z be the transformed vanishing points:

v′x =
Hvx

eTzHvx
and v′z =

Hvz
eTzHvz

.

Figure 2. Perkins’s law. Vertices of a cube can be divided into two
categories; fork and arrow junctures. For a fork juncture, α1, α2,
and α3 should be greater than π/2. For an arrow juncture, both β1
and β2 should be less than π/2, and sum of the two angles should
be greater than π/2. Vertices that violate the above conditions will
not be perceived as vertices of a cube to the viewer.

Our objective is to make the eye-level horizontal, and the
energy term is defined as:

Eeye =

∑
i

wi +
∑
j

wj

(eTy de)2 ,
where de = (v′z − v′x) / ‖v′z − v′x‖, and wi and wj are
weights used in Eq. (4). Since eye-level alignment should
be always enforced even when a photo contains lots of van-
ishing lines, we weight Eeye by the sum of line weights to
properly scale Eeye with respect to Epic.

Perspective distortion Perspective distortion of a cuboid
can be measured using Perkins’s law [13], as illustrated in
Fig. 2. To apply it, we have to detect corner points that
are located on vertices of a cuboid. We first extract points
where the start or end points of vanishing lines from two
or three different axes meet. We then apply the mean-shift
algorithm [3] to those points to remove duplicated or nearby
points. We also remove corner points with too small corner
angles. Fig. 3 shows a result of this method.

We use the extracted corner points to measure perspec-
tive distortion under Perkins’s law. For each corner point,
we draw three lines connecting it to the three vanishing
points. We then measure angles between the three lines to
see if Perkins’s law is violated or not:

∀ci, min (αi1 , αi2 , αi3) >
π

2
(6)

where ci represents a corner point. We only considers fork
junctures, since arrow junctures can be transformed to fork
junctures by swapping the direction of an edge.

Image distortion To accurately measure image distor-
tion, we should detect circles and other important features
in the input photo, which is a hard problem. We instead use
an approximation in our system.

We first detect low-level image edges using Canny de-
tector [1], then remove edge pixels that are nearby straight



Figure 3. Results of our corner point extraction. Extracted points
are marked as yellow dots.

Figure 4. Feature detection: (left) original; (right) detected curved
edge pixels. Some important features have been detected, such as
human heads and letters, which should not be distorted.

lines. Assuming the remaining edge pixels are from curved
lines that could be originated from some features (see Fig.
4), we measure distortions of these pixels using the follow-
ing Jacobian measure:

Ereg = λr
∑
i

{
det

(
J

(
Hpi

eTzHpi

))
− 1

}2

,

where pi is a remaining edge pixel, J(·) is the Jacobian
matrix, and det(·) is the determinant. This energy increases
when non-rigid transforms are applied to the pixels causing
distortions of features. For λr, we used a small value 10−4.

Focal length difference Our reprojection model for a ho-
mography allows different focal lengths along x- and y-axes
for more natural results. However, we do not want the two
lengths to differ too much. To enforce this property, we de-
fine the following energy:

Efocal = λf (f1x − f1y)2,

where we set λf = (4/f)2 in our implementation.

3.2. Energy function minimization

Combining all the energy terms, the energy function we
want to minimize for upright adjustment becomes:

argmin
H

Epic + Eeye + Ereg + Efocal (7)

subject to Eq. (6).

To initialize the variables, we use f1x = f1y = f , ψ1 = 0,
θ1 = 0, φ1 = −φ, and tx = ty = 0, where f and φ are
values obtained by camera calibration.

Note that this energy function is non-linear and cannot be
solved in a closed form. In practice, we use the numerical

approach using fmincon in Matlab to minimize the energy
function. Although global optimum is not guaranteed, this
approach works quite well in practice.

4. Camera Calibration
In this section, we present a robust method for cam-

era calibration to estimate the matrices K and R in Eq.
(2). In previous methods [12, 10], Manhattan directions
M are first determined using vanishing lines and vanish-
ing points detected from the input photo, and then K and
R are directly obtained from M. However, in determining
M, corresponding vanishing points for x-, y-, and z-axes
may not be obvious, because there could be many vanish-
ing points possibly with position errors. The inaccuracy of
M is then immediately propagated to K and R. In contrast,
our method estimates K, R, and M simultaneously using a
MAP approach, and produces more reliable results.

Line segment detection Line segments are basic primi-
tives in our calibration method. From the input image, we
extract a set of line segments L, using the method of von
Gioi et al. [21] in a multi-scale fashion [20]. For each line
segment li, we store its two end points pi and qi.

4.1. Calibration formulation

The joint probability of Manhattan directions M, intrin-
sic matrix K, and orientation matrix R with respect to line
segments L can be expressed as follows:

p(K,R,M|L) ∝ p(L|K,R,M)p(K,R,M)

= p(L|M)p(M|K,R)p(K)p(R), (8)

with assumptions that K and R are independent of each
other and also independent of L. By taking log probability,
we can rephrase Eq. (8) into an energy function as:

EK,R,M |L = EK + ER + EM |K,R + EL|M . (9)

Prior EK To define the prior for K, we take a similar ap-
proach to [19, 20]. We assume that the center of projection
cp = (u0, v0) is the image center cI = (cx, cy), and that the
focal length f is the image widthW . EK is then defined as:

EK = λf

(
max(W, f)

min(W, f)
− 1

)2

+ λc ‖cp − cI‖2 .

We set λf as 0.04 and λc as (10/W )2.

Prior ER For the prior of R, we assume that the orienta-
tion of the camera is aligned with the principal axes of the
world, which is a reasonable assumption in most cases. We
have:

ER = λψψ
2 + λθθ

2 + λφφ
2.



The three rotation angles are not weighted equally. Particu-
larly, we found that the prior for φ (z-axis rotation) should
be stronger to enforce eye-level alignment. We thus use
[λψ, λθ, λφ] = [4/π, 3/π, 6/π]2.

Posterior EM |K,R If K and R are known, M can be es-
timated as:

M = [vx vy vz] = (KR)I3,

where I3 = [ex ey ez] is the identity matrix. Using this
property, we formulate our energy function as follows:

EM |K,R = λM
∑

i∈{x,y,z}

[
cos−1

{
eTi

(KR)−1vi
‖(KR)−1vi‖

}]2
.

This energy function covers the orthogonality of Manhattan
directions [19] and the prior for zenith [20]. λM is set as
(24/π)2 in our experiments.

Posterior EL|M This term measures the conformity of
detected line segments to the estimated vanishing points.
We prefer vanishing points for which more line segments
could be parts of vanishing lines. Our energy function is

EL|M = λL
∑
i

min {d(vx, li), d(vy, li), d(vy, li)} ,

where d(·) is the distance between a vanishing point and a
line. We use the distance definition in [19]:

d(v, l) = min

( ∣∣rTp∣∣√
r21 + r22

, δ

)
, (10)

where p and q are two end points of l and

r =

(
p+ q

2

)
× v = [r1 r2 r3]

T .

δ is the given maximum error value for which we used 1.75
in our implementation. We set λL to 0.02.

Dealing with missing vanishing points When we esti-
mate M, we cannot always find all three vanishing points.
For robustness, our energy terms, EM |K,R and EL|M ,
should be able to handle this case. For EM |K,R, we set the
energy to be zero for a missing vanishing point, assuming
that the point is located at the position estimated using K
and R. For EL|M , we let d(vmiss, li) always be δ for all li.

4.2. Iterative optimization of K, R, and M

With the energy terms defined above, directly optimizing
Eq. (9) is difficult since it is highly non-linear. We therefore
use an iterative approach to find an approximate solution.

In the iteration, we alternatingly optimize K and R, and
M. If we fix M, we can optimize Eq. (9) with K and R by:

argmin
K,R

EK + ER + EM |K,R. (11)

Similarly, optimization of M can be achieved by solving:

argmin
M

EM |K,R + EL|M . (12)

For optimizing K and R given M, our implementation
uses fminsearch in Matlab. On the other hand, optimiza-
tion of M is still hard even if we fix K and R, since EL|M
truncates distances to δ as defined in Eq. (10). To solve Eq.
(12), we use a discrete approximation, inspired by [20].

From the line segments L, we hypothesize a large set
of vanishing points V = [v1,v2, . . . ,vn], where each ele-
ment is computed as the intersection point of two randomly
selected lines. Optimizing M thus becomes selecting van-
ishing points from V to minimize the energy in Eq. (12).
For each element of M = [vx vy vz], we find a vanishing
point in V that minimizes the energy while retaining the
other two elements.

The iterative optimization process requires good initial
values of K, R, and M to work properly. We first select a
small subset Vc = {vc1 ,vc2 , . . . ,vck} from V that is the
“closest to all lines” in the following way:

argmin
{vc1

,...,vck
}

∑
i

min {d(vc1 , li), . . . , d(vck , li)} ,

where we set k = 9 in our implementation. We then add a
special vanishing point vmiss, representing a missing van-
ishing point, into Vc because Vc may not contain all Man-
hattan directions of the scene. For each triplet of vanishing
points in Vc, we optimize K, R, and M using Eqs. (11) and
(12), and then evaluate Eq. (9). Finally, K, R, and M with
the minimum energy are used as our calibration results.

Although initial Vc may not contain all Manhattan di-
rections, the missing directions can be detected from V
while optimizing Eq. (12) in the iterative optimization pro-
cess. Optimizing K, R, and M for all possible triplets
in Vc might be computationally expensive. Thus we use
some early termination strategies for speedup. Details can
be found in the supplementary material.

Grouping vanishing lines After the calibration process,
we determine the vanishing lines for each vanishing point
in M. Three sets of vanishing lines, Lx, Ly , and Lz , are
obtained from L by:

Li = {l ∈ L | d(vi, l) < δ} , i ∈ {x, y, z},

where d(·) is the distance function defined in Eq. (10). Ex-
amples of camera calibration results with estimated vanish-
ing lines can be found in the supplementary material.

5. Results
We implemented our algorithms using Matlab. For ex-

periments, we used a PC with Intel Core i7 CPU (no multi-
threading) and 6GB RAM. It took about 7∼20 seconds



York Urban Eurasian Cities
Figure 5. Cumulative histograms of the errors in eye-level estima-
tion. (x-axis) eye-level estimation error; (y-axis) proportion of the
images in the date set. See [20] for the details of the error metric.

to obtain the upright adjustment result for a tested image
where the main chunks were: camera calibration (40% of
the time), adjustment optimization and applying the homog-
raphy (∼20% each) and line segment detection (∼10%).
We downsized the input image to about 1M pixels for com-
puting the homography H, and applied the computed H to
the original. All parameters were fixed in our experiments.

5.1. Evaluation of our camera calibration method

We compared our camera calibration method with sev-
eral state-of-the-art techniques, Tardif [19], Tretyak et al.
[20], and Mirzaei and Roumeliotis [17], using two datasets,
York Urban [6] and Eurasian Cities [20]. For the results of
Tardif [19] and Tretyak et al. [20], we used the implementa-
tions of the authors. For Mirzaei and Roumeliotis [17], we
used the data given in the material provided by the authors.

Fig. 5 shows comparisons with Tardif and Tretyak et
al. using the accuracy of the estimated eye-level angle, the
measure adopted by the latter. We got better results than
both methods on the York dataset. Our results were slightly
worse than Tretyak et al. on the Eurasian Cities dataset,
as their method was specifically targeted to eye-level esti-
mation without reconstructing Manhattan directions. How-
ever, if the Manhattan world assumption is enforced in the
method of Tretyak et al.3, our results were better with the
Eurasian Cities dataset as well. Furthermore, we obtained
better results than Tardif using the measure of the focal
length accuracy (see the supplementary material).

We also compared our method with Mirzaei and Roume-
liotis [17], which assumes the ground truth K is known and
that the scene has exactly three vanishing points (as in the
York Urban dataset). Our method does not assume any of
these. In comparison with the York Urban dataset, we could
obtain comparable (without the ground truth K) or better
(with the ground truth K) results. Details can be found in
the supplementary material.

3The method of Tretyak et al. does not assume the Manhattan world
and estimates the eye-level only, so we could not compare other quantity
produced by our method, such as vanishing points and camera parameters.

(a) Original (b) Rectified (c) Our result
Figure 6. Adjustment of a photo with large camera rotations.

Figure 7. Perspective distortion control. (left) original; (middle)
w/o perspective distortion constraint; (right) w/ the constraint.

5.2. Effects of upright adjustment criteria

Picture frame alignment is important for photos of big
planar objects, such as facades of buildings and billboards.
However, its effect should diminish as the rotation angles
of the camera increase, otherwise it will lead to undesirable
distortion (Fig. 6b). Note that if picture frame alignment
dominates other criteria, the adjustment result becomes sim-
ilar to simple image rectification. Our system automatically
handles this problem with the adaptive weight scheme (Eq.
(5)) as well as the perspective and image distortion criteria,
generating a better result shown in Fig. 6c.

Eye-level alignment becomes more important as the ef-
fect of picture frame alignment gets weaker (Fig. 1d), al-
though applying this criterion would always help obtain
a better result. Perspective distortion control prevents too
strong adjustment that could make objects in the image ap-
pear distorted (Fig. 7). We found that allowing the focal
lengths in x- and y-directions to slightly deviate with Eq.
(3), resulting in a small aspect ratio change, is often useful
to ease the perspective distortion. We also found that artists
do similar adjustments manually to make their results feel
more natural in Keystone correction of photos 4.

5.3. Comparison and user study

To compare with manual adjustment tools, we asked pro-
ficient Photoshop users to manually correct some examples
with the explicit guidance of making the man-made struc-
tures upright. Our fully automatic results were similar to
those of manual adjustments (see the supplementary). We
also compared our results with photos taken using a Tilt-
Shift lens. Our method could produce similar results for
architectural scenes, but without using a special equipment
that requires manual shift control (see Fig. 8).

To prove that our system does improve the perceptual
quality of input images, we conducted a user study on Ama-

4http://youtu.be/QkG241258FE



Original Tilt-Shift Our result
Figure 8. Comparison with Tilt-Shift lens. A Canon TS-E 24mm
f/3.5 L lens was used for taking the photo in the middle.

Original Result
Figure 9. A failure example. The human face and body have been
distorted in the upright adjustment process.

zon Mechanic Turk. We used 40 pairs of original and ad-
justed images for the user study where 100 independent par-
ticipants were asked to select the preferred image from each
pair. On average our result was preferred in 72.4% of the
cases. More details are in the supplementary material.

Limitations Our system uses a single homography to cor-
rect a photo under the uniform depth assumption for a scene.
Although this assumption typically does not hold, in prac-
tice our method generates satisfying results for a wide range
of images, due to the robustness of perspective perception
[13]. However, for human faces or other important features
in a photo, the adjusted result may contain noticeable dis-
tortion (see Fig. 9). In addition to that, our method might
not produce an optimum result if the vanishing lines are in-
correctly detected or grouped in a wrong way.

6. Conclusion
We proposed an automatic system that can adjust the per-

spective of an input photo to improve its visual quality. To
achieve this, we first defined a set of criteria based on per-
ception theories, then proposed an optimization framework
for measuring and adjusting the perspective. Experimen-
tal results demonstrate the effectiveness of our system as an
automatic tool for upright adjustment of photos containing
man-made structures.

As future work, we plan to incorporate additional con-
straints to avoid perspective distortions on faces or circles.
We also plan to extend our method to video.
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